1
|
Singh V, Rajput K, Singh S, Srivastava V. Montmorillonite K-10 catalyzed synthesis of Hantzsch dihydropyridine derivatives from methyl arenes via in situ generated ammonia under microwave irradiation in neat conditions. RSC Adv 2024; 14:27086-27091. [PMID: 39193309 PMCID: PMC11348851 DOI: 10.1039/d4ra04990j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
An expeditious, efficient, and environmentally friendly approach has been established for the synthesis of diverse Hantzsch 1,4-dihydropyridine derivatives utilizing montmorillonite K-10 as a catalyst in solvent-free conditions. The procedure entails the reaction of methyl arynes as a sustainable surrogate of aryl aldehydes, active methylene compounds, and urea hydrogen peroxide (UHP) as an oxidising agent as well as a source of ammonia under microwave irradiation, facilitated by montmorillonite K-10.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 UP India +91-9453365168
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 UP India +91-9453365168
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 UP India +91-9453365168
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi 221005 UP India +91-9453365168
| |
Collapse
|
2
|
Yedase GS, Venugopal S, Arya P, Yatham VR. Catalyst‐free Hantzsch ester‐mediated Organic Transformations Driven by Visible light. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Girish Suresh Yedase
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Sreelakshmi Venugopal
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - P Arya
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry INDIA
| | - Veera Reddy Yatham
- IISER-TVM: Indian Institute of Science Education Research Thiruvananthapuram School of Chemistry Thiruvananthapuram 695551 Thiruvananthapuram INDIA
| |
Collapse
|
3
|
Jiménez-Cruz F, Marín-Rosas C, Castañeda-Lopez LC, García-Gutiérrez JL. Promising extruded catalyst for palm oil transesterification from LiAlH4 hydrolysates. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
4
|
Isolation of a Nitromethane Anion in the Calix-Shaped Inorganic Cage. Molecules 2020; 25:molecules25235670. [PMID: 33271966 PMCID: PMC7729913 DOI: 10.3390/molecules25235670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/03/2022] Open
Abstract
A calix-shaped polyoxometalate, [V12O32]4− (V12), stabilizes an anion moiety in its central cavity. This molecule-sized container has the potential to control the reactivity of an anion. The highly-reactive cyanate is smoothly trapped by V12 to form [V12O32(CN)]5−. In the CH3NO2 solution, cyanate abstracts protons from CH3NO2, and the resultant CH2NO2− is stabilized in V12 to form [V12O32(CH2NO2)]5− (V12(CH2NO2)). A crystallographic analysis revealed the double-bond characteristic short bond distance of 1.248 Å between the carbon and nitrogen atoms in the nitromethane anion in V12. 1H and 13C NMR studies showed that the nitromethane anion in V12 must not be exchanged with the nitromethane solvent. Thus, the V12 container restrains the reactivity of anionic species.
Collapse
|
5
|
Wang Q, Duan J, Tang P, Chen G, He G. Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9813-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP, López I. Greener synthesis of chemical compounds and materials. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191378. [PMID: 31827868 PMCID: PMC6894553 DOI: 10.1098/rsos.191378] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 05/03/2023]
Abstract
Modern trends in the greener synthesis and fabrication of inorganic, organic and coordination compounds, materials, nanomaterials, hybrids and nanocomposites are discussed. Green chemistry deals with synthesis procedures according to its classic 12 principles, contributing to the sustainability of chemical processes, energy savings, lesser toxicity of reagents and final products, lesser damage to the environment and human health, decreasing the risk of global overheating, and more rational use of natural resources and agricultural wastes. Greener techniques have been applied to synthesize both well-known chemical compounds by more sustainable routes and completely new materials. A range of nanosized materials and composites can be produced by greener routes, including nanoparticles of metals, non-metals, their oxides and salts, aerogels or quantum dots. At the same time, such classic materials as cement, ceramics, adsorbents, polymers, bioplastics and biocomposites can be improved or obtained by cleaner processes. Several non-contaminating physical methods, such as microwave heating, ultrasound-assisted and hydrothermal processes or ball milling, frequently in combination with the use of natural precursors, are of major importance in the greener synthesis, as well as solventless and biosynthesis techniques. Non-hazardous solvents including ionic liquids, use of plant extracts, fungi, yeasts, bacteria and viruses are also discussed in relation with materials fabrication. Availability, necessity and profitability of scaling up green processes are discussed.
Collapse
Affiliation(s)
- Oxana V. Kharissova
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Boris I. Kharisov
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - César Máximo Oliva González
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Yolanda Peña Méndez
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Israel López
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIBYN), Laboratorio de Nanociencias y Nanotecnología, Universidad Autónoma de Nuevo León, UANL, Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Parque de Investigación e Innovación Tecnológica (PIIT), 66629 Apodaca, Nuevo León, Mexico
| |
Collapse
|
7
|
Wang PZ, Chen JR, Xiao WJ. Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Org Biomol Chem 2019; 17:6936-6951. [DOI: 10.1039/c9ob01289c] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This minireview highlights the recent advances in the chemistry of Hantzsch esters in photoredox catalyzed organic synthesis, with particular emphasis placed on reaction mechanisms.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Jia-Rong Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|