1
|
Kim SH, Park Y, Shin JW, Ha JW, Choi HM, Kim HS, Moon SH, Suk KS, Park SY, Lee BH, Kwon JW. Accelerated fusion dynamics by recombinant human bone morphogenetic protein-2 following transforaminal lumbar interbody fusion, particularly in osteoporotic conditions. Spine J 2024; 24:2078-2085. [PMID: 38909911 DOI: 10.1016/j.spinee.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND CONTEXT Early fusion is crucial in interbody procedures to minimize mechanical complications resulting from delayed union, especially for patients with osteoporosis. Bone morphogenetic proteins (BMPs) are used in spinal fusion procedures; however, limited evaluation exists regarding time-to-fusion for BMP use, particularly in patients with osteoporosis. PURPOSE To evaluate the difference in time-to-fusion after single-level transforaminal lumbar interbody fusion (TLIF) surgery between recombinant human bone morphogenetic protein-2 (rhBMP-2) usage and nonusage groups according to bone density. STUDY DESIGN Retrospective single-center cohort study. PATIENT SAMPLE This study enrolled 132 patients (mean age, 65.25±8.66; male patients, 40.9%) who underwent single-level TLIF for degenerative disorders between February 2012 and December 2021, with pre- and postoperative computed tomography (CT). OUTCOME MEASURE The interbody fusion mass and bone graft status on postoperative CT scans was obtained annually, and time-to-fusion was recorded for each patient. METHODS The patients were divided into 2 groups based on rhBMP-2 use during the interbody fusion procedure. Patients were further divided into osteoporosis, osteopenia, and normal groups based on preoperative L1 vertebral body attenuation values, using cutoffs of 90 and 120 Hounsfield units. It was strictly defined that fusion is considered complete when a trabecular bone bridge was formed, and therefore, the time-to-fusion was measured in years. Time-to-fusion was statistically compared between BMP group and non-BMP groups, followed by further comparison according to bone density. RESULTS The time-to-fusion differed significantly between BMP and non-BMP groups, with half of the patients achieving fusion within 2.5 years in the BMP group compared with 4 years in the non-BMP group (p<.001). The fusion rate varied based on bone density, with the maximum difference observed in the osteoporosis group, when half of the patients achieved fusion within 3 years in the BMP group compared to 5 years in the non-BMP group (p<.001). Subgroup analysis was conducted, revealing no significant associations between time-to-fusion and factors known to influence the fusion process, including age, gender, medical history, smoking and alcohol use, and medication history, except for rh-BMP2 use and bone density. CONCLUSIONS RhBMP-2 usage significantly reduced time-to-fusion in single-level TLIF, especially in patients with osteoporosis. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Sang-Ho Kim
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea; Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yung Park
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea.
| | - Jae-Won Shin
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea; Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Joong-Won Ha
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea
| | - Hee-Min Choi
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, 100 Ilsan-ro, Ilsandong-gu, Goyang 10444, Korea
| | - Hak-Sun Kim
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seong-Hwan Moon
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kyung-Soo Suk
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Si-Young Park
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Byung-Ho Lee
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji-Won Kwon
- Department of Orthopedic Surgery, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
2
|
Broussolle T, Roux JP, Chapurlat R, Barrey C. Murine models of posterolateral spinal fusion: A systematic review. Neurochirurgie 2023; 69:101428. [PMID: 36871885 DOI: 10.1016/j.neuchi.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Rodent models are commonly used experimentally to assess treatment effectiveness in spinal fusion. Certain factors are associated with better fusion rates. The objectives of the present study were to report the protocols most frequently used, to evaluate factors known to positively influence fusion rate, and to identify new factors. METHOD A systematic literature search of PubMed and Web of Science found 139 experimental studies of posterolateral lumbar spinal fusion in rodent models. Data for level and location of fusion, animal strain, sex, weight and age, graft, decortication, fusion assessment and fusion and mortality rates were collected and analyzed. RESULTS The standard murine model for spinal fusion was male Sprague Dawley rats of 295g weight and 13 weeks' age, using decortication, with L4-L5 as fusion level. The last two criteria were associated with significantly better fusion rates. On manual palpation, the overall mean fusion rate in rats was 58% and the autograft mean fusion rate was 61%. Most studies evaluated fusion as a binary on manual palpation, and only a few used CT and histology. Average mortality was 3.03% in rats and 1.56% in mice. CONCLUSIONS These results suggest using a rat model, younger than 10 weeks and weighing more than 300 grams on the day of surgery, to optimize fusion rates, with decortication before grafting and fusing the L4-L5 level.
Collapse
Affiliation(s)
- T Broussolle
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France.
| | - Jean-Paul Roux
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - R Chapurlat
- Inserm UMR 1033, université Claude-Bernard Lyon 1, Lyon, France
| | - C Barrey
- Department of Spine Surgery, P. Wertheimer University Hospital, GHE, hospices civils de Lyon, université Claude-Bernard Lyon 1, Lyon, France; Arts et métiers ParisTech, ENSAM, 151, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
3
|
Zhu W, Kong C, Pan F, Ouyang M, Sun K, Lu S. Engineered collagen-binding bone morphogenetic protein-2 incorporated with platelet-rich plasma accelerates lumbar fusion in aged rats with osteopenia. Exp Biol Med (Maywood) 2021; 246:1577-1585. [PMID: 33757339 DOI: 10.1177/15353702211001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In aged individuals, osteopenia is a great concern for achieving solid spinal fusion. Spinal malunion could lead to various implant-related complications and reduce postoperative quality of life. This study aims to investigate the efficacy of collagen-binding bone morphogenetic protein-2 (CBD-BMP-2) on the treatment of lumbar inter-transverse defects and to explore whether platelet-rich plasma could help CBD-BMP-2 to achieve a better outcome in terms of osteogenesis in senile rats with osteopenia. In vitro experiment proved the angiogenic function of platelet-rich plasma and osteogenic effect of CBD-BMP-2. Rats were performed posterolateral lumbar inter-transverse fusion. Rats implanted with CBD-BMP-2 + platelet-rich plasma were assigned to Group A (n = 20), rats implanted with CBD-BMP-2 were assigned to Group B (n = 20), and those with platelet-rich plasma were assigned to Group C (n = 20). Four weeks after implantation, radiographic assessment, manual palpation, and histological evaluation were performed. In vivo experiments showed satisfactory therapeutic effect on lumbar inter-transverse fusion in both Groups A and B and better results of bone microarchitecture in Group A. Solid fusion rate was 77.8% in Group A, 66.7% in Group B, and 0% in Group C (P < 0.001). Our study indicated that CBD-BMP-2 could effectively facilitate the lumbar inter-transverse fusion in aged rats with osteopenia and platelet-rich plasma could help CBD-BMP-2 to enhance the bone healing of vertebral defects.
Collapse
Affiliation(s)
- Weiguo Zhu
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Chao Kong
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Fumin Pan
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Miao Ouyang
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Kang Sun
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopaedic Surgery, Xuanwu Hospital of Capital University of Medical Sciences, Beijing 100053, China.,National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| |
Collapse
|
6
|
Optimization of the Time Window of Interest in Ovariectomized Imprinting Control Region Mice for Antiosteoporosis Research. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8417814. [PMID: 29119115 PMCID: PMC5651096 DOI: 10.1155/2017/8417814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022]
Abstract
This study was performed to determine the optimal window of time during which the properties of osteoporosis are obvious and to explore the best region of interest for microstructural evaluation in antiosteoporosis research in an ovariectomized mouse model by examining changes in micro-computed tomography parameters and serum indices. Ovariectomized mice and sham-operated mice were randomly divided into five groups. At the end of the 4th, 8th, 12th, 16th, and 20th weeks after ovariectomy, the microstructure of the proximal tibia and distal femur was scanned by micro-computed tomography and blood samples were collected to detect serum biochemical indicators including alkaline phosphatase, osteocalcin, N-terminal propeptide of type I procollagen (P1NP), and C-terminal telopeptide fragment of type I collagen (CTX1). The trabecular number and connectivity density decreased while the trabecular thickness and trabecular separation increased, indicating substantial changes in the trabecular microstructure of both the tibia and femur and significant changes in bone turnover after ovariectomy, as indicated by lower levels of serum alkaline phosphatase, osteocalcin, and P1NP and higher level of CTX1 in the ovariectomy than sham group. The proximal tibia from weeks 8 to 16 after ovariectomy was optimal for osteoporosis research in this model.
Collapse
|