1
|
Barrozo ER, Racusin DA, Jochum MD, Garcia BT, Suter MA, Delbeccaro M, Shope C, Antony K, Aagaard KM. Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy. Am J Obstet Gynecol 2024:S0002-9378(24)00596-9. [PMID: 38763341 DOI: 10.1016/j.ajog.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear. OBJECTIVE Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations. STUDY DESIGN In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence. RESULTS Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (-22 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata. CONCLUSION Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Diana A Racusin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Brandon T Garcia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Melanie Delbeccaro
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Cynthia Shope
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kathleen Antony
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
2
|
Jin Z, Zhang Q, Liu K, Wang S, Yan Y, Zhang B, Zhao L. The association between interleukin family and diabetes mellitus and its complications: An overview of systematic reviews and meta-analyses. Diabetes Res Clin Pract 2024; 210:111615. [PMID: 38513987 DOI: 10.1016/j.diabres.2024.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To evaluate and summarize the association between interleukin (IL) concentrations and diabetes mellitus (DM) and its complications. METHODS Meta-analyses and eligible individual studies of observational studies investigating the associations between IL and DM and its complications were included. The random-effects model was used to estimate the summary effect, and the heterogeneity among studies was assessed using the Q-statistic and the I2 metric; The Egger's regression and the χ2 test were used to test for small study effects and excess significance bias. RESULTS This overview identified 34 meta-analyses that investigated the association between IL concentrations and DM and its complications. Meta-analyses of prospective studies indicated that elevated circulating IL-6 and IL-1β had predictive value for the incident of type 2 diabetes mellitus (T2DM), type 1 diabetes mellitus (T1DM) as well as gestational diabetes mellitus (GDM), and the overall Hazard Ratio (HR) of T2DM was 1.28 (95 % CI: 1.17, 1.40; P<0.001) per 1 log pg/ml increment in IL-6 levels, however, there was no correlation between circulating IL-10 levels and DM. Meanwhile, the increased level of IL-6 was significantly associated several diabetic complications (Diabetic kidney disease[DKD], diabetic peripheral neuropathy[DPN], and cognitive impairment[CI]), and for the diabetic retinopathy (DR), the levels of IL-1β, IL-8 and IL-10 in the aqueous humor and vitreous humor, but not the blood were significantly correlated with it. CONCLUSION Multiple ILs, such as the IL-6 and IL-1β, are definitively linked to DM and its complications, and they may be new targets for the diagnosis and treatment, but stronger evidence needs to be confirmed by prospective studies with larger sample sizes and longer observation periods.
Collapse
Affiliation(s)
- Zishan Jin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100105, China
| | - Qiqi Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Sicheng Wang
- Beijing University of Chinese Medicine, Beijing 100105, China
| | - Yan Yan
- Health Construction Administration Center, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Linhua Zhao
- Beijing University of Chinese Medicine, Beijing 100105, China.
| |
Collapse
|
3
|
Li Y, Liu Y, Yao X, Wang H, Shi Z, He M. METTL14-mediated lncRNA XIST silencing alleviates GDM progression by facilitating trophoblast cell proliferation and migration via the miR-497-5p/FOXO1 axis. J Biochem Mol Toxicol 2024; 38:e23621. [PMID: 38229320 DOI: 10.1002/jbt.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Gestational diabetes mellitus (GDM), a prevalent complication during the gestation period, has been linked to impaired proliferation and migration of trophoblasts causing placental maldevelopment. We previously found that lncRNA X-inactive specific transcript (XIST) played an essential role in GDM progression. Here, we investigated the precise biological functions as well as the upstream and downstream regulatory mechanisms of XIST in GDM. We found that XIST and forkhead box O1 (FOXO1) were conspicuously upregulated and miR-497-5p and methyltransferase-like 14 (METTL14) were downregulated in the placentas of GDM patients. XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells. METTL14 inhibited XIST expression through m6A methylation modification. XIST overexpression abrogated the positive effect of METTL14 overexpression on HG-cultured HTR8/SVneo cell progression. MiR-497-5p and FOXO1 are downstream regulatory genes of XIST in HTR8/SVneo cells. Reverse experiments illustrated that XIST mediated HTR8/SVneo cell functions by regulating the miR-497-5p/FOXO1 axis. Additionally, XIST silencing augmented glucose tolerance and alleviated fetal detrimental changes in GDM rats. To conclude, METTL14-mediated XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells via the miR-497-5p/FOXO1 axis, thereby alleviating GDM progression in rats.
Collapse
Affiliation(s)
- Yanchuan Li
- Obstetrical Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanfeng Liu
- General Surgery, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xiao Yao
- Medical Services, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Haili Wang
- Obstetrical Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ziyun Shi
- Obstetrical Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Meiqing He
- Ultrasound Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams. Int J Obes (Lond) 2022; 46:793-801. [PMID: 35091670 DOI: 10.1038/s41366-021-01029-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity during pregnancy and lactation not only increases the incidence of metabolic disorders and gestational diabetes in mothers, but also programs adiposity and related metabolic diseases in offspring. The aim of this study was to investigate the effects of milk polar lipids on gut microbiota and glucose metabolism in high-fat diet (HFD)-fed rat dams. METHODS Sprague Dawley (SD) female rats were fed a HFD for 8 weeks to induce obesity, followed by HFD with or without oral administration of polar lipids-enriched milk fat globule membrane (MFGM-PL) at 400 mg/kg BW during pregnancy and lactation. At the end of lactation, fresh fecal samples of dams were collected, the gut microbiota was assessed, and the insulin-signaling protein expression in peripheral tissues (adipose tissue, liver and skeletal muscle) were measured. RESULTS MFGM-PL supplementation attenuated body weight gain, ameliorated serum lipid profiles and improved insulin sensitivity in obese dams at the end of lactation. 16 S rDNA sequencing revealed that MFGM-PL increased the community richness and diversity of gut microbiota. The composition of gut microbiota was also changed after MFGM-PL supplementation as shown by an increase in the ratio of Bacteroidetes/Firmicutes and the relative abundance of Akkermansia, as well as a decrease in the relative abundance of Ruminococcaceae. The functional prediction of microbial communities by PICRUSt analysis showed that there were 7 KEGG pathways related to carbohydrate metabolism changed after MFGM-PL supplementation to HFD dams, including glycolysis/gluconeogenesis and insulin signaling pathway. Furthermore, MFGM-PL improved insulin signaling in the peripheral tissues including liver, adipose tissue and skeletal muscle. CONCLUSIONS MFGM-PL supplementation during pregnancy and lactation improves the glucose metabolism disorders in HFD-induced obese dams, which may be linked to the regulation of gut microbiota induced by MFGM-PL.
Collapse
|
5
|
Li Y, Yuan X, Shi Z, Wang H, Ren D, Zhang Y, Fan Y, Liu Y, Cui Z. LncRNA XIST serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell via miR-497-5p/FOXO1 axis. Cardiovasc Diagn Ther 2021; 11:716-725. [PMID: 34295698 DOI: 10.21037/cdt-21-110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is increasingly common in pregnancy. This study's purpose was to identify the expression of XIST and manifest the potential mechanism of XIST in GDM. Methods Ninety-three patients with GDM and 93 normal pregnant women were included in this investigation. qRT-PCR was conducted to evaluate the expression of miR-497-5p and XIST and the relationship between XIST and fasting blood glucose (FBG) was explored by Pearson assay. The clinical diagnosis of XIST on GDM patients was validated by the receiver operator characteristic (ROC) curve. Cell counting kit-8 (CCK-8) was applied to elucidate cell viability. Luciferase reporter assay was performed to document the relationship among XIST, miR-497-5p, and FOXO1. Results The expression of XIST was increased in GDM patients and HTR-8/SVneo cell models caused by high glucose (HG). The expression of XIST was associated with the FBG levels and appeared to be a feasible indicator in discriminating GDM patients. The expression of miR-497-5p was prominently reduced in GDM patients and cell models. Inhibition of XIST might alleviate the adverse function of HG on cell viability via sponging miR-497-5p. FOXO1 was proved to be a downstream target gene of miR-497-5p. Conclusions Overexpression of XIST and downregulation of miR-497-5p were indicated in this publication. XIST might serve as a promising diagnostic marker for GDM patients. XIST/miR-497-5p/FOXO1 axis played a critical role in the regulation of trophoblast cells.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaohua Yuan
- Department of Obstetrics and Gynecology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ziyun Shi
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Haili Wang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Duomei Ren
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ya Zhang
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yangyang Fan
- Department of Obstetrics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yanfeng Liu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | - Zhangxia Cui
- Department of Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine (Xi Xian Central Hospital), Xianyang, China
| |
Collapse
|
6
|
Liu Y, Wang Y, Wang Y, Lv Y, Zhang Y, Wang H. Gene expression changes in arterial and venous endothelial cells exposed to gestational diabetes mellitus. Gynecol Endocrinol 2020; 36:791-795. [PMID: 31958024 DOI: 10.1080/09513590.2020.1712696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We investigated the molecular changes in fetoplacental blood vessel endothelial cells in gestational diabetes mellitus (GDM). Raw gene expression profile data of arterial and venous endothelial cells from GDM complicated pregnancies and healthy controls were downloaded and used for bioinformatic analysis. There were two differentially expressed genes (DEGs) in venous endothelial cells and 178 DEGs in arterial endothelial cells induced by GDM. The altered genes were clustered to pathways associated with cell cycle, p53 signaling pathway, and cellular senescence. The disease associated gene-pathway network that was constructed comprised eight down-regulated genes (including FBXO5, CCNB1, and CDK1), one up-regulated gene (CCND2), hsa04068: FoxO signaling pathway and hsa04114: Oocyte mitosis pathway. CCND2 was a significant node in the microRNA (miRNA)-target network, which was regulated by seven miRNAs that included hsa-miR-1299, hsa-miR-1200, and hsa-miR-miR-593-5p. FBXO5 was a significant node regulated by two miRNAs. CCND2 and FBXO5 were also the significant nodes in the transcriptional factors-target network and integrated regulatory network. The cell cycle pathway was significantly altered in arterial endothelial cells during GDM, which was involved with the differential expression of CCND2 and FBXO5.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of General Medicine, Jining No. 1 People's Hospital, Jining, China
| | - Yueqiang Wang
- Department of Internal Medicine-Cardiovascular, Affiliated Hospital of Taishan Medical University, Taian, China
| | - Yueqiu Wang
- Department of Joint Branch, Jining No. 2 People's Hospital, Jining, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanxia Zhang
- Department of Public Health, Jining Psychiatric Hospital, Jining, China
| | - Haiyan Wang
- Department of Obstetrics and Gynecology, People's Hospital of Jiaxiang County, Jining, China
| |
Collapse
|
7
|
Hepp P, Hutter S, Knabl J, Hofmann S, Kuhn C, Mahner S, Jeschke U. Histone H3 lysine 9 acetylation is downregulated in GDM Placentas and Calcitriol supplementation enhanced this effect. Int J Mol Sci 2018; 19:ijms19124061. [PMID: 30558244 PMCID: PMC6321349 DOI: 10.3390/ijms19124061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-rising incidence of Gestational Diabetes Mellitus (GDM) and its implications for long-term health of mothers and offspring, the underlying molecular mechanisms remain to be elucidated. To contribute to this, the present study's objectives are to conduct a sex-specific analysis of active histone modifications in placentas affected by GDM and to investigate the effect of calcitriol on trophoblast cell's transcriptional status. The expression of Histone H3 lysine 9 acetylation (H3K9ac) and Histone H3 lysine 4 trimethylation (H3K4me3) was evaluated in 40 control and 40 GDM (20 male and 20 female each) placentas using immunohistochemistry and immunofluorescence. The choriocarcinoma cell line BeWo and primary human villous trophoblast cells were treated with calcitriol (48 h). Thereafter, western blots were used to quantify concentrations of H3K9ac and the transcription factor FOXO1. H3K9ac expression was downregulated in GDM placentas, while H3K4me3 expression was not significantly different. Cell culture experiments showed a slight downregulation of H3K9ac after calcitriol stimulation at the highest concentration. FOXO1 expression showed a dose-dependent increase. Our data supports previous research suggesting that epigenetic dysregulations play a key role in gestational diabetes mellitus. Insufficient transcriptional activity may be part of its pathophysiology and this cannot be rescued by calcitriol.
Collapse
Affiliation(s)
- Paula Hepp
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Stefan Hutter
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
- Department of Obstetrics, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Simone Hofmann
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Christina Kuhn
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| |
Collapse
|
8
|
Rajan MR, Nyman E, Kjølhede P, Cedersund G, Strålfors P. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes. J Biol Chem 2016; 291:15806-19. [PMID: 27226562 DOI: 10.1074/jbc.m116.715763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Indexed: 01/31/2023] Open
Abstract
Insulin resistance is a major aspect of type 2 diabetes (T2D), which results from impaired insulin signaling in target cells. Signaling to regulate forkhead box protein O1 (FOXO1) may be the most important mechanism for insulin to control transcription. Despite this, little is known about how insulin regulates FOXO1 and how FOXO1 may contribute to insulin resistance in adipocytes, which are the most critical cell type in the development of insulin resistance. We report a detailed mechanistic analysis of insulin control of FOXO1 in human adipocytes obtained from non-diabetic subjects and from patients with T2D. We show that FOXO1 is mainly phosphorylated through mTORC2-mediated phosphorylation of protein kinase B at Ser(473) and that this mechanism is unperturbed in T2D. We also demonstrate a cross-talk from the MAPK branch of insulin signaling to stimulate phosphorylation of FOXO1. The cellular abundance and consequently activity of FOXO1 are halved in T2D. Interestingly, inhibition of mTORC1 with rapamycin reduces the abundance of FOXO1 to the levels in T2D. This suggests that the reduction of the concentration of FOXO1 is a consequence of attenuation of mTORC1, which defines much of the diabetic state in human adipocytes. We integrate insulin control of FOXO1 in a network-wide mathematical model of insulin signaling dynamics based on compatible data from human adipocytes. The diabetic state is network-wide explained by attenuation of an mTORC1-to-insulin receptor substrate-1 (IRS1) feedback and reduced abundances of insulin receptor, GLUT4, AS160, ribosomal protein S6, and FOXO1. The model demonstrates that attenuation of the mTORC1-to-IRS1 feedback is a major mechanism of insulin resistance in the diabetic state.
Collapse
Affiliation(s)
| | - Elin Nyman
- Biomedical Engineering, Linköping University, SE58185 Linköping, Sweden and Cardiovascular and Metabolic Diseases, Innovative Medicines, and Drug Metabolism and Pharmacokinetics, AstraZeneca Research and Development, 43150 Gothenburg, Sweden
| | - Preben Kjølhede
- From the Departments of Clinical and Experimental Medicine and
| | - Gunnar Cedersund
- From the Departments of Clinical and Experimental Medicine and Biomedical Engineering, Linköping University, SE58185 Linköping, Sweden and
| | - Peter Strålfors
- From the Departments of Clinical and Experimental Medicine and
| |
Collapse
|
9
|
Could gestational diabetes mellitus be managed through dietary bioactive compounds? Current knowledge and future perspectives. Br J Nutr 2016; 115:1129-44. [PMID: 26879600 PMCID: PMC4825102 DOI: 10.1017/s0007114516000222] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gestational diabetes mellitus (GDM) is a serious problem growing worldwide that needs to be addressed with urgency in consideration of the resulting severe complications for both mother and fetus. Growing evidence indicates that a healthy diet rich in fruit, vegetables, nuts, extra-virgin olive oil and fish has beneficial effects in both the prevention and management of several human diseases and metabolic disorders. In this review, we discuss the latest data concerning the effects of dietary bioactive compounds such as polyphenols and PUFA on the molecular mechanisms regulating glucose homoeostasis. Several studies, mostly based on in vitro and animal models, indicate that dietary polyphenols, mainly flavonoids, positively modulate the insulin signalling pathway by attenuating hyperglycaemia and insulin resistance, reducing inflammatory adipokines, and modifying microRNA (miRNA) profiles. Very few data about the influence of dietary exposure on GDM outcomes are available, although this approach deserves careful consideration. Further investigation, which includes exploring the ‘omics’ world, is needed to better understand the complex interaction between dietary compounds and GDM.
Collapse
|
10
|
Oztas E, Ozler S, Ersoy E, Ersoy AO, Tokmak A, Ergin M, Uygur D, Danisman N. Prediction of gestational diabetes mellitus by first trimester serum secreted frizzle-related protein-5 levels. J Matern Fetal Neonatal Med 2015; 29:1515-9. [PMID: 26100762 DOI: 10.3109/14767058.2015.1052399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The main aim of this study was to investigate the first trimester maternal serum secreted frizzle-related protein-5 (Sfrp-5) levels and to evaluate the predictive value on the subsequently developed gestational diabetes mellitus (GDM). METHODS A total of 40 pregnant women who subsequently developed GDM and 44 age- and pre-pregnancy BMI-matched healthy pregnant women were enrolled in this prospective case-control study. First trimester serum Sfrp-5 levels were evaluated to determine if there is an association with the onset of GDM, by using logistic regression analysis. RESULTS Decreased first trimester serum Sfrp-5 levels (OR = 14.332, 95%CI: 4.166-49.301, p < 0.001) were found to be significantly associated with the increased risk of GDM. There were no statistically significant differences in serum Sfrp-5 levels between the diet- and insulin-treated GDM groups and also serum Sfrp-5 levels were not found to be predictive for adverse perinatal outcomes (p > 0.05). CONCLUSIONS Decreased first trimester serum Sfrp-5 levels are significantly associated with the increased risk of GDM.
Collapse
Affiliation(s)
- Efser Oztas
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Sibel Ozler
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Ebru Ersoy
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Ali Ozgur Ersoy
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Aytekin Tokmak
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Merve Ergin
- b Department of Clinical Biochemistry , Yildirim Beyazit University Faculty of Medicine , Ankara , Turkey
| | - Dilek Uygur
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| | - Nuri Danisman
- a Department of Obstetrics and Gynecology , Zekai Tahir Burak Women's Health Education and Research Hospital , Ankara , Turkey , and
| |
Collapse
|