1
|
Hinrichs S, Placidet L, Duret A, Authié C, Arleo A, Ghezzi D. Wide-angle simulated artificial vision enhances spatial navigation and object interaction in a naturalistic environment. J Neural Eng 2024; 21:066005. [PMID: 39454585 DOI: 10.1088/1741-2552/ad8b6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
Objective. Vision restoration approaches, such as prosthetics and optogenetics, provide visual perception to blind individuals in clinical settings. Yet their effectiveness in daily life remains a challenge. Stereotyped quantitative tests used in clinical trials often fail to translate into practical, everyday applications. On the one hand, assessing real-life benefits during clinical trials is complicated by environmental complexity, reproducibility issues, and safety concerns. On the other hand, predicting behavioral benefits of restorative therapies in naturalistic environments may be a crucial step before starting clinical trials to minimize patient discomfort and unmet expectations.Approach. To address this, we leverage advancements in virtual reality technology to conduct a fully immersive and ecologically valid task within a physical artificial street environment. As a case study, we assess the impact of the visual field size in simulated artificial vision for common outdoor tasks.Main results. We show that a wide visual angle (45°) enhances participants' ability to navigate and solve tasks more effectively, safely, and efficiently. Moreover, it promotes their learning and generalization capability. Concurrently, it changes the visual exploration behavior and facilitates a more accurate mental representation of the environment. Further increasing the visual angle beyond this value does not yield significant additional improvements in most metrics.Significance. We present a methodology combining augmented reality with a naturalistic environment, enabling participants to perceive the world as patients with retinal implants would and to interact physically with it. Combining augmented reality in naturalistic environments is a valuable framework for low vision and vision restoration research.
Collapse
Affiliation(s)
- Sandrine Hinrichs
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Laboratory of Psychophysics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Louise Placidet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Antonin Duret
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Ophthalmic and Neural Technologies Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
2
|
Cartocci G, Inguscio BMS, Giorgi A, Rossi D, Di Nardo W, Di Cesare T, Leone CA, Grassia R, Galletti F, Ciodaro F, Galletti C, Albera R, Canale A, Babiloni F. Investigation of Deficits in Auditory Emotional Content Recognition by Adult Cochlear Implant Users through the Study of Electroencephalographic Gamma and Alpha Asymmetry and Alexithymia Assessment. Brain Sci 2024; 14:927. [PMID: 39335422 PMCID: PMC11430703 DOI: 10.3390/brainsci14090927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Given the importance of emotion recognition for communication purposes, and the impairment for such skill in CI users despite impressive language performances, the aim of the present study was to investigate the neural correlates of emotion recognition skills, apart from language, in adult unilateral CI (UCI) users during a music in noise (happy/sad) recognition task. Furthermore, asymmetry was investigated through electroencephalographic (EEG) rhythm, given the traditional concept of hemispheric lateralization for emotional processing, and the intrinsic asymmetry due to the clinical UCI condition. METHODS Twenty adult UCI users and eight normal hearing (NH) controls were recruited. EEG gamma and alpha band power was assessed as there is evidence of a relationship between gamma and emotional response and between alpha asymmetry and tendency to approach or withdraw from stimuli. The TAS-20 questionnaire (alexithymia) was completed by the participants. RESULTS The results showed no effect of background noise, while supporting that gamma activity related to emotion processing shows alterations in the UCI group compared to the NH group, and that these alterations are also modulated by the etiology of deafness. In particular, relative higher gamma activity in the CI side corresponds to positive processes, correlated with higher emotion recognition abilities, whereas gamma activity in the non-CI side may be related to positive processes inversely correlated with alexithymia and also inversely correlated with age; a correlation between TAS-20 scores and age was found only in the NH group. CONCLUSIONS EEG gamma activity appears to be fundamental to the processing of the emotional aspect of music and also to the psychocognitive emotion-related component in adults with CI.
Collapse
Affiliation(s)
- Giulia Cartocci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
| | - Bianca Maria Serena Inguscio
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Giorgi
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dario Rossi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
| | - Walter Di Nardo
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tiziana Di Cesare
- Institute of Otorhinolaryngology, Catholic University of Sacred Heart, Fondazione Policlinico "A Gemelli", IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Carlo Antonio Leone
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Rosa Grassia
- Department of Otolaringology Head-Neck Surgery, Monaldi Hospital, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Francesco Galletti
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Francesco Ciodaro
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Cosimo Galletti
- Department of Otorhinolaryngology, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Roberto Albera
- Department of Surgical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Andrea Canale
- Department of Surgical Sciences, University of Turin, Via Genova 3, 10126 Turin, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
- BrainSigns Ltd., Via Tirso 14, 00198 Rome, Italy
- Department of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Berger JI, Gander PE, Kim S, Schwalje AT, Woo J, Na YM, Holmes A, Hong JM, Dunn CC, Hansen MR, Gantz BJ, McMurray B, Griffiths TD, Choi I. Neural Correlates of Individual Differences in Speech-in-Noise Performance in a Large Cohort of Cochlear Implant Users. Ear Hear 2023; 44:1107-1120. [PMID: 37144890 PMCID: PMC10426791 DOI: 10.1097/aud.0000000000001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/11/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES Understanding speech-in-noise (SiN) is a complex task that recruits multiple cortical subsystems. Individuals vary in their ability to understand SiN. This cannot be explained by simple peripheral hearing profiles, but recent work by our group ( Kim et al. 2021 , Neuroimage ) highlighted central neural factors underlying the variance in SiN ability in normal hearing (NH) subjects. The present study examined neural predictors of SiN ability in a large cohort of cochlear-implant (CI) users. DESIGN We recorded electroencephalography in 114 postlingually deafened CI users while they completed the California consonant test: a word-in-noise task. In many subjects, data were also collected on two other commonly used clinical measures of speech perception: a word-in-quiet task (consonant-nucleus-consonant) word and a sentence-in-noise task (AzBio sentences). Neural activity was assessed at a vertex electrode (Cz), which could help maximize eventual generalizability to clinical situations. The N1-P2 complex of event-related potentials (ERPs) at this location were included in multiple linear regression analyses, along with several other demographic and hearing factors as predictors of SiN performance. RESULTS In general, there was a good agreement between the scores on the three speech perception tasks. ERP amplitudes did not predict AzBio performance, which was predicted by the duration of device use, low-frequency hearing thresholds, and age. However, ERP amplitudes were strong predictors for performance for both word recognition tasks: the California consonant test (which was conducted simultaneously with electroencephalography recording) and the consonant-nucleus-consonant (conducted offline). These correlations held even after accounting for known predictors of performance including residual low-frequency hearing thresholds. In CI-users, better performance was predicted by an increased cortical response to the target word, in contrast to previous reports in normal-hearing subjects in whom speech perception ability was accounted for by the ability to suppress noise. CONCLUSIONS These data indicate a neurophysiological correlate of SiN performance, thereby revealing a richer profile of an individual's hearing performance than shown by psychoacoustic measures alone. These results also highlight important differences between sentence and word recognition measures of performance and suggest that individual differences in these measures may be underwritten by different mechanisms. Finally, the contrast with prior reports of NH listeners in the same task suggests CI-users performance may be explained by a different weighting of neural processes than NH listeners.
Collapse
Affiliation(s)
- Joel I. Berger
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Phillip E. Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Subong Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Adam T. Schwalje
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea
| | - Young-min Na
- Department of Biomedical Engineering, University of Ulsan, Ulsan, South Korea
| | - Ann Holmes
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jean M. Hong
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Camille C. Dunn
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Marlan R. Hansen
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bruce J. Gantz
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bob McMurray
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Timothy D. Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Inyong Choi
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Beckers L, Tromp N, Philips B, Mylanus E, Huinck W. Exploring neurocognitive factors and brain activation in adult cochlear implant recipients associated with speech perception outcomes-A scoping review. Front Neurosci 2023; 17:1046669. [PMID: 36816114 PMCID: PMC9932917 DOI: 10.3389/fnins.2023.1046669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Background Cochlear implants (CIs) are considered an effective treatment for severe-to-profound sensorineural hearing loss. However, speech perception outcomes are highly variable among adult CI recipients. Top-down neurocognitive factors have been hypothesized to contribute to this variation that is currently only partly explained by biological and audiological factors. Studies investigating this, use varying methods and observe varying outcomes, and their relevance has yet to be evaluated in a review. Gathering and structuring this evidence in this scoping review provides a clear overview of where this research line currently stands, with the aim of guiding future research. Objective To understand to which extent different neurocognitive factors influence speech perception in adult CI users with a postlingual onset of hearing loss, by systematically reviewing the literature. Methods A systematic scoping review was performed according to the PRISMA guidelines. Studies investigating the influence of one or more neurocognitive factors on speech perception post-implantation were included. Word and sentence perception in quiet and noise were included as speech perception outcome metrics and six key neurocognitive domains, as defined by the DSM-5, were covered during the literature search (Protocol in open science registries: 10.17605/OSF.IO/Z3G7W of searches in June 2020, April 2022). Results From 5,668 retrieved articles, 54 articles were included and grouped into three categories using different measures to relate to speech perception outcomes: (1) Nineteen studies investigating brain activation, (2) Thirty-one investigating performance on cognitive tests, and (3) Eighteen investigating linguistic skills. Conclusion The use of cognitive functions, recruiting the frontal cortex, the use of visual cues, recruiting the occipital cortex, and the temporal cortex still available for language processing, are beneficial for adult CI users. Cognitive assessments indicate that performance on non-verbal intelligence tasks positively correlated with speech perception outcomes. Performance on auditory or visual working memory, learning, memory and vocabulary tasks were unrelated to speech perception outcomes and performance on the Stroop task not to word perception in quiet. However, there are still many uncertainties regarding the explanation of inconsistent results between papers and more comprehensive studies are needed e.g., including different assessment times, or combining neuroimaging and behavioral measures. Systematic review registration https://doi.org/10.17605/OSF.IO/Z3G7W.
Collapse
Affiliation(s)
- Loes Beckers
- Cochlear Ltd., Mechelen, Belgium
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nikki Tromp
- Cochlear Ltd., Mechelen, Belgium
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Emmanuel Mylanus
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wendy Huinck
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Speech auditory brainstem response in audiological practice: a systematic review. Eur Arch Otorhinolaryngol 2023; 280:2099-2118. [PMID: 36651959 DOI: 10.1007/s00405-023-07830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Speech-ABR is an auditory brainstem response that evaluates the integrity of the temporal and spectral coding of speech in the upper levels of the brainstem. It reflects the acoustic properties of the stimulus used and consists of seven major waves. Waves V and A represent the onset of the response; wave C transition region; D, E, and F waves periodic region (frequency following response); and wave O reflects the offset of the response. PURPOSE The aim of this study is to evaluate the clinical availability of the speech-ABR procedure through a literature review. METHODS Literature search was conducted in Pubmed, Google Scholar, Scopus and Science Direct databases. Clinical studies of the last 15 years have been included in this review and 60 articles have been reviewed. RESULTS As a result of the articles reviewed, it was seen that most of the studies on speech ABR were conducted with children and young people and generally focused on latency analysis measurements. Most used stimulus is the /da/ syllable. CONCLUSIONS Speech ABR can objectively measure the auditory cues important for speech recognition and has many clinical applications. It can be used as a biomarker for auditory processing disorders, learning disorders, dyslexia, otitis media, hearing loss, language disorders and phonological disorders. S-ABR is an effective procedure that can be used in speech and language evaluations in people with hearing aids or cochlear implant. It may also be of benefit to the aging auditory system's ability to encode temporal cues.
Collapse
|
6
|
A Study of Event-Related Potentials During Monaural and Bilateral Hearing in Single-Sided Deaf Cochlear Implant Users. Ear Hear 2023:00003446-990000000-00102. [PMID: 36706105 DOI: 10.1097/aud.0000000000001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Single-sided deafness (SSD) is characterized by a profoundly deaf ear and normal hearing in the contralateral ear. A cochlear implant (CI) is the only method to restore functional hearing in a profoundly deaf ear. In a previous study, we identified that the cortical processing of a CI signal differs from the normal-hearing ear (NHE) when directly compared using an auditory oddball paradigm consisting of pure tones. However, exactly how the brain integrates the electrical and acoustic signal is not well investigated. This study aims to understand how the provision of the CI in combination with the NHE may improve SSD CI users' ability to discriminate and evaluate auditory stimuli. DESIGN Electroencephalography from 10 SSD-CI participants (4 participated in the previous pure-tone study) were recorded during a semantic acoustic oddball task, where they were required to discriminate between odd and even numbers. Stimuli were presented in four hearing conditions: directly through the CI, directly to the NHE, or in free field with the CI switched on and off. We examined task-performance (response time and accuracy) and measured N1, P2, N2N4, and P3b event-related brain potentials (ERPs) linked to the detection, discrimination, and evaluation of task relevant stimuli. Sound localization and speech in noise comprehension was also examined. RESULTS In direct presentation, task performance was superior during NHE compared with CI (shorter and less varied reaction times [~720 versus ~842 msec], higher target accuracy [~93 versus ~70%]) and early neural responses (N1 and P2) were enhanced for NHE suggesting greater signal saliency. However, the size of N2N4 and P3b target-standard effects did not differ significantly between NHE and CI. In free field, target accuracy was similarly high with the CI (FF-On) and without the CI (FF-Off) (~95%), with some evidence of CI interference during FF-On (more variable and slightly but significantly delayed reaction times [~737 versus ~709 msec]). Early neural responses and late effects were also greater during FF-On. Performance on sound localization and speech in noise comprehension (S CI N NHE configuration only) was significantly greater during FF-On. CONCLUSIONS Both behavioral and neural responses in the semantic oddball task were sensitive to CI in both direct and free-field presentations. Direct conditions revealed that participants could perform the task with the CI alone, although performance was suboptimal and early neural responses were reduced when compared with the NHE. For free-field, the addition of the CI was associated with enhanced early and late neural responses, but this did not result in improved task performance. Enhanced neural responses show that the additional input from the CI is modulating relevant perceptual and cognitive processes, but the benefit of binaural hearing on behavior may not be realized in simple oddball tasks which can be adequately performed with the NHE. Future studies interested in binaural hearing should examine performance under noisy conditions and/or use spatial cues to allow headroom for the measurement of binaural benefit.
Collapse
|
7
|
Ni G, Zheng Q, Liu Y, Zhao Y, Yue T, Han S, Liu H, Ming D. Objective electroencephalography-based assessment for auditory rehabilitation of pediatric cochlear implant users. Hear Res 2021; 404:108211. [PMID: 33684887 DOI: 10.1016/j.heares.2021.108211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The cochlear implant (CI) has an effective habilitation modality for hearing-impaired children by promoting sound perception, vocalization, and language ability. However, the major challenge that remained was the lack of assessment standards for pediatric CI users, especially prelingually deaf children, to evaluate hearing rehabilitation effectiveness. In the present study, we conducted an oddball paradigm with stimuli varying in pure-tone, syllable, and tonal sounds. After implantation, we utilized cortical auditory evoked potential (CAEP) and mismatch negativity (MMN) to obtain time-domain analysis; meanwhile, the source localization was investigated to obtain spatial accuracy of the plasticity in the auditory cortex. P1 started to emerge at the third month after implantation, but its peak level was not significant until the sixth month. The temporal lobe was activated between the third and sixth months after implantation. The MMN waveform was basically normal approximately after 12 months. These results suggest that the auditory system goes through a critical period of rapid development between three and six months and enters a maturation period after 12 months. This work indicates that CAEPs are more suitable for assessing the early auditory system reconstruction, while MMN performs better in evaluating the advanced auditory function. Furthermore, source localization has proven to be an efficient tool in exploring auditory cortex plasticity, especially for pediatric CI users.
Collapse
Affiliation(s)
- Guangjian Ni
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China.
| | - Qi Zheng
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China
| | - Yidi Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China
| | - Yawen Zhao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China
| | - Tao Yue
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Siyang Han
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China
| | - Haihong Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University National Center for Children's Health, 100045, China.
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, China.
| |
Collapse
|
8
|
Wedekind A, Távora-Vieira D, Nguyen AT, Marinovic W, Rajan GP. Cochlear implants in single-sided deaf recipients: Near normal higher-order processing. Clin Neurophysiol 2020; 132:449-456. [PMID: 33450565 DOI: 10.1016/j.clinph.2020.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Single-sided deafness (SSD) is a condition where an individual has a severe to profound sensorineural hearing loss in one ear and normal hearing on the contralateral side. The use of cochlear implants in individuals with SSD leads to functional improvements in hearing. However, it is relatively unclear how sounds incoming via the cochlear implant (independent of the hearing ear) are processed and interpreted by higher-order processes in the brain. METHODS Scalp electroencephalography and auditory event-related potentials were recorded monaurally from nine experienced single sided cochlear implant users. Speech-in-noise and localisation tests were used to measure functional changes in hearing. RESULTS cochlear implant use was associated with improvement in speech-in-noise and localisation tests (compared to cochlear implant off). Significant N2 and P3b effects were observed in both cochlear implant and normal hearing ear conditions, with similar waveform morphology and scalp distribution across conditions. Delayed response times and a reduced N2 (but not P3b) effect was measured in the CI condition. CONCLUSION The brain is capable of using processes similar to those in normal hearing to discriminate sounds presented to the cochlear implant. There was evidence of processing difficulty in the cochlear implant condition which could be due to the relatively degraded signals produced by the cochlear implant compared to the normal hearing ear. SIGNIFICANCE Understanding how the brain processes sound provided by a cochlear implant highlights how cortical responses can be used to guide implantation candidacy guidelines and influence rehabilitation recommendations.
Collapse
Affiliation(s)
- Andre Wedekind
- Otolaryngology, Head and Neck Surgery, Medical School. University of Western Australia, Perth, Australia; Department of Audiology, Fiona Stanley Hospital, Perth, Australia.
| | - Dayse Távora-Vieira
- Otolaryngology, Head and Neck Surgery, Medical School. University of Western Australia, Perth, Australia; Department of Audiology, Fiona Stanley Hospital, Perth, Australia
| | - An T Nguyen
- School of Psychology, Curtin University, Perth, Australia
| | | | - Gunesh P Rajan
- Otolaryngology, Head and Neck Surgery, Medical School. University of Western Australia, Perth, Australia; Deptartment of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
| |
Collapse
|
9
|
Balkenhol T, Wallhäusser-Franke E, Rotter N, Servais JJ. Changes in Speech-Related Brain Activity During Adaptation to Electro-Acoustic Hearing. Front Neurol 2020; 11:161. [PMID: 32300327 PMCID: PMC7145411 DOI: 10.3389/fneur.2020.00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives: Hearing improves significantly with bimodal provision, i.e., a cochlear implant (CI) at one ear and a hearing aid (HA) at the other, but performance shows a high degree of variability resulting in substantial uncertainty about the performance that can be expected by the individual CI user. The objective of this study was to explore how auditory event-related potentials (AERPs) of bimodal listeners in response to spoken words approximate the electrophysiological response of normal hearing (NH) listeners. Study Design: Explorative prospective analysis during the first 6 months of bimodal listening using a within-subject repeated measures design. Setting: Academic tertiary care center. Participants: Twenty-seven adult participants with bilateral sensorineural hearing loss who received a HiRes 90K CI and continued use of a HA at the non-implanted ear. Age-matched NH listeners served as controls. Intervention: Cochlear implantation. Main Outcome Measures: Obligatory auditory evoked potentials N1 and P2, and the event-related N2 potential in response to monosyllabic words and their reversed sound traces before, as well as 3 and 6 months post-implantation. The task required word/non-word classification. Stimuli were presented within speech-modulated noise. Loudness of word/non-word signals was adjusted individually to achieve the same intelligibility across groups and assessments. Results: Intelligibility improved significantly with bimodal hearing, and the N1-P2 response approximated the morphology seen in NH with enhanced and earlier responses to the words compared to their reversals. For bimodal listeners, a prominent negative deflection was present between 370 and 570 ms post stimulus onset (N2), irrespective of stimulus type. This was absent for NH controls; hence, this response did not approximate the NH response during the study interval. N2 source localization evidenced extended activation of general cognitive areas in frontal and prefrontal brain areas in the CI group. Conclusions: Prolonged and spatially extended processing in bimodal CI users suggests employment of additional auditory-cognitive mechanisms during speech processing. This does not reduce within 6 months of bimodal experience and may be a correlate of the enhanced listening effort described by CI listeners.
Collapse
|
10
|
Wedekind A, Rajan G, Van Dun B, Távora-Vieira D. Restoration of cortical symmetry and binaural function: Cortical auditory evoked responses in adult cochlear implant users with single sided deafness. PLoS One 2020; 15:e0227371. [PMID: 31935234 PMCID: PMC6959557 DOI: 10.1371/journal.pone.0227371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022] Open
Abstract
Background Cochlear implantation for single-sided deafness (SSD) is the only treatment option with the potential to restore binaural hearing cues. Significant binaural benefit has been measured in adults by speech in noise and localisation tests, who receive a cochlear implant for SSD, however, little is known on the cortical changes that help provide this benefit. In the present study, detection of sound in the auditory cortex, speech testing and localisation was used to investigate the ability of a cochlear implant (CI) to restore auditory cortical latencies and improve binaural benefit in the adult SSD population. Methods Twenty-nine adults with acquired single-sided deafness who received a CI in adulthood were studied. Speech perception in noise was tested using the Bamford-Kowal-Bench speech-in-noise test, localisation ability was measured using the auditory speech sounds evaluation (AδE) localisation test and cortical auditory evoked responses, comparing N1-P2 latencies recorded from the normal hearing ear and cochlear implant were used to investigate the synchrony of the cortical pathway from the CI and normal hearing ear (NHe) with binaural hearing function. Results There was a significant improvement in speech perception in noise in all spatial configurations S0/N0 (Z = -3.066, p<0.002), S0/NHE (Z = -4.031, p<0.001), SCI/NHE (Z = -3.851, p<0.001). Localization significantly improved when tested with the cochlear implant on (p<0.001) with a shorter duration of deafness correlating to a greater improvement in localisation ability F(1:18) = 6.854; p = 0.017). There was no significant difference in N1-P2 latency recorded from the normal hearing ear and the CI. Conclusion Cortical auditory evoked response latencies recorded from the CI and NHe showed no significant difference, indicating that the detection of sound in the auditory cortex occurred simultaneously, providing the cortex with auditory information for binaural hearing.
Collapse
Affiliation(s)
- Andre Wedekind
- Otolaryngology, Head and Neck Surgery, School of Surgery, University of Western Australia, Perth, Australia
- Fiona Stanley Hospital, Perth, Australia
- * E-mail:
| | - Gunesh Rajan
- Otolaryngology, Head and Neck Surgery, School of Surgery, University of Western Australia, Perth, Australia
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
| | - Bram Van Dun
- The National Acoustic Laboratories, Sydney, Australia
| | - Dayse Távora-Vieira
- Otolaryngology, Head and Neck Surgery, School of Surgery, University of Western Australia, Perth, Australia
- Fiona Stanley Hospital, Perth, Australia
| |
Collapse
|
11
|
Mathew R, Vickers D, Boyle P, Shaida A, Selvadurai D, Jiang D, Undurraga J. Development of electrophysiological and behavioural measures of electrode discrimination in adult cochlear implant users. Hear Res 2018; 367:74-87. [DOI: 10.1016/j.heares.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
12
|
|
13
|
Van Dun B, Kania A, Dillon H. Cortical Auditory Evoked Potentials in (Un)aided Normal-Hearing and Hearing-Impaired Adults. Semin Hear 2016; 37:9-24. [PMID: 27587919 DOI: 10.1055/s-0035-1570333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cortical auditory evoked potentials (CAEPs) are influenced by the characteristics of the stimulus, including level and hearing aid gain. Previous studies have measured CAEPs aided and unaided in individuals with normal hearing. There is a significant difference between providing amplification to a person with normal hearing and a person with hearing loss. This study investigated this difference and the effects of stimulus signal-to-noise ratio (SNR) and audibility on the CAEP amplitude in a population with hearing loss. Twelve normal-hearing participants and 12 participants with a hearing loss participated in this study. Three speech sounds-/m/, /g/, and /t/-were presented in the free field. Unaided stimuli were presented at 55, 65, and 75 dB sound pressure level (SPL) and aided stimuli at 55 dB SPL with three different gains in steps of 10 dB. CAEPs were recorded and their amplitudes analyzed. Stimulus SNRs and audibility were determined. No significant effect of stimulus level or hearing aid gain was found in normal hearers. Conversely, a significant effect was found in hearing-impaired individuals. Audibility of the signal, which in some cases is determined by the signal level relative to threshold and in other cases by the SNR, is the dominant factor explaining changes in CAEP amplitude. CAEPs can potentially be used to assess the effects of hearing aid gain in hearing-impaired users.
Collapse
Affiliation(s)
- Bram Van Dun
- The HEARing CRC, Sydney, Australia; National Acoustic Laboratories, Sydney, Australia
| | | | - Harvey Dillon
- The HEARing CRC, Sydney, Australia; National Acoustic Laboratories, Sydney, Australia
| |
Collapse
|