1
|
Hu B, Moiseev D, Schena I, Faezov B, Dunbrack R, Chernoff J, Li J. PAK2 is necessary for myelination in the peripheral nervous system. Brain 2024; 147:1809-1821. [PMID: 38079473 PMCID: PMC11068108 DOI: 10.1093/brain/awad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2, specifically in mouse Schwann cells, resulted in severe hypomyelination, slowed nerve conduction velocity and behaviour dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/- sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signalling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Isabella Schena
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulat Faezov
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Roland Dunbrack
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jonathan Chernoff
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
2
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024:AD.2024.0112. [PMID: 38300645 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Moiseev D, Wazir Z, Liu D, Li J, Hu B. C698R mutation in Lrsam1 gene impairs nerve regeneration in a CMT2P mouse model. Sci Rep 2022; 12:12160. [PMID: 35842440 PMCID: PMC9288509 DOI: 10.1038/s41598-022-15902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Missense mutation C694R in the RING domain of the LRSAM1 gene results in a dominantly inherited polyneuropathy, Charcot-Marie-Tooth disease type 2P (CMT2P). We have generated and characterized a Lrsam1C698R knock-in mouse model produced through CRISPR/Cas9 technology. Both heterozygous (Lrsam1+/C698R) and homozygous (Lrsam1C698/C698R) knock-in mice exhibited normal motor functions on behavioral tests as well as normal on nerve conduction studies. Axonal density and myelin thickness were not significantly different between mutants and wild-type mice by sciatic nerve morphometric analysis up to 17 months of age. In line with these normal findings, protein–protein interactions between mutant LRSAM1 and RNA-binding proteins (such as FUS and G3BP1) were still present in mouse cells, which differs from the disrupted interactions between these proteins in human CMT2P cells. However, after crush nerve injury, Lrsam1+/C698R mice had a mild, but statistically significant, reduced compound nerve action potential and conduction velocity during recovery. Therefore, C698R mutation results in a mild impaired nerve regeneration in mice. We speculate that repetitive nerve injuries may, at least partially, contribute to the slowly progressive axonal loss in CMT2P.
Collapse
Affiliation(s)
- Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zafar Wazir
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donghao Liu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Bo Hu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
4
|
Roth AR, Li J, Dortch RD. Candidate imaging biomarkers for PMP22-related inherited neuropathies. Ann Clin Transl Neurol 2022; 9:925-935. [PMID: 35656877 PMCID: PMC9268861 DOI: 10.1002/acn3.51561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Charcot-Marie-Tooth type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsy (HNPP) are caused by mutations to the peripheral myelin protein 22 (PMP22) gene. A need exists for sensitive and reliable biomarkers of progression and treatment response. Magnetic resonance imaging (MRI) metrics of nerve pathology and morphology were investigated for this purpose. METHODS MRI was performed at 3.0 T in the thigh of CMT1A (N = 11) and HNPP patients (N = 12) and controls (N = 23). Three potential imaging biomarkers of the sciatic nerve were investigated: 1) magnetization transfer ratio (MTR), which assays myelin content, and 2) cross-sectional area (CSA) and 3) circularity, which assay morphological changes. Potential imaging biomarkers were compared across cohorts and assessed for relationships with disability in the legs (CMTESL ), compound motor action potentials (CMAP), and motor conduction velocities (MCV). Inter-rater reliability and test-retest repeatability were established for each imaging metric. RESULTS Significant differences in MTR, CSA, and circularity were observed in CMT1A relative to controls (p = 0.02, p < 0.001, and p = 0.003, respectively, via Wilcoxon rank-sum tests). Differences were not observed in the HNPP cohort. Significant relationships were observed between MTR and clinical metrics (CMTESL : p = 0.003, CMAP: p = 0.03, MCV: p = 0.01); and between CSA and electrophysiology (CMAP: p = 0.002, MCV: p < 0.001). All metrics were reliable and repeatable with MTR the most reliable (intraclass correlation coefficient [ICC] >0.999, CV = 0.30%) and repeatable (ICC = 0.84, CV = 3.16%). INTERPRETATION MTR, CSA, and circularity showed promise as reliable and sensitive biomarkers of CMT1A, but not HNPP. These warrant longitudinal investigation as response biomarkers in upcoming clinical trials of CMT1A, while other methods should be considered for HNPP.
Collapse
Affiliation(s)
- Alison R. Roth
- Division of Neuroimaging ResearchBarrow Neurological InstitutePhoenixArizonaUSA
| | - Jun Li
- Department of NeurologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of NeurologyWayne State UniversityDetroitMichiganUSA
| | - Richard D. Dortch
- Division of Neuroimaging ResearchBarrow Neurological InstitutePhoenixArizonaUSA
- Vanderbilt University Institute of Imaging ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
5
|
Anti-MAG neuropathy: From biology to clinical management. J Neuroimmunol 2021; 361:577725. [PMID: 34610502 DOI: 10.1016/j.jneuroim.2021.577725] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
The acquired chronic demyelinating neuropathies include a growing number of disease entities that have characteristic, often overlapping, clinical presentations, mediated by distinct immune mechanisms, and responding to different therapies. After the discovery in the early 1980s, that the myelin associated glycoprotein (MAG) is a target antigen in an autoimmune demyelinating neuropathy, assays to measure the presence of anti-MAG antibodies were used as the basis to diagnose the anti-MAG neuropathy. The route was open for describing the clinical characteristics of this new entity as a chronic distal large fiber sensorimotor neuropathy, for studying its pathogenesis and devising specific treatment strategies. The initial use of chemotherapeutic agents was replaced by the introduction in the late 1990s of rituximab, a monoclonal antibody against CD20+ B-cells. Since then, other anti-B cells agents have been introduced. Recently a novel antigen-specific immunotherapy neutralizing the anti-MAG antibodies with a carbohydrate-based ligand mimicking the natural HNK-1 glycoepitope has been described.
Collapse
|
6
|
Schorling E, Senn KC, Thiele S, Gumbert L, Krause S, Schreiber-Katz O, Walter MC, Reilich P, Nagels KH. Health-related Quality of Life and Satisfaction with German Health Care Services in Patients with Charcot-Marie-Tooth Neuropathy. J Neuromuscul Dis 2021; 9:211-220. [PMID: 34057093 DOI: 10.3233/jnd-210667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BackgroundCharcot-Marie-Tooth (CMT) neuropathies entail a large group of diseases with different gene mutation patterns, which produce heterogeneous phenotypes. Although health-related quality of life (HRQOL) is significantly impaired, a comprehensive assessment of HRQOL in CMT patients in Germany considering phenotypical heterogeneity represented a research gap.ObjectiveThe aim was to assess HRQOL and the satisfaction with health care in CMT patients in Germany.MethodsCMT patients > 15 years with a genetically confirmed CMT subtype were recruited through a national CMT patient registry. HRQOL was assessed using the EQ-5D-5L questionnaire. Furthermore, subjective impairments in daily or work activities and satisfaction with health care were assessed using 4-point scales.ResultsHRQOL in CMT patients (n = 385) was impaired compared to the German population. Most patients reported problems in the dimension mobility (89.6%), pain/discomfort (89.4%) and usual activities (81.0%). Except for patients with hereditary neuropathy with liability to pressure palsy (HNPP), we found no differences in HRQOL between the CMT subtypes. 72.0%of CMT patients were satisfied with available health care services. However, patients reported to expect more CMT-specific knowledge and support as well as easier prescription and cost coverage procedures from health professionals and insurances.ConclusionsThe patient-reported outcomes in the assessed CMT cohort elucidate the need for more specific health care services that also address the heterogeneous phenotypes. Although the assessment has been limited to the German health services setting, insights may be applicable to CMT-specific care in other national settings.
Collapse
Affiliation(s)
- Elisabeth Schorling
- University of Bayreuth, Institute for Healthcare Management and Health Sciences, Bayreuth, Germany.,Max Rubner-Institute, Kulmbach, Germany
| | - Katja C Senn
- University of Bayreuth, Chair of Healthcare Management and Health Services Research, Bayreuth, Germany
| | - Simone Thiele
- Ludwig-Maximilians-University of Munich, Friedrich-Baur-Institute, Department of Neurology, Munich, Germany
| | - Laura Gumbert
- University of Bayreuth, Chair of Healthcare Management and Health Services Research, Bayreuth, Germany
| | - Sabine Krause
- Ludwig-Maximilians-University of Munich, Friedrich-Baur-Institute, Department of Neurology, Munich, Germany
| | | | - Maggie C Walter
- Ludwig-Maximilians-University of Munich, Friedrich-Baur-Institute, Department of Neurology, Munich, Germany
| | - Peter Reilich
- Ludwig-Maximilians-University of Munich, Friedrich-Baur-Institute, Department of Neurology, Munich, Germany
| | - Klaus H Nagels
- University of Bayreuth, Chair of Healthcare Management and Health Services Research, Bayreuth, Germany
| |
Collapse
|
7
|
Chen Y, Moiseev D, Kong WY, Bezanovski A, Li J. Automation of Quantifying Axonal Loss in Patients with Peripheral Neuropathies through Deep Learning Derived Muscle Fat Fraction. J Magn Reson Imaging 2021; 53:1539-1549. [PMID: 33448058 DOI: 10.1002/jmri.27508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Axonal loss denervates muscle, leading to an increase of fat accumulation in the muscle. Therefore, fat fraction (FF) in whole limb muscle using MRI has emerged as a monitoring biomarker for axonal loss in patients with peripheral neuropathies. In this study, we are testing whether deep learning-based model can automate quantification of the FF in individual muscles. While individual muscle is smaller with irregular shape, manually segmented muscle MRI images have been accumulated in this lab; and make the deep learning feasible. PURPOSE To automate segmentation on muscle MRI images through deep learning for quantifying individual muscle FF in patients with peripheral neuropathies. STUDY TYPE Retrospective. SUBJECTS 24 patients and 19 healthy controls. FIELD STRENGTH/SEQUENCES 3T; Interleaved 3D GRE. ASSESSMENT A 3D U-Net model was implemented in segmenting muscle MRI images. This was enabled by leveraging a large set of manually segmented muscle MRI images. B1+ and B1- maps were used to correct image inhomogeneity. Accuracy of the automation was evaluated using Pixel Accuracy (PA), Dice Coefficient (DC) in binary masks; and Bland-Altman and Pearson correlation by comparing FF values between manual and automated methods. STATISTICAL TESTS PA and DC were reported with their median value and standard deviation. Two methods were compared using the ± 95% confidence intervals (CI) of Bland-Altman analysis and the Pearson's coefficient (r2 ). RESULTS DC values were from 0.83 ± 0.17 to 0.98 ± 0.02 in thigh and from 0.63 ± 0.18 to 0.96 ± 0.02 in calf muscles. For FF values, the overall ± 95% CI and r2 were [0.49, -0.56] and 0.989 in thigh and [0.84, -0.71] and 0.971 in the calf. DATA CONCLUSION Automated results well agreed with the manual results in quantifying FF for individual muscles. This method mitigates the formidable time consumption and intense labor in manual segmentations; and enables the use of individual muscle FF as outcome measures in upcoming longitudinal studies. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wan Yee Kong
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alexandar Bezanovski
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
8
|
Sample SJ, Stilin A, Binversie EE, Baker LA, Hardie RJ. Late-onset laryngeal paralysis: Owner perception of quality of life and cause of death. Vet Med Sci 2020; 6:306-313. [PMID: 31981469 PMCID: PMC7397904 DOI: 10.1002/vms3.240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/10/2019] [Accepted: 01/05/2020] [Indexed: 01/13/2023] Open
Abstract
Background Late‐onset laryngeal paralysis (LoLP) is an idiopathic disease of older dogs, and is common in the Labrador Retriever. Owner perspective of how LoLP affects their pet's quality of life (QOL), the degree to which LoLP is perceived to be a life‐limiting disease, and how a glottic opening procedure affects these perceptions is not known. Objectives (a) To determine owner's perception of late‐onset laryngeal paralysis (LoLP) with respect to their dog's QOL; (b) To determine whether LoLP is considered by owners to be a life‐limiting disease; (c) To evaluate whether a glottic opening procedure altered QOL and perceived cause of death in affected dogs. Methods Owners of Labrador Retrievers with LoLP completed a questionnaire. Questions were asked pertaining to a dog's LoLP, including clinical progression and perception of cause of death, and whether a glottic opening procedure was undertaken. Owners also completed a pet‐owner administered QOL survey. Results Seventy‐six owners participated. Overall, 94% of owners felt their dog's LoLP affected QOL, and 47% of owners felt LoLP was a large contributing factor in their dog's death. Dogs that underwent a glottic opening procedure were reported to have a better QOL, and the contribution of LoLP towards their death was less than dogs that did not have surgery. Conclusion Owners of Labrador Retrievers with LoLP perceive LoLP to be a life‐limiting disease that negatively impacts their dog's QOL. Arytenoid lateralization surgery had a positive impact on QOL in affected dogs.
Collapse
Affiliation(s)
- Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Allison Stilin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren A Baker
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert J Hardie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Abstract
Magnetic resonance imaging (MRI) has been used extensively in revealing pathological changes in the central nervous system. However, to date, MRI is very much underutilized in evaluating the peripheral nervous system (PNS). This underutilization is generally due to two perceived weaknesses in MRI: first, the need for very high resolution to image the small structures within the peripheral nerves to visualize morphological changes; second, the lack of normative data in MRI of the PNS and this makes reliable interpretation of the data difficult. This article reviews current state-of-the-art capabilities in
in vivo MRI of human peripheral nerves. It aims to identify areas where progress has been made and those that still require further improvement. In particular, with many new therapies on the horizon, this review addresses how MRI can be used to provide non-invasive and objective biomarkers in the evaluation of peripheral neuropathies. Although a number of techniques are available in diagnosing and tracking pathologies in the PNS, those techniques typically target the distal peripheral nerves, and distal nerves may be completely degenerated during the patient’s first clinic visit. These techniques may also not be able to access the proximal nerves deeply embedded in the tissue. Peripheral nerve MRI would be an alternative to circumvent these problems. In order to address the pressing clinical needs, this review closes with a clinical protocol at 3T that will allow high-resolution, high-contrast, quantitative MRI of the proximal peripheral nerves.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| |
Collapse
|
10
|
Vanoye CG, Sakakura M, Follis RM, Trevisan AJ, Narayan M, Li J, Sanders CR, Carter BD. Peripheral myelin protein 22 modulates store-operated calcium channel activity, providing insights into Charcot-Marie-Tooth disease etiology. J Biol Chem 2019; 294:12054-12065. [PMID: 31213528 PMCID: PMC6690708 DOI: 10.1074/jbc.ra118.006248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a peripheral neuropathy associated with gene duplication and point mutations in the peripheral myelin protein 22 (PMP22) gene. However, the role of PMP22 in Schwann cell physiology and the mechanisms by which PMP22 mutations cause CMT are not well-understood. On the basis of homology between PMP22 and proteins associated with modulation of ion channels, we hypothesized that PMP22 alters ion channel activity. Using whole-cell electrophysiology, we show here that heterologous PMP22 expression increases the amplitude of currents similar to those ascribed to store-operated calcium (SOC) channels, particularly those involving transient receptor canonical channel 1 (TrpC1). These channels help replenish Ca2+ in the endoplasmic reticulum (ER) following stimulus-induced depletion. Currents with similar properties were recorded in WT but not pmp22-/- mouse Schwann cells. Heterologous expression of the CMT-associated PMP22_L16P variant, which fails to reach the plasma membrane and localizes to the ER, led to larger currents than WT PMP22. Similarly, Schwann cells isolated from Trembler J (TrJ; PMP22_L16P) mice had larger currents than WT littermates. Calcium imaging in live nerves and cultured Schwann cells revealed elevated intracellular Ca2+ in TrJ mice compared with WT. Moreover, we found that PMP22 co-immunoprecipitated with stromal interaction molecule 1 (STIM1), the Ca2+ sensor SOC channel subunit in the ER. These results suggest that in the ER, PMP22 interacts with STIM1 and increases Ca2+ influx through SOC channels. Excess or mutant PMP22 in the ER may elevate intracellular Ca2+ levels, which could contribute to CMT pathology.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232; Center for Human Genetics, Vanderbilt University, Nashville, Tennessee 37232.
| | - Masayoshi Sakakura
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Rose M Follis
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Malathi Narayan
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Jun Li
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232; Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232
| | - Charles R Sanders
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 7232; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232.
| |
Collapse
|
11
|
Schorling E, Thiele S, Gumbert L, Krause S, Klug C, Schreiber-Katz O, Reilich P, Nagels K, Walter MC. Cost of illness in Charcot-Marie-Tooth neuropathy: Results from Germany. Neurology 2019; 92:e2027-e2037. [PMID: 30918088 DOI: 10.1212/wnl.0000000000007376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess cost associated with the disease-specific need of patients diagnosed with Charcot-Marie-Tooth neuropathies (CMT) in Germany. METHODS Patients with CMT were identified through the national patient registry and invited to complete a standardized questionnaire. The data collected include information about health care use, informal care, and other disease-related expenses as well as the working situation. Based on this information, we estimated the annual cost of CMT from the perspective of society. RESULTS This study included 397 patients with a genetically confirmed CMT diagnosis. We estimated total annual cost of illness (COI) of $22,362 (95% CI $19,464-$25,723) per patient, of which 67.3% were direct costs. The highest single cost factor was informal care cost. For Germany, we extrapolated total cost of CMT of $735.0 million ($639.8 million-$845.5 million). Multivariate regression analysis showed that total annual cost increased with disease severity (Charcot-Marie-Tooth Neuropathy Score). Age, CMT subtype, comorbidities, body mass index, and employment status were also predictors of a change in cost (p < 0.05). Moreover, we found differences in total cost depending on marital status, subjectively evaluated impairments, dependence on other persons, care level, educational level, and disease duration. CONCLUSIONS CMT is associated with a substantial economic burden. For the first time, the COI of CMT has been assessed and will serve as important input to decision-making in health policy, especially regarding research and development of therapies. Moreover, our results indicate the importance of the patient-reported perception of disease severity related to the consumption of resources.
Collapse
Affiliation(s)
- Elisabeth Schorling
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Simone Thiele
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Laura Gumbert
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Sabine Krause
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Constanze Klug
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Olivia Schreiber-Katz
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Peter Reilich
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Klaus Nagels
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany
| | - Maggie C Walter
- From the Institute for Healthcare Management and Health Sciences (E.S., C.K.) and Healthcare Management and Health Services Research (L.G., K.N.), University of Bayreuth; Department of Neurology (S.T., S.K., P.R., M.C.W.), Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich; and Department of Neurology (O.S.-K.), Hannover Medical School, Germany.
| |
Collapse
|
12
|
He J, Guo L, Xu G, Xu L, Lin S, Chen W, Wang N. Clinical and genetic investigation in Chinese patients with demyelinating Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2018; 23:216-226. [PMID: 29896895 DOI: 10.1111/jns.12277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022]
Abstract
Demyelinating Charcot-Marie-Tooth disease (CMT) is the most common subtype of CMT. It is caused mainly by 17p11.2 heterozygous duplication, but also by mutations in more than 20 genes which affect development and function of Schwann cells. To investigate the profile of genes mutated and clinical features in demyelinating CMT of Chinese descent, we collected a cohort of 44 demyelinating CMT patients and screened them using multiplex ligation-dependent probe amplification (MLPA) and targeted next-generation sequencing (NGS) technology. The MLPA technology revealed that 77.3% demyelinating CMT patients harbored 17p11.2 heterozygous duplication and 6.8% patients harbored heterozygous deletion of exon 6 of MPZ gene, that was further confirmed a novel c.674_675insA mutation in MPZ gene. In the patients with 17p12 heterozygous duplication, 3 sets of independent families were discordant for the CMT phenotype within the same family. The targeted NGS technology revealed that 6 candidate mutations including 1 previously reported mutation (GDAP1: c.571C>T) and 5 novel mutations (SBF2: c.415T>C, c.619G>T, c.1258A>G; GDAP1: c.589delC; PMP22: c.318delT) were found. In conclusion, combined MLPA technique with targeted NGS, the demyelinating CMT genetic diagnostic success rate was increased.
Collapse
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Lingling Guo
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shan Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
| |
Collapse
|
13
|
Hu B, Arpag S, Zuchner S, Li J. A novel missense mutation of CMT2P alters transcription machinery. Ann Neurol 2016; 80:834-845. [PMID: 27615052 DOI: 10.1002/ana.24776] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Charcot-Marie-Tooth type 2P (CMT2P) has been associated with frameshift mutations in the RING domain of LRSAM1 (an E3 ligase). This study describes families with a novel missense mutation of LRSAM1 gene and explores pathogenic mechanisms of CMT2P. METHODS Patients with CMT2P were characterized clinically, electrophysiologically, and genetically. A neuronal model with the LRSAM1 mutation was created using CRISPR/Cas9 technology. The neuronal cell line along with fibroblasts isolated from the patients was used to study RNA-binding proteins. RESULTS This American family with dominantly inherited axonal polyneuropathy reveals a phenotype similar to those in previously reported non-US families. The affected members in our family cosegregated with a novel missense mutation Cys694Arg that alters a highly conserved cysteine in the RING domain. This mutation leads to axonal degeneration in the in vitro neuronal cell line. Moreover, using protein mass spectrometry, we identified a group of RNA-binding proteins (including FUS, a protein critically involved in motor neuron degeneration) that interacted with LRSAM1. The interactions were disrupted by the Cys694Arg mutation, which resulted in reduction of intranuclear RNA-binding proteins. INTERPRETATION Our findings suggest that the mutant LRSAM1 may aberrantly affect the formation of transcription machinery. Given that a similar mechanism has been reported in motor neuron degeneration of amyotrophic lateral sclerosis, abnormalities of RNA/RNA-binding protein complex may play a role in the neuronal degeneration of CMT2P. Ann Neurol 2016;80:834-845.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Sezgi Arpag
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Jun Li
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
14
|
N98S mutation in NEFL gene is dominantly inherited with a phenotype of polyneuropathy and cerebellar atrophy. J Neurol Sci 2016; 365:46-7. [PMID: 27206872 DOI: 10.1016/j.jns.2016.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
|
15
|
TECPR2 mutations cause a new subtype of familial dysautonomia like hereditary sensory autonomic neuropathy with intellectual disability. Eur J Paediatr Neurol 2016; 20:69-79. [PMID: 26542466 DOI: 10.1016/j.ejpn.2015.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND TECPR2 was first described as a disease causing gene when the c.3416delT frameshift mutation was found in five Jewish Bukharian patients with similar features. It was suggested to constitute a new subtype of complex hereditary spastic paraparesis (SPG49). RESULTS We report here 3 additional patients from unrelated non-Bukharian families, harboring two novel mutations (c.1319delT, c.C566T) in this gene. Accumulating clinical data clarifies that in addition to intellectual disability and evolving spasticity the main disabling feature of this unique disorder is autonomic-sensory neuropathy accompanied by chronic respiratory disease and paroxysmal autonomic events. CONCLUSION We suggest that the disease should therefore be classified as a new subtype of hereditary sensory-autonomic neuropathy. The discovery of additional mutations in non-Bukharian patients implies that this disease might be more common than previously appreciated and should therefore be considered in undiagnosed cases of intellectual disability with autonomic features and respiratory symptoms regardless of demographic origin.
Collapse
|
16
|
Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 2015; 262:2457-65. [PMID: 26233693 DOI: 10.1007/s00415-015-7869-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Previous reports of ocular abnormalities in Huntington's disease (HD) have detailed eye movement disorders. The objective of this case-control study was to investigate optic nerve and macular morphology in HD using optical coherence tomography (OCT). A total of 26 HD patients and 29 controls underwent a thorough ophthalmic examination including spectral domain OCT scans of the macula and peripapillary retinal nerve fibre layer (RNFL). Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scale motor scores were acquired for HD patients. Temporal RNFL thickness was significantly reduced in the HD group (62.3 vs. 69.8 μm, p = 0.005), and there was a significant negative correlation between temporal RNFL thickness and disease duration (R (2) = -0.51, p = 0.04). Average peripapillary RNFL thickness was not significantly different between the HD and control groups. There was a significant negative correlation between macular volume and disease duration (R (2) = -0.71, p = 0.002), and motor scores (R (2) = -0.56, p = 0.01). Colour vision was significantly poorer in the HD group. Temporal RNFL is preferentially thinned in HD patients, possibly implicating mitochondrial dysfunction as the temporal RNFL is reduced in the patients with some mitochondrial disorders, including Leber's hereditary optic neuropathy. The correlation between the decrease in macular volume and temporal RNFL, and increasing disease severity suggests that OCT may be a useful biomarker for disease progression in HD. Larger, longitudinal studies are required.
Collapse
|
17
|
Li J. Molecular regulators of nerve conduction - Lessons from inherited neuropathies and rodent genetic models. Exp Neurol 2015; 267:209-18. [PMID: 25792482 DOI: 10.1016/j.expneurol.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 11/15/2022]
Abstract
Myelinated nerve fibers are highly compartmentalized. Helically wrapped lipoprotein membranes of myelin are integrated with subsets of proteins specifically in each compartment to shape the physiological behavior of these nerve fibers. With the advance of molecular biology and genetics, many functions of these proteins have been revealed over the past decade. In this review, we will first discuss how action potential propagation has been understood by classical electrophysiological studies. In particular, the discussion will be concentrated on how the geometric dimensions of myelinated nerve fibers (such as internodal length and myelin thickness) may affect nerve conduction velocity. This discussion will then extend into how specific myelin proteins may shape these geometric parameters, thereby regulating action potential propagation. For instance, periaxin may specifically affect the internodal length, but not other parameters. In contrast, neuregulin-1 may affect myelin thickness, but not axon diameter or internodal length. Finally, we will discuss how these basic neurobiological observations can be applied to inherited peripheral nerve diseases.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurology, Center for Human Genetic Research, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, Nashville VA, Nashville, TN, USA.
| |
Collapse
|
18
|
Toft M. Advances in genetic diagnosis of neurological disorders. Acta Neurol Scand 2014:20-5. [PMID: 24588502 DOI: 10.1111/ane.12232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Neurogenetics has developed enormously in recent years, and the genetic basis of human disorders is being unravelled rapidly. Many neurological disorders are Mendelian disorders, caused by mutations in genes involved in normal function of the brain, spinal cord, peripheral nerves or muscles. Due to high costs and time-consuming procedures, genetic tests have normally been performed late in the diagnostic process, when clinical examination and other tests have indicated a specific gene as the likely disease cause. Many neurological phenotypes are genetically very heterogeneous, and testing of all possible disease genes has been impossible. As a result, many patients with genetic neurological disorders have remained without a specific diagnosis, even when the disease is caused by mutations in known disease genes. Recent technological advances, in particular next-generation DNA sequencing techniques, have resulted in rapid identification of genes involved in Mendelian disorders and provided new possibilities for diagnostic genetic testing. The development of methods for coupling targeted capture and massively parallel DNA sequencing has made it possible to examine a large number of genes in a single reaction. Diagnostic genetic testing can today be performed by the use of gene panels and exome sequencing. This allows a more precise diagnosis of many neurological disorders, and genetic testing should now be considered earlier in the diagnostic procedure.
Collapse
Affiliation(s)
- M. Toft
- Department of Neurology; Oslo University Hospital - Rikshospitalet; Oslo Norway
| |
Collapse
|
19
|
Maeda Y, Kataoka Y, Sugaya A, Kariya S, Kobayashi K, Nishizaki K. Steroid-dependent sensorineural hearing loss in a patient with Charcot-Marie-Tooth disease showing auditory neuropathy. Auris Nasus Larynx 2014; 42:249-53. [PMID: 25440412 DOI: 10.1016/j.anl.2014.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 12/20/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common form of hereditary sensorimotor neuropathy and sometimes involves disorders of the peripheral auditory system. We present a case of steroid-dependent auditory neuropathy associated with CMT, in which the patient experienced 3 episodes of acute exacerbation of hearing loss and successful rescue of hearing by prednisolone. An 8-year-old boy was referred to the otolaryngology department at the University Hospital. He had been diagnosed with CMT type 1 (demyelinating type) at the Child Neurology Department and was suffering from mild hearing loss due to auditory neuropathy. An audiological diagnosis of auditory neuropathy was confirmed by auditory brainstem response and distortion-product otoacoustic emissions. At 9 years and 0 months old, 9 years and 2 months old, and 10 years and 0 months old, he had experienced acute exacerbations of hearing loss, each of which was successfully rescued by intravenous or oral prednisolone within 2 weeks. Steroid-responsive cases of CMT have been reported, but this is the first case report of steroid-responsive sensorineural hearing loss in CMT. The present case may have implications for the mechanisms of action of glucocorticoids in the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Yukihide Maeda
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Yuko Kataoka
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akiko Sugaya
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-, Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
20
|
Dortch RD, Dethrage LM, Gore JC, Smith SA, Li J. Proximal nerve magnetization transfer MRI relates to disability in Charcot-Marie-Tooth diseases. Neurology 2014; 83:1545-53. [PMID: 25253751 DOI: 10.1212/wnl.0000000000000919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objectives of this study were (1) to develop a novel magnetization transfer ratio (MTR) MRI assay of the proximal sciatic nerve (SN), which is inaccessible via current tools for assessing peripheral nerves, and (2) to evaluate the resulting MTR values as a potential biomarker of myelin content changes in patients with Charcot-Marie-Tooth (CMT) diseases. METHODS MTR was measured in the SN of patients with CMT type 1A (CMT1A, n = 10), CMT type 2A (CMT2A, n = 3), hereditary neuropathy with liability to pressure palsies (n = 3), and healthy controls (n = 21). Additional patients without a genetically confirmed subtype (n = 4), but whose family histories and electrophysiologic tests were consistent with CMT, were also included. The relationship between MTR and clinical neuropathy scores was assessed, and the interscan and inter-rater reliability of MTR was estimated. RESULTS Mean volumetric MTR values were significantly decreased in the SN of patients with CMT1A (33.8 ± 3.3 percent units) and CMT2A (31.5 ± 1.9 percent units) relative to controls (37.2 ± 2.3 percent units). A significant relationship between MTR and disability scores was also detected (p = 0.01 for genetically confirmed patients only, p = 0.04 for all patients). From interscan and inter-rater reliability analyses, proximal nerve MTR values were repeatable at the slicewise and mean volumetric levels. CONCLUSIONS MTR measurements may be a viable biomarker of proximal nerve pathology in patients with CMT.
Collapse
Affiliation(s)
- Richard D Dortch
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN.
| | - Lindsey M Dethrage
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - John C Gore
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - Seth A Smith
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| | - Jun Li
- From the Department of Radiology and Radiological Sciences (R.D.D., J.C.G., S.A.S.), Vanderbilt University Institute of Imaging Science (R.D.D., L.M.D., J.C.G., S.A.S.), and the Departments of Biomedical Engineering (R.D.D., J.C.G., S.A.S.), Physics and Astronomy (J.C.G., S.A.S.), Molecular Physiology and Biophysics (J.C.G.), and Neurology (J.L.), Vanderbilt University, Nashville, TN
| |
Collapse
|
21
|
Abstract
Ophthalmic findings are common features of neurodegenerative disorders and, in addition to being clinically important, have emerged as potentially useful biomarkers of disease progression in several conditions. Clinically, these visual system abnormalities can be a clue to diagnosis, as well as being a prominent cause of disability in affected patients. In this Review, we describe the various afferent visual system and other ophthalmic features of inherited neurodegenerative disorders, including the muscular dystrophies, Friedreich ataxia, the spinocerebellar ataxias, hereditary spastic paraplegia, Charcot-Marie-Tooth disease, and other conditions. We focus on the expanding role of optical coherence tomography in diagnostic imaging of the retina and optic nerve head, and the possible use of ophthalmic findings as biomarkers of disease severity in hereditary neurodegenerative disorders. In addition, we discuss the ophthalmic manifestations and treatment implications of mitochondrial dysfunction, which is a feature of many inherited neurodegenerative diseases.
Collapse
|
22
|
Lockwood CM. Commentary. Clin Chem 2014; 60:305-6. [PMID: 24474732 DOI: 10.1373/clinchem.2013.210864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christina M Lockwood
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
23
|
Liu L, Li X, Zi X, Huang S, Zhan Y, Jiang M, Guo J, Xia K, Tang B, Zhang R. Two novel MPZ
mutations in Chinese CMT patients. J Peripher Nerv Syst 2013; 18:256-60. [DOI: 10.1111/jns5.12040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Kun Xia
- National Key Lab of Medical Genetics; Central South University; Changsha China
| | - Beisha Tang
- National Key Lab of Medical Genetics; Central South University; Changsha China
| | | |
Collapse
|