1
|
Crow YJ. CNS disease associated with enhanced type I interferon signalling. Lancet Neurol 2024; 23:1158-1168. [PMID: 39424561 DOI: 10.1016/s1474-4422(24)00263-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 10/21/2024]
Abstract
The ability to mount an interferon-mediated innate immune response is essential in protection against neurotropic viruses, but antiviral type I interferons also have neurotoxic potential. The production of type I interferons can be triggered by self-derived nucleic acids, and the brain can be susceptible to inappropriate upregulation of type I interferon signalling. Homoeostatic dysregulation of type I interferons has been implicated in rare inborn errors of immunity (referred to as type I interferonopathies) and more common neurodegenerative disorders (eg, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis). Recent developments include new insights into the pathogenesis of these disorders that involve dysregulated type I interferon signalling, as well as advances in their diagnosis and management. The role of type I interferons in brain cellular health suggests the future therapeutic potential of approaches that target these interferons and their signalling.
Collapse
Affiliation(s)
- Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
| |
Collapse
|
2
|
Liang Z, Walkley CR, Heraud-Farlow JE. A-to-I RNA editing and hematopoiesis. Exp Hematol 2024; 139:104621. [PMID: 39187172 DOI: 10.1016/j.exphem.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays essential roles in modulating normal development and homeostasis. This process is catalyzed by adenosine deaminase acting on RNA (ADAR) family proteins. The most well-understood biological processes modulated by A-to-I editing are innate immunity and neurological development, attributed to ADAR1 and ADAR2, respectively. A-to-I editing by ADAR1 is also critical in regulating hematopoiesis. This review will focus on the role of A-to-I RNA editing and ADAR enzymes, particularly ADAR1, during normal hematopoiesis in humans and mice. Furthermore, we will discuss Adar1 mouse models that have been developed to understand the contribution of ADAR1 to hematopoiesis and its role in innate immune pathways.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| | - Jacki E Heraud-Farlow
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
3
|
Mahale R, Arunachal G, Padmanabha H, Mailankody P. Adult-onset cranio-cervical segmental dystonia due to ADAR1 gene mutation: A novel phenotype. Parkinsonism Relat Disord 2024; 129:107160. [PMID: 39383586 DOI: 10.1016/j.parkreldis.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Affiliation(s)
- Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Pooja Mailankody
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| |
Collapse
|
4
|
Peixoto de Barcelos I, Jan AK, Modesti N, Woidill S, Gavazzi F, Isaacs D, D'Aiello R, Sevagamoorthy A, Charlton L, Pizzino A, Schmidt J, van Haren K, Keller S, Eichler F, Emrick LT, Fraser JL, Shults J, Vanderver A, Adang LA. Systemic complications of Aicardi Goutières syndrome using real-world data. Mol Genet Metab 2024; 143:108578. [PMID: 39332260 DOI: 10.1016/j.ymgme.2024.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Aicardi Goutières Syndrome (AGS) is a rare genetic interferonopathy associated with diverse multisystemic complications. A critical gap exists in our understanding of its longitudinal, systemic disease burden, complicated by delayed diagnosis. To address this need, real-world data extracted from existing medical records were used to characterize the longitudinal disease burden. METHODS All subjects (n = 167) with genetically confirmed AGS enrolled in the Myelin Disorders Biorepository Project (MDBP) were included. As available in medical records, information was collected on subject demographics, age of onset, and disease complications. Information from published cases of AGS (2007-2022; n = 129) with individual-level data was also collected. Neurologic severity at the last available encounter was determined by retrospectively assigning the AGS Severity Scale [severe (0-3), moderate (4-8), and mild (9-11)]. RESULTS The genotype frequency in the natural history cohort was TREX1 (n = 26, 15.6 %), RNASEH2B (n = 50, 29.9 %), RNASEH2C (n = 3, 1.8 %), RNASEH2A (n = 7, 4.2 %), SAMHD1 (n = 25, 15.0 %), ADAR (n = 34, 20.4 %), IFIH1 (n = 19, 11.4 %), and RNU7-1 (n = 3, 1.8 %). The median age of systemic onset was 0.15 years [IQR = 0.67 years; median range by genotype: 0 (TREX1) - 0.62 (ADAR) years], while the median neurological onset was 0.33 years [IQR = 0.82 years; median range by genotype: 0.08 (TREX1) - 0.90 (ADAR) year]. The most common early systemic complications were gastrointestinal, including dysphagia or feeding intolerance (n = 124) and liver abnormalities (n = 67). Among postnatal complications, thrombocytopenia appeared earliest (n = 29, median 0.06 years). Tone abnormalities (axial hypotonia: n = 145, 86.8 %; dystonia: n = 123, 73.7 %), irritability (n = 115, 68.9 %), and gross motor delay (n = 112, 7.1 %) emerged as the most prevalent neurological symptoms. Previously published case reports demonstrated similar patterns. The median AGS score for the entire cohort was 4 (IQR = 7). The most severe neurologic phenotype occurred in TREX1-related AGS (n = 19, median AGS severity score 2, IQR = 2). Time to feeding tube placement, chilblains, early gross motor delay, early cognitive delay, and motor regression were significantly associated with genotype (Fleming-Harrington log-rank: p = 0.0002, p < 0.0001, p = 0.0038, p < 0.0001, p = 0.0001, respectively). Microcephaly, feeding tube placement, and seizures were associated with lower AGS scores (All: Wilcoxon rank sum test, p < 0.0001). Among the qualifying case reports (n = 129), tone abnormalities were the most prevalent disease feature, with spastic quadriplegia reported in 37 of 96 cases (38.5 %) and dystonia in 30 of 96 cases (31.2 %). CONCLUSIONS AGS is a heterogeneous disease with multi-organ system dysfunction that compounds throughout the clinical course, resulting in profound neurological and extra-neurological disease impact. Systemic symptoms precede neurologic disease features in most cases. Disease onset before the age of one year, microcephaly, feeding tube placement, and seizures were associated with worse neurological outcomes. This work will inform evidence-based clinical monitoring guidelines and clinical trial design.
Collapse
Affiliation(s)
| | - Amanda K Jan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicholson Modesti
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Isaacs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell D'Aiello
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anjana Sevagamoorthy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Charlton
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Johanna Schmidt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith van Haren
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Stephanie Keller
- Division of Pediatric Neurology, Emory University, Atlanta, GA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jamie L Fraser
- Rare Disease Institute, Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
| | - Justine Shults
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Hu SB, Li JB. RNA editing and immune control: from mechanism to therapy. Curr Opin Genet Dev 2024; 86:102195. [PMID: 38643591 PMCID: PMC11162905 DOI: 10.1016/j.gde.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Adenosine-to-inosine RNA editing, catalyzed by the enzymes ADAR1 and ADAR2, stands as a pervasive RNA modification. A primary function of ADAR1-mediated RNA editing lies in labeling endogenous double-stranded RNAs (dsRNAs) as 'self', thereby averting their potential to activate innate immune responses. Recent findings have highlighted additional roles of ADAR1, independent of RNA editing, that are crucial for immune control. Here, we focus on recent progress in understanding ADAR1's RNA editing-dependent and -independent roles in immune control. We describe how ADAR1 regulates various dsRNA innate immune receptors through distinct mechanisms. Furthermore, we discuss the implications of ADAR1 and RNA editing in diseases, including autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
de Reuver R, Maelfait J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 2024; 24:235-249. [PMID: 37752355 DOI: 10.1038/s41577-023-00940-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi-Goutières syndrome (AGS) - a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype-phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024:10.1002/jimd.12721. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Karki A, Campbell KB, Mozumder S, Fisher AJ, Beal PA. Impact of Disease-Associated Mutations on the Deaminase Activity of ADAR1. Biochemistry 2024; 63:282-293. [PMID: 38190734 PMCID: PMC10872254 DOI: 10.1021/acs.biochem.3c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The innate immune system relies on molecular sensors to detect distinctive molecular patterns, including viral double-stranded RNA (dsRNA), which triggers responses resulting in apoptosis and immune infiltration. Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine (A) to inosine (I), serving as a mechanism to distinguish self from non-self RNA and prevent aberrant immune activation. Loss-of-function mutations in the ADAR1 gene are one cause of Aicardi Goutières Syndrome (AGS), a severe autoimmune disorder in children. Although seven out of the eight AGS-associated mutations in ADAR1 occur within the catalytic domain of the ADAR1 protein, their specific effects on the catalysis of adenosine deamination remain poorly understood. In this study, we carried out a biochemical investigation of four AGS-causing mutations (G1007R, R892H, K999N, and Y1112F) in ADAR1 p110 and truncated variants. These studies included adenosine deamination rate measurements with two different RNA substrates derived from human transcripts known to be edited by ADAR1 p110 (glioma-associated oncogene homologue 1 (hGli1), 5-hydroxytryptamine receptor 2C (5-HT2cR)). Our results indicate that AGS-associated mutations at two amino acid positions directly involved in stabilizing the base-flipped conformation of the ADAR-RNA complex (G1007R and R892H) had the most detrimental impact on catalysis. The K999N mutation, positioned near the RNA binding interface, altered catalysis contextually. Finally, the Y1112F mutation had small effects in each of the assays described here. These findings shed light on the differential effects of disease-associated mutations on adenosine deamination by ADAR1, thereby advancing our structural and functional understanding of ADAR1-mediated RNA editing.
Collapse
Affiliation(s)
- Agya Karki
- Department of Chemistry, University of California, Davis, CA, USA 95616
| | | | - Sukanya Mozumder
- Department of Chemistry, University of California, Davis, CA, USA 95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA 95616
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, CA, USA 95616
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA 95616
| | - Peter A. Beal
- Department of Chemistry, University of California, Davis, CA, USA 95616
| |
Collapse
|
9
|
Livingston JH. Childhood-inherited white matter disorders with calcification. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:95-109. [PMID: 39322397 DOI: 10.1016/b978-0-323-99209-1.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Intracranial calcification (ICC) occurs in many neurologic disorders both acquired and genetic. In some inherited white matter disorders, it is a common or even invariable feature where the presence and pattern of calcification provides an important pointer to the specific diagnosis. This is particularly the case for the Aicardi-Goutières syndrome (AGS) and for Coats plus (CP) and leukoencephalopathy with calcifications and cysts (LCC), which are discussed in detail in this chapter. AGS is a genetic disorder of type 1 interferon regulation, caused by mutations in any of the nine genes identified to date. In its classic form, AGS has very characteristic clinical and neuroimaging features which will be discussed here. LCC is a purely neurologic disorder caused by mutations in the SNORD118 gene, whereas CP is a multisystem disorder of telomere function that may result from mutations in the CTC1, POT1, or STN genes. In spite of the different pathogenetic basis for LCC and CP, they share remarkably similar neuroimaging and neuropathologic features. Cockayne syndrome, in which ICC is usually present, is discussed elsewhere in this volume. ICC may occur as an occasional feature of many other white matter diseases, including Alexander disease, Krabbe disease, X-ALD, and occulodentodigital dysplasia.
Collapse
Affiliation(s)
- John H Livingston
- Professor of Paediatric Neurology, University of Leeds, Leeds, United Kingdom; Department of Paediatric Neurology, Leeds Teaching Hospitals, Leeds, United Kingdom.
| |
Collapse
|
10
|
Hu SB, Heraud-Farlow J, Sun T, Liang Z, Goradia A, Taylor S, Walkley CR, Li JB. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Mol Cell 2023; 83:3869-3884.e7. [PMID: 37797622 DOI: 10.1016/j.molcel.2023.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Effective immunity requires the innate immune system to distinguish foreign nucleic acids from cellular ones. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA-editing enzyme ADAR1 to evade being recognized as viral dsRNA by cytoplasmic dsRNA sensors, including MDA5 and PKR. The loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. Additional RNA-editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, whereas loss of the cytoplasmic ADAR1p150 isoform or its dsRNA-binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150-/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5 or PKR alone. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.
Collapse
Affiliation(s)
- Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jacki Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Zhen Liang
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Padmanabha H, Ar N, Arunachal G, K R, Bhat M, M P, Ps M, Mahale R. Infantile-onset generalized dystonia with pigmentary mosaicism in ADAR gene mutation: A novel neurocutaneous phenotype. Parkinsonism Relat Disord 2023; 115:105818. [PMID: 37634374 DOI: 10.1016/j.parkreldis.2023.105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Hansashree Padmanabha
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Nagaraj Ar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Raghavendra K
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Maya Bhat
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| | - Pooja M
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Mathuranath Ps
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| | - Rohan Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, 560029, India.
| |
Collapse
|
12
|
Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1817. [PMID: 37718249 PMCID: PMC10947335 DOI: 10.1002/wrna.1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Rohini Datta
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia Z Adamska
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Liang Z, Goradia A, Walkley CR, Heraud-Farlow JE. Generation of a new Adar1p150 -/- mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis. RNA (NEW YORK, N.Y.) 2023; 29:1325-1338. [PMID: 37290963 PMCID: PMC10573302 DOI: 10.1261/rna.079509.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is an essential regulator of the innate immune response to both cellular and viral double-stranded RNA (dsRNA). Adenosine-to-inosine (A-to-I) editing by ADAR1 modifies the sequence and structure of endogenous dsRNA and masks it from the cytoplasmic dsRNA sensor melanoma differentiation-associated protein 5 (MDA5), preventing innate immune activation. Loss-of-function mutations in ADAR are associated with rare autoinflammatory disorders including Aicardi-Goutières syndrome (AGS), defined by a constitutive systemic up-regulation of type I interferon (IFN). The murine Adar gene encodes two protein isoforms with distinct functions: ADAR1p110 is constitutively expressed and localizes to the nucleus, whereas ADAR1p150 is primarily cytoplasmic and is inducible by IFN. Recent studies have demonstrated the critical requirement for ADAR1p150 to suppress innate immune activation by self dsRNAs. However, detailed in vivo characterization of the role of ADAR1p150 during development and in adult mice is lacking. We identified a new ADAR1p150-specific knockout mouse mutant based on a single nucleotide deletion that resulted in the loss of the ADAR1p150 protein without affecting ADAR1p110 expression. The Adar1p150 -/- died embryonically at E11.5-E12.5 accompanied by cell death in the fetal liver and an activated IFN response. Somatic loss of ADAR1p150 in adults was lethal and caused rapid hematopoietic failure, demonstrating an ongoing requirement for ADAR1p150 in vivo. The generation and characterization of this mouse model demonstrates the essential role of ADAR1p150 in vivo and provides a new tool for dissecting the functional differences between ADAR1 isoforms and their physiological contributions.
Collapse
Affiliation(s)
- Zhen Liang
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
14
|
Guo X, Liu S, Sheng Y, Zenati M, Billiar T, Herbert A, Wang Q. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep 2023; 42:112733. [PMID: 37421629 PMCID: PMC10691306 DOI: 10.1016/j.celrep.2023.112733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Variants of the RNA-editing enzyme ADAR1 cause Aicardi-Goutières syndrome (AGS), in which severe inflammation occurs in the brain due to innate immune activation. Here, we analyze the RNA-editing status and innate immune activation in an AGS mouse model that carries the Adar P195A mutation in the N terminus of the ADAR1 p150 isoform, the equivalent of the P193A human Zα variant causal for disease. This mutation alone can cause interferon-stimulated gene (ISG) expression in the brain, especially in the periventricular areas, reflecting the pathologic feature of AGS. However, in these mice, ISG expression does not correlate with an overall decrease in RNA editing. Rather, the enhanced ISG expression in the brain due to the P195A mutant is dose dependent. Our findings indicate that ADAR1 can regulate innate immune responses through Z-RNA binding without changing overall RNA editing.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Sheng
- Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
15
|
Kleinova R, Rajendra V, Leuchtenberger AF, Lo Giudice C, Vesely C, Kapoor U, Tanzer A, Derdak S, Picardi E, Jantsch MF. The ADAR1 editome reveals drivers of editing-specificity for ADAR1-isoforms. Nucleic Acids Res 2023; 51:4191-4207. [PMID: 37026479 PMCID: PMC10201426 DOI: 10.1093/nar/gkad265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 04/08/2023] Open
Abstract
Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi - Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3'UTRs.
Collapse
Affiliation(s)
- Renata Kleinova
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Vinod Rajendra
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Alina F Leuchtenberger
- Center for Integrative Bioinformatics Vienna (CIBIV) Max Perutz Labs, University of Vienna and Medical University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Claudio Lo Giudice
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, University Campus “Ernesto Quagliariello”, Via Orabona 4, Bari, Italy
| | - Cornelia Vesely
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Andrea Tanzer
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Sophia Derdak
- Core Facilities Medical University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria
| | - Ernesto Picardi
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, University Campus “Ernesto Quagliariello”, Via Orabona 4, Bari, Italy
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via Amendola 122, Bari, Italy
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Frémond ML, Hully M, Fournier B, Barrois R, Lévy R, Aubart M, Castelle M, Chabalier D, Gins C, Sarda E, Al Adba B, Couderc S, D' Almeida C, Berat CM, Durrleman C, Espil C, Lambert L, Méni C, Périvier M, Pillet P, Polivka L, Schiff M, Todosi C, Uettwiller F, Lepelley A, Rice GI, Seabra L, Sanquer S, Hulin A, Pressiat C, Goldwirt L, Bondet V, Duffy D, Moshous D, Bader-Meunier B, Bodemer C, Robin-Renaldo F, Boddaert N, Blanche S, Desguerre I, Crow YJ, Neven B. JAK Inhibition in Aicardi-Goutières Syndrome: a Monocentric Multidisciplinary Real-World Approach Study. J Clin Immunol 2023:10.1007/s10875-023-01500-z. [PMID: 37171742 PMCID: PMC10175907 DOI: 10.1007/s10875-023-01500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
The paradigm type I interferonopathy Aicardi-Goutières syndrome (AGS) is most typically characterized by severe neurological involvement. AGS is considered an immune-mediated disease, poorly responsive to conventional immunosuppression. Premised on a chronic enhancement of type I interferon signaling, JAK1/2 inhibition has been trialed in AGS, with clear improvements in cutaneous and systemic disease manifestations. Contrastingly, treatment efficacy at the level of the neurological system has been less conclusive. Here, we report our real-word approach study of JAK1/2 inhibition in 11 patients with AGS, providing extensive assessments of clinical and radiological status; interferon signaling, including in cerebrospinal fluid (CSF); and drug concentrations in blood and CSF. Over a median follow-up of 17 months, we observed a clear benefit of JAK1/2 inhibition on certain systemic features of AGS, and reproduced results reported using the AGS neurologic severity scale. In contrast, there was no change in other scales assessing neurological status; using the caregiver scale, only patient comfort, but no other domain of everyday-life care, was improved. Serious bacterial infections occurred in 4 out of the 11 patients. Overall, our data lead us to conclude that other approaches to treatment are urgently required for the neurologic features of AGS. We suggest that earlier diagnosis and adequate central nervous system penetration likely remain the major factors determining the efficacy of therapy in preventing irreversible brain damage, implying the importance of early and rapid genetic testing and the consideration of intrathecal drug delivery.
Collapse
Affiliation(s)
- Marie-Louise Frémond
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Marie Hully
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Benjamin Fournier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Rémi Barrois
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Romain Lévy
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Mélodie Aubart
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Martin Castelle
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Delphine Chabalier
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Clarisse Gins
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Eugénie Sarda
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Buthaina Al Adba
- Department of Paediatric Rheumatology, Sidra Medicine, Doha, Qatar
| | - Sophie Couderc
- Neonatal Department, Poissy Saint-Germain Hospital, Poissy, France
| | - Céline D' Almeida
- Paediatrics Department, Castres-Mazamet Intercommunal Hospital, Castres, France
| | - Claire-Marine Berat
- Reference Center of Inherited Metabolic Disorders, Necker Hospital, APHP, Université Paris Cité, 75015, Paris, France
| | - Chloé Durrleman
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Caroline Espil
- Paediatric Neurology Department, Bordeaux University Hospital, Bordeaux, France
| | - Laetitia Lambert
- Genetics Department, Nancy University Hospital, 54000, Nancy, France
| | - Cécile Méni
- Paediatric Dermatology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | | | - Pascal Pillet
- Paediatric Rheumatology Department, Bordeaux University Hospital, Bordeaux, France
| | - Laura Polivka
- Paediatric Dermatology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Manuel Schiff
- Reference Center of Inherited Metabolic Disorders, Necker Hospital, APHP, Université Paris Cité, 75015, Paris, France
- Imagine Institute, Inserm UMR 1163, 75015, Paris, France
| | - Calina Todosi
- Paediatric Neurology Unit, Children's Medicine Department, Children's Hospital, Nancy University Hospital, 54000, Nancy, France
| | - Florence Uettwiller
- Paediatric Rheumatology Department, Tours University Hospital, Tours, France
| | - Alice Lepelley
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Luis Seabra
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France
| | - Sylvia Sanquer
- Biochemistry, Metabolomics and Proteomics Department, Necker Hospital, AP-HP Centre, Université Paris Cité, 75015, Paris, France
| | - Anne Hulin
- Pharmacology and Toxicology Laboratory, Henri Mondor University Hospital, APHP, 94000, Créteil, France
| | - Claire Pressiat
- Pharmacology and Toxicology Laboratory, Henri Mondor University Hospital, APHP, 94000, Créteil, France
| | - Lauriane Goldwirt
- Pharmacology Department, Saint-Louis University Hospital, APHP, 75010, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université de Paris Cité, F75015, Paris, France
| | - Despina Moshous
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
- Imagine Institute, Inserm UMR 1163, 75015, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Christine Bodemer
- Genetics Department, Nancy University Hospital, 54000, Nancy, France
| | - Florence Robin-Renaldo
- Paediatric Neurology Department, Trousseau Hospital, APHP, Sorbonne Université, 75012, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris cité, Institut Imagine INSERM U1163 and U1299, 75015, Paris, France
| | - Stéphane Blanche
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Isabelle Desguerre
- Paediatric Neurology Department, Necker Hospital, APHP Centre, Université Paris Cité, 75015, Paris, France
| | - Yanick J Crow
- Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, Inserm UMR 1163, Université Paris Cité, 24 boulevard du Montparnasse, 75015, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, UK.
| | - Bénédicte Neven
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris Cité, 149 rue de Sèvres, 75015, Paris, France.
- Imagine Institute, Laboratory of Immunogenetics of Paediatric Autoimmunity, INSERM UMR 1163, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
17
|
Liang Z, Chalk AM, Taylor S, Goradia A, Heraud‐Farlow JE, Walkley CR. The phenotype of the most common human ADAR1p150 Zα mutation P193A in mice is partially penetrant. EMBO Rep 2023; 24:e55835. [PMID: 36975179 PMCID: PMC10157378 DOI: 10.15252/embr.202255835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
ADAR1 -mediated A-to-I RNA editing is a self-/non-self-discrimination mechanism for cellular double-stranded RNAs. ADAR mutations are one cause of Aicardi-Goutières Syndrome, an inherited paediatric encephalopathy, classed as a "Type I interferonopathy." The most common ADAR1 mutation is a proline 193 alanine (p.P193A) mutation, mapping to the ADAR1p150 isoform-specific Zα domain. Here, we report the development of an independent murine P195A knock-in mouse, homologous to human P193A. The Adar1P195A/P195A mice are largely normal and the mutation is well tolerated. When the P195A mutation is compounded with an Adar1 null allele (Adar1P195A/- ), approximately half the animals are runted with a shortened lifespan while the remaining Adar1P195A/- animals are normal, contrasting with previous reports. The phenotype of the Adar1P195A/- animals is both associated with the parental genotype and partly non-genetic/environmental. Complementation with an editing-deficient ADAR1 (Adar1P195A/E861A ), or the loss of MDA5, rescues phenotypes in the Adar1P195A/- mice.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Scott Taylor
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Jacki E Heraud‐Farlow
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| |
Collapse
|
18
|
Hu SB, Heraud-Farlow J, Sun T, Liang Z, Goradia A, Taylor S, Walkley CR, Li JB. ADAR1p150 Prevents MDA5 and PKR Activation via Distinct Mechanisms to Avert Fatal Autoinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525475. [PMID: 36747811 PMCID: PMC9900771 DOI: 10.1101/2023.01.25.525475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Effective immunity requires the innate immune system to distinguish foreign (non-self) nucleic acids from cellular (self) nucleic acids. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA editing enzyme ADAR1 to prevent their dsRNA structure pattern being recognized as viral dsRNA by cytoplasmic dsRNA sensors including MDA5, PKR and ZBP1. A loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5. However, additional RNA editing-independent functions of ADAR1 have been proposed, but a specific mechanism has not been delineated. We now demonstrate that the loss of ADAR1-mediated RNA editing specifically activates MDA5, while loss of the cytoplasmic ADAR1p150 isoform or its dsRNA binding activity enabled PKR activation. Deleting both MDA5 and PKR resulted in complete rescue of the embryonic lethality of Adar1p150 -/- mice to adulthood, contrasting with the limited or no rescue by removing MDA5, PKR or ZBP1 alone, demonstrating that this is a species conserved function of ADAR1p150. Our findings demonstrate that MDA5 and PKR are the primary in vivo effectors of fatal autoinflammation following the loss of ADAR1p150.
Collapse
|
19
|
Guo X, Steinman RA, Sheng Y, Cao G, Wiley CA, Wang Q. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J Neuroinflammation 2022; 19:285. [PMID: 36457126 PMCID: PMC9714073 DOI: 10.1186/s12974-022-02646-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a severe neurodegenerative disease with clinical features of early-onset encephalopathy and progressive loss of intellectual abilities and motor control. Gene mutations in seven protein-coding genes have been found to be associated with AGS. However, the causative role of these mutations in the early-onset neuropathogenesis has not been demonstrated in animal models, and the mechanism of neurodegeneration of AGS remains ambiguous. METHODS Via CRISPR/Cas-9 technology, we established a mutant mouse model in which a genetic mutation found in AGS patients at the ADAR1 coding gene (Adar) loci was introduced into the mouse genome. A mouse model carrying double gene mutations encoding ADAR1 and MDA-5 was prepared using a breeding strategy. Phenotype, gene expression, RNA sequencing, innate immune pathway activation, and pathologic studies including RNA in situ hybridization (ISH) and immunohistochemistry were used for characterization of the mouse models to determine potential disease mechanisms. RESULTS We established a mouse model bearing a mutation in the catalytic domain of ADAR1, the D1113H mutation found in AGS patients. With this mouse model, we demonstrated a causative role of this mutation for the early-onset brain injuries in AGS and determined the signaling pathway underlying the neuropathogenesis. First, this mutation altered the RNA editing profile in neural transcripts and led to robust IFN-stimulated gene (ISG) expression in the brain. By ISH, the brains of mutant mice showed an unusual, multifocal increased expression of ISGs that was cell-type dependent. Early-onset astrocytosis and microgliosis and later stage calcification in the deep white matter areas were observed in the mutant mice. Brain ISG activation and neuroglial reaction were completely prevented in the Adar D1113H mutant mice by blocking RNA sensing through deletion of the cytosolic RNA receptor MDA-5. CONCLUSIONS The Adar D1113H mutation in the ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the mouse brain.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Richard A. Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Yi Sheng
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Clayton A. Wiley
- Department of Pathology, School of Medicine, University of Pittsburgh, Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213 USA
- V.A. Pittsburgh Health System, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
20
|
Wiley CA, Steinman RA, Wang Q. Innate immune activation without immune cell infiltration in brains of murine models of Aicardi-Gutiérrez Syndrome. Brain Pathol 2022; 33:e13118. [PMID: 36161399 PMCID: PMC10154360 DOI: 10.1111/bpa.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic inflammation is frequently invoked as a mechanism of neurodegeneration and yet inflammatory cell infiltrates are seldom seen in brains of these disorders. Different disciplines utilize different technologies and methodologies to describe what is immunologically defined as the innate immune response (IIR). We examined murine models of the human neurodegenerative disease Aicardi-Gutiérrez Syndrome, where an IIR is initiated by aberrant RNA metabolism secondary to a mutation in adenosine deaminase acting on RNA gene (ADAR1). We previously showed that these mice demonstrated a deficit in RNA editing that lead to MDA-5 mediated RNA sensing pathway activation of the IIR with massive interferon stimulated gene transcription and translation. As early as 2 weeks of age, in situ hybridization demonstrated that different central nervous system (CNS) cell lineages expressed very high levels of distinct interferon stimulated genes (ISGs) in the absence of interferon and absence of immune cell infiltrates. We have expanded these studies to more completely describe the breadth of ISG expression systemically and in CNS using double label in situ hybridization. Within the CNS aberrant ISG expression was mostly limited to neurons, microglia, ependyma, choroid plexus, and endothelial cells with little expression in oligodendroglia and astrocytes except for STAT1. Wild type controls showed a similar pattern of ISG expression but only in aged mice and at levels minimally detectable by in situ hybridization. Despite months of elevated ISG expression in mutant mice, there was essentially no inflammatory infiltrate, no interferon production and minimal glial reaction. Histomorphological neurodegenerative pathology of ventricular dilatation and deep gray matter mineralization were evident in mutant mice 8-13 months of age but this did not show a spatial relationship to ISG expression. This IIR without immune cell infiltration leads to neurodegeneration through non-canonical pathways that may accentuate normal aging pathways.
Collapse
Affiliation(s)
- Clayton A Wiley
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Richard A Steinman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Pittsburgh, Pennsylvania, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Munoz Chesta D, Troncoso Schifferli M, Hernandez Chavez M, Ramirez Bruggink K, Aguirre Padilla D. Deep Brain Stimulation in Progressive Generalized Dystonia in Childhood Associated With
ADAR1
Gene Variant. Mov Disord Clin Pract 2022. [DOI: 10.1002/mdc3.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Daniela Munoz Chesta
- Department of Pediatric Neurology San Borja Arriaran Hospital Santiago Chile
- School of Medicine University of Chile Santiago Chile
| | - Mónica Troncoso Schifferli
- Department of Pediatric Neurology San Borja Arriaran Hospital Santiago Chile
- School of Medicine University of Chile Santiago Chile
| | - Marta Hernandez Chavez
- Department of Pediatric Neurology School of Medicine, Pontificia Universidad Católica de Chile Santiago Chile
| | - Karla Ramirez Bruggink
- Department of Pediatric Neurology School of Medicine, Pontificia Universidad Católica de Chile Santiago Chile
| | - David Aguirre Padilla
- School of Medicine University of Chile Santiago Chile
- Department of Neurology and Neurosurgery San Borja Arriaran Hospital Santiago Chile
| |
Collapse
|
22
|
Abstract
As brutally demonstrated by the COVID-19 pandemic, an effective immune system is essential for survival. Developed over evolutionary time, viral nucleic acid detection is a central pillar in the defensive armamentarium used to combat foreign microbial invasion. To ensure cellular homeostasis, such a strategy necessitates the efficient discrimination of pathogen-derived DNA and RNA from that of the host. In 2011, it was suggested that an upregulation of type I interferon signalling might serve as a defining feature of a novel set of Mendelian inborn errors of immunity, where antiviral sensors are triggered by host nucleic acids due to a failure of self versus non-self discrimination. These rare disorders have played a surprisingly significant role in informing our understanding of innate immunity and the relevance of type I interferon signalling for human health and disease. Here we consider what we have learned in this time, and how the field may develop in the future.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, France.
| | - Daniel B Stetson
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
23
|
Adang LA, Gavazzi F, D'Aiello R, Isaacs D, Bronner N, Arici ZS, Flores Z, Jan A, Scher C, Sherbini O, Behrens EM, Goldbach-Mansky R, Olson TS, Lambert MP, Sullivan KE, Teachey DT, Witmer C, Vanderver A, Shults J. Hematologic abnormalities in Aicardi Goutières Syndrome. Mol Genet Metab 2022; 136:324-329. [PMID: 35786528 PMCID: PMC9357135 DOI: 10.1016/j.ymgme.2022.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Because of the broad clinical spectrum, heritable autoinflammatory diseases present a management and therapeutic challenge. The most common genetic interferonopathy, Aicardi Goutières Syndrome (AGS), is associated with early onset neurologic disability and systemic inflammation. The chronic inflammation of AGS is the result of dysregulation of interferon (IFN) expression by one of nine genes within converging pathways. While each AGS subtype shares common features, distinct patterns of severity and potential for systemic complications amongst the genotypes are emerging. Multilineage cytopenias are a potentially serious, but poorly understood, complication of AGS. As immunomodulatory treatment options are developed, it is important to characterize the role of the disease versus treatment in hematologic abnormalities. This will allow for better understanding and management of cytopenia. METHODS In total, 142 individuals with molecularly-confirmed AGS were included. Information on genotype, demographics, and all available hematologic laboratory values were collected from existing medical records. As part of a clinical trial, a subset of this cohort (n = 52) were treated with a janus kinase inhibitor (baricitinib), and both pre- and post-treatment values were included. Abnormal values were graded based on Common Terminology Criteria for Adverse Events (CTCAE v5.0), supplemented with grading definitions for thrombocytosis, and were compared across genotypes and baricitinib exposure. RESULTS In total, 11,184 laboratory values were collected over a median of 2.54 years per subject (range 0-22.68 years). To reduce bias from repeated sampling within a limited timeframe, laboratory results were restricted to the most abnormal value within a month (n = 8485). The most common abnormalities were anemia (noted in 24% of subjects prior to baricitinib exposure), thrombocytopenia (9%), and neutropenia (30%). Neutropenia was most common in the SAMHD1 cohort and increased with baricitinib exposure (38/69 measurements on baricitinib versus 14/121 while not on baricitinib). Having an abnormality prior to treatment was associated with having an abnormality on treatment for neutropenia and thrombocytopenia. CONCLUSION By collecting available laboratory data throughout the lifespan, we were able to identify novel patterns of hematologic abnormalities in AGS. We found that AGS results in multilineage cytopenias not limited to the neonatal period. Neutropenia, anemia, and thrombocytopenia were common. Moderate-severe graded events of neutropenia, anemia, and leukopenia were more common on baricitinib, but rarely of clinical consequence. Based on these results, we would recommend careful monitoring of hematologic parameters of children affected by AGS throughout the lifespan, especially while on therapy, and consideration of AGS as a potential differential diagnosis in children with neurologic impairment of unclear etiology with hematologic abnormalities. Trial registration ClinicalTrials.gov Identifier: NCT01724580 ClinicalTrials.gov Identifier: NCT03921554.
Collapse
Affiliation(s)
- Laura A Adang
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Francesco Gavazzi
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell D'Aiello
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David Isaacs
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nowa Bronner
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zehra Serap Arici
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zaida Flores
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda Jan
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carly Scher
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raphaela Goldbach-Mansky
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy S Olson
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Char Witmer
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, Philadelphia, PA, USA
| |
Collapse
|
24
|
Baide-Mairena H, Marti-Sánchez L, Marcé-Grau A, Cazurro-Gutiérrez A, Sanchez-Montanez A, Delgado I, Moreno-Galdó A, Macaya-Ruiz A, García-Arumí E, Pérez-Dueñas B. Genetic diagnosis of basal ganglia disease in childhood. Dev Med Child Neurol 2022; 64:743-752. [PMID: 34988976 DOI: 10.1111/dmcn.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
AIM To correlate clinical, radiological, and biochemical features with genetic findings in children with bilateral basal ganglia lesions of unknown aetiology, and propose a diagnostic algorithm for early recognition. METHOD Children with basal ganglia disease were recruited in a 2-year prospective multicentre study for clinical, biomarker, and genetic studies. Radiological pattern recognition was examined by hierarchical clustering analysis. RESULTS We identified 22 genetic conditions in 30 out of 62 paediatric patients (37 males, 25 females; mean age at onset 2y, SD 3; range 0-10y; mean age at assessment 11y, range 1-25y) through gene panels (n=11), whole-exome sequencing (n=13), and mitochondrial DNA (mtDNA) sequencing (n=6). Genetic aetiologies included mitochondrial diseases (57%), Aicardi-Goutières syndrome (20%), and monogenic causes of dystonia and/or epilepsy (17%) mimicking Leigh syndrome. Radiological abnormalities included T2-hyperintense lesions (n=26) and lesions caused by calcium or manganese mineralization (n=9). Three clusters were identified: the pallidal, neostriatal, and striatal, plus the last including mtDNA defects in the oxidative phosphorylation system with prominent brain atrophy. Mitochondrial biomarkers showed poor sensitivity and specificity in children with mitochondrial disease, whereas interferon signature was observed in all patients with patients with Aicardi-Goutières syndrome. INTERPRETATION Combined whole-exome and mtDNA sequencing allowed the identification of several genetic conditions affecting basal ganglia metabolism. We propose a diagnostic algorithm which prioritizes early use of next-generation sequencing on the basis of three clusters of basal ganglia lesions.
Collapse
Affiliation(s)
- Heidy Baide-Mairena
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pediatrics, Granollers General Hospital, Granollers, Spain
| | - Laura Marti-Sánchez
- Department of Biochemistry, Sant Joan de Déu Research Institut, Universitat de Barcelona, Barcelona, Spain
| | - Anna Marcé-Grau
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Cazurro-Gutiérrez
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ignacio Delgado
- Department of Neuroradiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Antonio Moreno-Galdó
- Vall d'Hebron Research Institut (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Pediatrics, Vall d'Hebron Barcelona Hospital Campus Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alfons Macaya-Ruiz
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Paediatric Neurology, Vall d`Hebron University Hospital, Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Research Institut (VHIR), Barcelona, Spain.,Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Belén Pérez-Dueñas
- Paediatric Neurology Research Group, Vall d´Hebron Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Department of Paediatric Neurology, Vall d`Hebron University Hospital, Barcelona, Spain
| | | |
Collapse
|
25
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
26
|
Funes SC, Rios M, Fernández-Fierro A, Di Genaro MS, Kalergis AM. Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Front Immunol 2022; 13:868343. [PMID: 35464438 PMCID: PMC9028757 DOI: 10.3389/fimmu.2022.868343] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-inflammatory, or repair response depending on the microenvironment. However, understanding the contribution of these cells to different immune disorders has been difficult due to their high functional and phenotypic plasticity. Several factors can influence the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases, such as genetic predisposition, epigenetic changes, or infections. For instance, some vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their functional responses. This phenomenon is known as trained immunity. Trained immunity can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is defined as the altered innate immune response to the same or different microorganisms during a second encounter. The improvement in cell function is related to epigenetic and metabolic changes that modify gene expression. Although the benefits of immune training have been highlighted in a vaccination context, the effects of this type of immune response on autoimmunity and chronic inflammation still remain controversial. Induction of trained immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically present a metabolic shift toward glycolysis, which leads to the modification of the chromatin architecture. During trained immunity, the epigenetic changes facilitate the specific gene expression after secondary challenge with other stimuli. Consequently, the enhanced pro-inflammatory response could contribute to developing or maintaining autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not simple, and other studies propose that trained immunity can induce a beneficial response both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This article describes the metabolic and epigenetic mechanisms involved in trained immunity that affect Mo/Ma, contraposing the controversial evidence on how it may impact autoimmune/autoinflammation conditions.
Collapse
Affiliation(s)
- Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Rios
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María S. Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Alexis M. Kalergis,
| |
Collapse
|
27
|
Stok JE, Oosenbrug T, ter Haar LR, Gravekamp D, Bromley CP, Zelenay S, Reis e Sousa C, van der Veen AG. RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO J 2022; 41:e109760. [PMID: 35156720 PMCID: PMC8922249 DOI: 10.15252/embj.2021109760] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
RNA editing by the adenosine deaminase ADAR1 prevents innate immune responses to endogenous RNAs. In ADAR1-deficient cells, unedited self RNAs form base-paired structures that resemble viral RNAs and inadvertently activate the cytosolic RIG-I-like receptor (RLR) MDA5, leading to an antiviral type I interferon (IFN) response. Mutations in ADAR1 cause Aicardi-Goutières Syndrome (AGS), an autoinflammatory syndrome characterized by chronic type I IFN production. Conversely, ADAR1 loss and the consequent type I IFN production restricts tumor growth and potentiates the activity of some chemotherapeutics. Here, we show that another RIG-I-like receptor, LGP2, also has an essential role in the induction of a type I IFN response in ADAR1-deficient human cells. This requires the canonical function of LGP2 as an RNA sensor and facilitator of MDA5-dependent signaling. Furthermore, we show that the sensitivity of tumor cells to ADAR1 loss requires LGP2 expression. Finally, type I IFN induction in tumor cells depleted of ADAR1 and treated with some chemotherapeutics fully depends on LGP2 expression. These findings highlight a central role for LGP2 in self RNA sensing with important clinical implications.
Collapse
Affiliation(s)
- Jorn E Stok
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Timo Oosenbrug
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Dennis Gravekamp
- Department of ImmunologyLeiden University Medical CentreLeidenThe Netherlands
| | - Christian P Bromley
- Cancer Research UK Manchester InstituteThe University of ManchesterAlderley ParkUK
| | - Santiago Zelenay
- Cancer Research UK Manchester InstituteThe University of ManchesterAlderley ParkUK
| | | | | |
Collapse
|
28
|
David C, Frémond ML. [When to consider type I interferonopathy in adulthood?]. Rev Med Interne 2022; 43:347-355. [PMID: 35177256 DOI: 10.1016/j.revmed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Type I interferonopathies (IP1) are a heterogeneous group of Mendelian diseases characterized by overactivation of the type I interferon (IFN) pathway. They are caused by monogenic (rarely digenic) mutations of proteins involved in this key pathway of innate immunity. IP1 transmission can be dominant, recessive or X-linked and penetrance differs from one IP1 to another. The clinical spectrum is broad and mainly includes central nervous system involvement with calcifications of the basal ganglia, skin disorders such as cutaneous vasculitis that can be mutilating. Joint disorders including non-destructive deforming arthropathy, pulmonary involvement such as intra-alveolar haemorrhage or interstitial lung disease, and haematological symptoms with cytopenia and/or immune deficiency are also seen. The clinical manifestations vary from one IP1 to another and their spectrum is constantly expanding along with the description of new IP1s and patients. The inflammatory syndrome is generally mild and autoimmune stigmata are frequently found. Almost all patients display overexpression of the type I IFN pathway detected, for instance, by the evaluation of IFN-stimulated genes expression, referred as "interferon signature". The related morbidity and mortality are high. However, the beneficial effect on certain symptoms of targeted therapies inhibiting type I IFN, such as JAK inhibitors, has led to a promising improvement in the management of these patients.
Collapse
Affiliation(s)
- C David
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France
| | - M-L Frémond
- Université de Paris, Institut Imagine, laboratoire de neurogénétique et neuroinflammation, 24, boulevard du Montparnasse, 75015 Paris, France; Unité d'immuno-hématologie et rhumatologie pédiatriques, centre de référence des maladies rhumatologiques et auto-immunes systémiques rares en pédiatrie (RAISE), hôpital Necker-Enfants-Malades, Centre - Université de Paris, AP-HP, 75015 Paris, France.
| |
Collapse
|
29
|
Jones HF, Stoll M, Ho G, O'Neill D, Han VX, Paget S, Stewart K, Lewis J, Kothur K, Troedson C, Crow YJ, Dale RC, Mohammad SS. Autosomal dominant ADAR c.3019G>A (p.(G1007R)) variant is an important mimic of hereditary spastic paraplegia and cerebral palsy. Brain Dev 2022; 44:153-160. [PMID: 34702576 DOI: 10.1016/j.braindev.2021.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The type 1 interferonopathy, Aicardi-Goutières syndrome 6 (AGS6), is classically caused by biallelic ADAR mutations whereas dominant ADAR mutations are associated with dyschromatosis symmetrica hereditaria (DSH). The unique dominant ADAR c.3019G>A variant is associated with neurological manifestations which mimic spastic paraplegia and cerebral palsy (CP). CASE SUMMARIES We report three cases of spastic paraplegia or CP diagnosed with AGS6 caused by the ADAR c.3019G>A variant. Two children inherited the variant from an asymptomatic parent, and each child had a different clinical course. The youngest case demonstrated relentless progressive symptoms but responded to immunomodulation using steroids and ruxolitinib. CONCLUSION The ADAR c.3019G>A variant has incomplete penetrance and is a likely underrecognized imitator of spastic paraplegia and dystonic CP. A high level of clinical suspicion is required to diagnose this form of AGS, and disease progression may be ameliorated by immunomodulatory treatment with selective Janus kinase inhibitors.
Collapse
Affiliation(s)
- Hannah F Jones
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marion Stoll
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, NSW Health Pathology, Australia
| | - Gladys Ho
- Molecular Genetics Department, The Children's Hospital at Westmead, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales 2006, Australia; Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dugald O'Neill
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Velda X Han
- Khoo-Teck Puat-National University Children's Medical Institute, National University Health System, Singapore
| | - Simon Paget
- Kids Rehab, The Children's Hospital at Westmead, New South Wales, Australia
| | - Kirsty Stewart
- Kids Rehab, The Children's Hospital at Westmead, New South Wales, Australia
| | - Jennifer Lewis
- Kids Rehab, The Children's Hospital at Westmead, New South Wales, Australia
| | - Kavitha Kothur
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Christopher Troedson
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Laboratory of Neurogenetics and Neuroinflammation, Institute Imagine, Université de Paris, Paris, France
| | - Russell C Dale
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shekeeb S Mohammad
- Neurology Department, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
30
|
Liu L, Zhang L, Huang P, Xiong J, Xiao Y, Wang C, Mao D, Liu L. Case Report: Aicardi-Goutières Syndrome Type 6 and Dyschromatosis Symmetrica Hereditaria With Congenital Heart Disease and Mitral Valve Calcification - Phenotypic Variants Caused by Adenosine Deaminase Acting on the RNA 1 Gene Homozygous Mutations. Front Pediatr 2022; 10:852903. [PMID: 35832578 PMCID: PMC9272138 DOI: 10.3389/fped.2022.852903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dyschromatosis symmetrica hereditaria (DSH), characterized by a mixture of hyper- and hypopigmented macules on the skin, is a rare pigmentary dermatosis of autosomal dominant inheritance. The pathogenic gene is adenosine deaminase acting on the RNA 1 gene (ADAR1), mutations in this gene also lead to Aicardi-Goutières syndrome type 6 (AGS 6), a rare hereditary encephalopathy with isolated spastic paraplegia. The pathomechanism of the ADAR1 gene mutations inducing DSH has not been clarified yet. We report the first case of DSH combined with AGS caused by the homozygous mutation of the ADAR1 gene in China (c.1622T > A) and reviewed the relevant literature. AGS 6 could occur in both men and women, and start in infancy. The main characteristics are growth retardation, skin depigmentation, intracranial calcification, and cerebral white matter lesions. In the current paper, the proband also had patent ductus arteriosus (PDA), ventricular septal defect (VSD), and mitral valve calcification, which are new symptoms that have not been reported in other cases. Additionally, we also aim to discuss the possible molecular mechanisms underlying the clinical heterogeneity caused by ADAR1 gene mutations.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1665. [PMID: 34105255 PMCID: PMC8651834 DOI: 10.1002/wrna.1665] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) catalyzes the posttranscriptional conversion of adenosine to inosine in double-stranded RNA (dsRNA), which can lead to the creation of missense mutations in coding sequences. Recent studies show that editing-dependent functions of ADAR1 protect dsRNA from dsRNA-sensing molecules and inhibit innate immunity and the interferon-mediated response. Deficiency in these ADAR1 functions underlie the pathogenesis of autoinflammatory diseases such as the type I interferonopathies Aicardi-Goutieres syndrome and dyschromatosis symmetrica hereditaria. ADAR1-mediated editing of endogenous coding and noncoding RNA as well as ADAR1 editing-independent interactions with DICER can also have oncogenic or tumor suppressive effects that affect tumor proliferation, invasion, and response to immunotherapy. The combination of proviral and antiviral roles played by ADAR1 in repressing the interferon response and editing viral RNAs alters viral morphogenesis and cell susceptibility to infection. This review analyzes the structure and function of ADAR1 with a focus on its position in human disease pathways and the mechanisms of its disease-associated effects. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Brian Song
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yusuke Shiromoto
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Moeko Minakuchi
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Jain A, Bhoyar RC, Pandhare K, Mishra A, Sharma D, Imran M, Senthivel V, Divakar MK, Rophina M, Jolly B, Batra A, Sharma S, Siwach S, Jadhao AG, Palande NV, Jha GN, Ashrafi N, Mishra PK, A K V, Jain S, Dash D, Kumar NS, Vanlallawma A, Sarma RJ, Chhakchhuak L, Kalyanaraman S, Mahadevan R, Kandasamy S, B M P, Rajagopal RE, Ramya J E, Devi P N, Bajaj A, Gupta V, Mathew S, Goswami S, Mangla M, Prakash S, Joshi K, Meyakumla, S S, Gajjar D, Soraisham R, Yadav R, Devi YS, Gupta A, Mukerji M, Ramalingam S, B K B, Scaria V, Sivasubbu S. Genetic epidemiology of autoinflammatory disease variants in Indian population from 1029 whole genomes. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2021; 19:183. [PMID: 34905135 PMCID: PMC8671593 DOI: 10.1186/s43141-021-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Background Autoinflammatory disorders are the group of inherited inflammatory disorders caused due to the genetic defect in the genes that regulates innate immune systems. These have been clinically characterized based on the duration and occurrence of unprovoked fever, skin rash, and patient’s ancestry. There are several autoinflammatory disorders that are found to be prevalent in a specific population and whose disease genetic epidemiology within the population has been well understood. However, India has a limited number of genetic studies reported for autoinflammatory disorders till date. The whole genome sequencing and analysis of 1029 Indian individuals performed under the IndiGen project persuaded us to perform the genetic epidemiology of the autoinflammatory disorders in India. Results We have systematically annotated the genetic variants of 56 genes implicated in autoinflammatory disorder. These genetic variants were reclassified into five categories (i.e., pathogenic, likely pathogenic, benign, likely benign, and variant of uncertain significance (VUS)) according to the American College of Medical Genetics and Association of Molecular pathology (ACMG-AMP) guidelines. Our analysis revealed 20 pathogenic and likely pathogenic variants with significant differences in the allele frequency compared with the global population. We also found six causal founder variants in the IndiGen dataset belonging to different ancestry. We have performed haplotype prediction analysis for founder mutations haplotype that reveals the admixture of the South Asian population with other populations. The cumulative carrier frequency of the autoinflammatory disorder in India was found to be 3.5% which is much higher than reported. Conclusion With such frequency in the Indian population, there is a great need for awareness among clinicians as well as the general public regarding the autoinflammatory disorder. To the best of our knowledge, this is the first and most comprehensive population scale genetic epidemiological study being reported from India. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00268-2.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Rahul C Bhoyar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Kavita Pandhare
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Anushree Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vigneshwar Senthivel
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Kumar Divakar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mercy Rophina
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bani Jolly
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Arushi Batra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sumit Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Sanjay Siwach
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Arun G Jadhao
- Department of Zoology, RTM Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Nikhil V Palande
- Department of Zoology, Shri Mathuradas Mohota College of Science, Nagpur, Maharashtra, 440009, India
| | - Ganga Nath Jha
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Nishat Ashrafi
- Department of Anthropology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Prashant Kumar Mishra
- Department of Biotechnology, Vinoba Bhave University, Hazaribag, Jharkhand, 825301, India
| | - Vidhya A K
- Department of Biochemistry, Dr. Kongu Science and Art College, Erode, Tamil Nadu, 638107, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society, Hyderabad, Telangana, 500052, India
| | - Debasis Dash
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | | | - Andrew Vanlallawma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Ranjan Jyoti Sarma
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | | | - Radha Mahadevan
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Sunitha Kandasamy
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Pabitha B M
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | | | - Ezhil Ramya J
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Nirmala Devi P
- TVMC, Tirunelveli Medical College, Tirunelveli, Tamil Nadu, 627011, India
| | - Anjali Bajaj
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Samatha Mathew
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sangam Goswami
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohit Mangla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Savinitha Prakash
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Kandarp Joshi
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Meyakumla
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Sreedevi S
- Department of Microbiology, St.Pious X Degree & PG College for Women, Hyderabad, Telangana, 500076, India
| | - Devarshi Gajjar
- Department of Microbiology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ronibala Soraisham
- Department of Dermatology, Venereology and Leprology, Regional Institute of Medical Sciences, Imphal, Manipur, 795004, India
| | - Rohit Yadav
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Yumnam Silla Devi
- CSIR- North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Aayush Gupta
- Department of Dermatology, Dr. D.Y. Patil Medical College, Pune, Maharashtra, 411018, India
| | - Mitali Mukerji
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Binukumar B K
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
33
|
Krusche M, Kallinich T. [Autoinflammation-differences between children and adults]. Z Rheumatol 2021; 81:45-54. [PMID: 34762171 DOI: 10.1007/s00393-021-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
Autoinflammatory diseases present as multisystemic inflammation and often manifest in early childhood. In contrast, in a few diseases, e.g., the recently described VEXAS (vacuoles, E1 enzyme, X‑linked, autoinflammatory, somatic) syndrome, the first symptoms occur exclusively in adulthood. This article describes how the phenotypic expression and severity of individual autoinflammatory diseases differ depending on age. Furthermore, differences in the development of organ damage in children and adults are pointed out. In addition to the hereditary periodic fever syndromes, the clinical picture of deficiency of adenosine deaminase 2, the interferonopathies, periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome as well as VEXAS and Schnitzler syndromes are highlighted.
Collapse
Affiliation(s)
- Martin Krusche
- Rheumatologie und entzündliche Systemerkrankungen, III. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Tilmann Kallinich
- Klinik für Pädiatrie mit Schwerpunkt Pneumologie, Immunologie und Intensivmedizin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland. .,SozialpädiatischesZentrum, Charité - Universitätsmedizin Berlin, Berlin, Deutschland. .,Berlin Institute of Health, Berlin, Deutschland. .,Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Deutschland.
| |
Collapse
|
34
|
de Reuver R, Dierick E, Wiernicki B, Staes K, Seys L, De Meester E, Muyldermans T, Botzki A, Lambrecht BN, Van Nieuwerburgh F, Vandenabeele P, Maelfait J. ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Rep 2021; 36:109500. [PMID: 34380029 DOI: 10.1016/j.celrep.2021.109500] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Loss of function of adenosine deaminase acting on double-stranded RNA (dsRNA)-1 (ADAR1) causes the severe autoinflammatory disease Aicardi-Goutières syndrome (AGS). ADAR1 converts adenosines into inosines within dsRNA. This process called A-to-I editing masks self-dsRNA from detection by the antiviral dsRNA sensor MDA5. ADAR1 binds to dsRNA in both the canonical A-form and the poorly defined Z conformation (Z-RNA). Mutations in the Z-RNA-binding Zα domain of ADAR1 are common in patients with AGS. How loss of ADAR1/Z-RNA interaction contributes to disease development is unknown. We demonstrate that abrogated binding of ADAR1 to Z-RNA leads to reduced A-to-I editing of dsRNA structures formed by base pairing of inversely oriented short interspersed nuclear elements. Preventing ADAR1 binding to Z-RNA triggers an MDA5/MAVS-mediated type I interferon response and leads to the development of lethal autoinflammation in mice. This shows that the interaction between ADAR1 and Z-RNA restricts sensing of self-dsRNA and prevents AGS development.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Evelien Dierick
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bartosz Wiernicki
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Katrien Staes
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Leen Seys
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Ellen De Meester
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | | | - Bart N Lambrecht
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, 3015 GJ Rotterdam, the Netherlands
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
35
|
Aicardi-Goutières syndrome-associated mutation at ADAR1 gene locus activates innate immune response in mouse brain. J Neuroinflammation 2021; 18:169. [PMID: 34332594 PMCID: PMC8325854 DOI: 10.1186/s12974-021-02217-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aicardi-Goutières syndrome (AGS) is a severe infant or juvenile-onset autoimmune disease characterized by inflammatory encephalopathy with an elevated type 1 interferon-stimulated gene (ISG) expression signature in the brain. Mutations in seven different protein-coding genes, all linked to DNA/RNA metabolism or sensing, have been identified in AGS patients, but none of them has been demonstrated to activate the IFN pathway in the brain of an animal. The molecular mechanism of inflammatory encephalopathy in AGS has not been well defined. Adenosine Deaminase Acting on RNA 1 (ADAR1) is one of the AGS-associated genes. It carries out A-to-I RNA editing that converts adenosine to inosine at double-stranded RNA regions. Whether an AGS-associated mutation in ADAR1 activates the IFN pathway and causes autoimmune pathogenesis in the brain is yet to be determined. Methods Mutations in the ADAR1 gene found in AGS patients were introduced into the mouse genome via CRISPR/Cas9 technology. Molecular activities of the specific p.K999N mutation were investigated by measuring the RNA editing levels in brain mRNA substrates of ADAR1 through RNA sequencing analysis. IFN pathway activation in the brain was assessed by measuring ISG expression at the mRNA and protein level through real-time RT-PCR and Luminex assays, respectively. The locations in the brain and neural cell types that express ISGs were determined by RNA in situ hybridization (ISH). Potential AGS-related brain morphologic changes were assessed with immunohistological analysis. Von Kossa and Luxol Fast Blue staining was performed on brain tissue to assess calcification and myelin, respectively. Results Mice bearing the ADAR1 p.K999N were viable though smaller than wild type sibs. RNA sequencing analysis of neuron-specific RNA substrates revealed altered RNA editing activities of the mutant ADAR1 protein. Mutant mice exhibited dramatically elevated levels of multiple ISGs within the brain. RNA ISH of brain sections showed selective activation of ISG expression in neurons and microglia in a patchy pattern. ISG-15 mRNA was upregulated in ADAR1 mutant brain neurons whereas CXCL10 mRNA was elevated in adjacent astroglia. No calcification or gliosis was detected in the mutant brain. Conclusions We demonstrated that an AGS-associated mutation in ADAR1, specifically the p.K999N mutation, activates the IFN pathway in the mouse brain. The ADAR1 p.K999N mutant mouse replicates aspects of the brain interferonopathy of AGS. Neurons and microglia express different ISGs. Basal ganglia calcification and leukodystrophy seen in AGS patients were not observed in K999N mutant mice, indicating that development of the full clinical phenotype may need an additional stimulus besides AGS mutations. This mutant mouse presents a robust tool for the investigation of AGS and neuroinflammatory diseases including the modeling of potential “second hits” that enable severe phenotypes of clinically variable diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02217-9.
Collapse
|
36
|
Piccoli C, Bronner N, Gavazzi F, Dubbs H, De Simone M, De Giorgis V, Orcesi S, Fazzi E, Galli J, Masnada S, Tonduti D, Varesio C, Vanderver A, Vossough A, Adang L. Late-Onset Aicardi-Goutières Syndrome: A Characterization of Presenting Clinical Features. Pediatr Neurol 2021; 115:1-6. [PMID: 33307271 PMCID: PMC7856674 DOI: 10.1016/j.pediatrneurol.2020.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a genetic interferonopathy characterized by early onset of severe neurological injury with intracranial calcifications, leukoencephalopathy, and systemic inflammation. Increasingly, a spectrum of neurological dysfunction and presentation beyond the infantile period is being recognized in AGS. The aim of this study was to characterize late-infantile and juvenile-onset AGS. METHODS We conducted a multi-institution review of individuals with AGS who were older than one year at the time of presentation, including medical history, imaging characteristics, and suspected diagnoses at presentation. RESULTS Thirty-four individuals were identified, all with pathogenic variants in RNASEH2B, SAMHD1, ADAR1, or IFIH1. Most individuals had a history of developmental delay and/or systemic symptoms, such as sterile pyrexias and chilblains, followed by a prodromal period associated with increasing symptoms. This was followed by an abrupt onset of neurological decline (fulminant phase), with a median onset at 1.33 years (range 1.00 to 17.68 years). Most individuals presented with a change in gross motor skills (97.0%), typically with increased tone (78.8%). Leukodystrophy was the most common magnetic resonance imaging finding (40.0%). Calcifications were less common (12.9%). CONCLUSIONS This is the first study to characterize the presentation of late-infantile and juvenile onset AGS and its phenotypic spectrum. Late-onset AGS can present insidiously and lacks classical clinical and neuroimaging findings. Signs of early systemic dysfunction before fulminant disease onset and loss of motor symptoms were common. We strongly recommend genetic testing when there is concern for sustained inflammation of unknown origins or changes in motor skills in children older than one year.
Collapse
Affiliation(s)
- Cara Piccoli
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nowa Bronner
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Holly Dubbs
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Micaela De Simone
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | | | | | - Elisa Fazzi
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Jessica Galli
- ASST Spedali Civili di Brescia, Azienda Socio Sanitaria Territoriale degli Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Masnada
- Vittore Buzzi Children’s Hospital, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | - Davide Tonduti
- Vittore Buzzi Children’s Hospital, Ospedale dei Bambini Vittore Buzzi, Milan, Italy
| | | | | | | | - Laura Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Sathishkumar D, Muthusamy K, Gupta A, Malhotra M, Thomas M, Koshy B, Jasper A, Danda S, George R. Co-occurrence of Aicardi-Goutières syndrome type 6 and dyschromatosis symmetrica hereditaria due to compound heterozygous pathogenic variants in ADAR1: a case series from India. Clin Exp Dermatol 2021; 46:704-709. [PMID: 33289110 DOI: 10.1111/ced.14531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
Aicardi-Goutières syndrome type 6 (AGS6) and dyschromatosis symmetrica hereditaria (DSH) are allelic disorders caused respectively by biallelic and heterozygous pathogenic variants in ADAR1. We report three unrelated children presenting with features of both AGS6 and DSH, two of whom had compound heterozygous pathogenic variants in ADAR1. We also describe the novel genetic variants in our cases and review the literature on association of ADAR1-related AGS6 and DSH with these phenotypes.
Collapse
Affiliation(s)
- D Sathishkumar
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - K Muthusamy
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - A Gupta
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - M Malhotra
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - M Thomas
- Department of, Paediatric Neurology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - B Koshy
- Department of, Developmental Paediatrics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - A Jasper
- Department of, Radiology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - S Danda
- Department of, Medical Genetics, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - R George
- Departments of, Department of, Dermatology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
38
|
Abstract
The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.ADAR1 is among the genes found mutated in patients with this type of disorders.This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
39
|
Abstract
RNA editing of adenosines to inosines contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect, accurate mapping of inosines is necessary. The most conventional method to identify an editing site is to compare the cDNA sequence with its corresponding genomic sequence. However, this method has a high false discovery rate because guanosine signals, due to experimental errors or noise in the obtained sequences, contaminate genuine inosine signals detected as guanosine. To ensure high accuracy, we developed the Inosine Chemical Erasing (ICE) method to accurately and biochemically identify inosines in RNA strands utilizing inosine cyanoethylation and reverse transcription-PCR. Furthermore, we applied this technique to next-generation sequencing technology, called ICE-seq, to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome.
Collapse
|
40
|
Cazzato S, Omenetti A, Ravaglia C, Poletti V. Lung involvement in monogenic interferonopathies. Eur Respir Rev 2020; 29:200001. [PMID: 33328278 PMCID: PMC9489100 DOI: 10.1183/16000617.0001-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022] Open
Abstract
Monogenic type I interferonopathies are inherited heterogeneous disorders characterised by early onset of systemic and organ specific inflammation, associated with constitutive activation of type I interferons (IFNs). In the last few years, several clinical reports identified the lung as one of the key target organs of IFN-mediated inflammation. The major pulmonary patterns described comprise children's interstitial lung diseases (including diffuse alveolar haemorrhages) and pulmonary arterial hypertension but diagnosis may be challenging. Respiratory symptoms may be either mild or absent at disease onset and variably associated with systemic or organ specific inflammation. In addition, associated extrapulmonary clinical features may precede lung function impairment by years, and patients may display severe/endstage lung involvement, although this may be clinically hidden during the long-term disease course. Conversely, a few cases of atypical severe lung involvement at onset have been reported without clinically manifested extrapulmonary signs. Hence, a multidisciplinary approach involving pulmonologists, paediatricians and rheumatologists should always be considered when a monogenic interferonopathy is suspected. Pulmonologists should also be aware of the main pattern of presentation to allow prompt diagnosis and a targeted therapeutic strategy. In this regard, promising therapeutic strategies rely on Janus kinase-1/2 (JAK-1/2) inhibitors blocking the type I IFN-mediated intracellular cascade.
Collapse
Affiliation(s)
- Salvatore Cazzato
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Alessia Omenetti
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
- Joint first authors
| | - Claudia Ravaglia
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Dept of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Di Lazzaro G, Graziola F, Sancesario A, Insalaco A, Moneta GM, Castelli E, Bertini E, Travaglini L, Stregapede F, Capuano A, Vasco G, Schirinzi T. Movement disorders in ADAR1 disease: Insights from a comprehensive cohort. Parkinsonism Relat Disord 2020; 79:100-104. [PMID: 32911246 DOI: 10.1016/j.parkreldis.2020.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
ADAR1 variants are associated to rare and heterogenous neurological conditions, including Aicardi-Goutières syndrome type 6, bilateral striatal necrosis, and dyschromatosis symmetrica hereditaria. Movement disorders (MDs) commonly occur in ADAR1-related diseases although a complete overview on the phenomenology has not been provided yet. Here, a cohort of 57 patients with ADAR1-related diseases, including 3 unpublished patients and 54 previously reported cases, was reviewed. Data on demographics, clinical features of MDs, genetics and biomarkers were collected and descriptive statistics, group analysis for genotype and logistic regression were run. Manifestations of MD characterized the onset of ADAR1-related disease in 60% of patients. Specifically, dystonia occurred in 39% of cases, even as severe status dystonicus, while prevalence of other MDs was lower. Patients often presented brain lesions (>90%) and progressive disease course (43%), fatal in some cases. Clinical presentation and outcome differed among patients with distinct genotype. This review shows that phenomenology of MDs in ADAR1-related diseases is wide and heterogeneous, although a severe motor syndrome (often characterized by dystonia) secondary to brain lesions represents the most common manifestation. Waiting for future development of disease-modifying treatments, an appropriate symptomatic intervention is crucial for ADAR1 patients. Accordingly, a deeper knowledge of phenomenology is fundamental.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Federica Graziola
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Sancesario
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Insalaco
- Department of Rheumatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gian Marco Moneta
- Department of Rheumatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Castelli
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorena Travaglini
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Fabrizia Stregapede
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Capuano
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gessica Vasco
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
42
|
Mansour-Hendili L, Aissat A, Badaoui B, Sakka M, Gameiro C, Ortonne V, Wagner-Ballon O, Pissard S, Picard V, Ghazal K, Bahuau M, Guitton C, Mansour Z, Duplan M, Petit A, Costedoat-Chalumeau N, Michel M, Bartolucci P, Moutereau S, Funalot B, Galactéros F. Exome sequencing for diagnosis of congenital hemolytic anemia. Orphanet J Rare Dis 2020; 15:180. [PMID: 32641076 PMCID: PMC7341591 DOI: 10.1186/s13023-020-01425-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis. Results A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients. Conclusion The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing in congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients’ healthcare and probably has to be democratized notably for complex cases.
Collapse
Affiliation(s)
- Lamisse Mansour-Hendili
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France. .,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | - Abdelrazak Aissat
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Bouchra Badaoui
- Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Mehdi Sakka
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Christine Gameiro
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Valérie Ortonne
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Orianne Wagner-Ballon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Serge Pissard
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Véronique Picard
- Département d'hématologie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Khaldoun Ghazal
- Département de Biochimie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Michel Bahuau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Corinne Guitton
- Département d'hématologie pédiatrique, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Ziad Mansour
- Clinique ADASSA, Maternité, F-67000, Strasbourg, France
| | - Mylène Duplan
- Département d'onco-hématologie pédiatrique, CHU d'Angers, 4 Rue Larrey, 49100, Angers, France
| | - Arnaud Petit
- Département d'onco-hématologie pédiatrique, AP-HP, Hôpital Armand Trousseau, F-75012, Paris, France
| | | | - Marc Michel
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Pablo Bartolucci
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Stéphane Moutereau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Benoît Funalot
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Frédéric Galactéros
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| |
Collapse
|
43
|
Heraud-Farlow JE, Walkley CR. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 2020; 10:200085. [PMID: 32603639 PMCID: PMC7574547 DOI: 10.1098/rsob.200085] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000-150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo. Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
44
|
Melki I, Frémond ML. Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Curr Rheumatol Rep 2020; 22:32. [DOI: 10.1007/s11926-020-00909-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Guallar D, Fuentes-Iglesias A, Souto Y, Ameneiro C, Freire-Agulleiro O, Pardavila JA, Escudero A, Garcia-Outeiral V, Moreira T, Saenz C, Xiong H, Liu D, Xiao S, Hou Y, Wu K, Torrecilla D, Hartner JC, Blanco MG, Lee LJ, López M, Walkley CR, Wang J, Fidalgo M. ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress. Cell Stem Cell 2020; 27:300-314.e11. [PMID: 32396862 DOI: 10.1016/j.stem.2020.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 12/31/2022]
Abstract
RNA editing of adenosine to inosine (A to I) is catalyzed by ADAR1 and dramatically alters the cellular transcriptome, although its functional roles in somatic cell reprogramming are largely unexplored. Here, we show that loss of ADAR1-mediated A-to-I editing disrupts mesenchymal-to-epithelial transition (MET) during induced pluripotent stem cell (iPSC) reprogramming and impedes acquisition of induced pluripotency. Using chemical and genetic approaches, we show that absence of ADAR1-dependent RNA editing induces aberrant innate immune responses through the double-stranded RNA (dsRNA) sensor MDA5, unleashing endoplasmic reticulum (ER) stress and hindering epithelial fate acquisition. We found that A-to-I editing impedes MDA5 sensing and sequestration of dsRNAs encoding membrane proteins, which promote ER homeostasis by activating the PERK-dependent unfolded protein response pathway to consequently facilitate MET. This study therefore establishes a critical role for ADAR1 and its A-to-I editing activity during cell fate transitions and delineates a key regulatory layer underlying MET to control efficient reprogramming.
Collapse
Affiliation(s)
- Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Biochemistry and Molecular Biology, USC, Santiago de Compostela 15782, Spain.
| | - Alejandro Fuentes-Iglesias
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Yara Souto
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Cristina Ameneiro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Oscar Freire-Agulleiro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain; NeurObesity Group & CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain
| | - Jose Angel Pardavila
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Adriana Escudero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Vera Garcia-Outeiral
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain
| | - Tiago Moreira
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Carmen Saenz
- The Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heng Xiong
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Shidi Xiao
- BGI-Shenzhen, Shenzhen 518083, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Daniel Torrecilla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Jochen C Hartner
- Horizon Discovery, Cambridge Research Park, Cambridge CB25 9TL, UK
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, USC, Santiago de Compostela 15782, Spain
| | - Leo J Lee
- BGI-Shenzhen, Shenzhen 518083, China; Department of Electrical and Computer Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Miguel López
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain; NeurObesity Group & CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela 15706, Spain
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain.
| |
Collapse
|
46
|
Gacem N, Kavo A, Zerad L, Richard L, Mathis S, Kapur RP, Parisot M, Amiel J, Dufour S, de la Grange P, Pingault V, Vallat JM, Bondurand N. ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nat Commun 2020; 11:198. [PMID: 31924792 PMCID: PMC6954203 DOI: 10.1038/s41467-019-14090-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/09/2019] [Indexed: 01/14/2023] Open
Abstract
The neural crest gives rise to numerous cell types, dysfunction of which contributes to many disorders. Here, we report that adenosine deaminase acting on RNA (ADAR1), responsible for adenosine-to-inosine editing of RNA, is required for regulating the development of two neural crest derivatives: melanocytes and Schwann cells. Neural crest specific conditional deletion of Adar1 in mice leads to global depigmentation and absence of myelin from peripheral nerves, resulting from alterations in melanocyte survival and differentiation of Schwann cells, respectively. Upregulation of interferon stimulated genes precedes these defects, which are associated with the triggering of a signature resembling response to injury in peripheral nerves. Simultaneous extinction of MDA5, a key sensor of unedited RNA, rescues both melanocytes and myelin defects in vitro, suggesting that ADAR1 safeguards neural crest derivatives from aberrant MDA5-mediated interferon production. We thus extend the landscape of ADAR1 function to the fields of neural crest development and disease.
Collapse
Affiliation(s)
- Nadjet Gacem
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Universite Paris Descartes-Universite de Paris, Paris, France.,INSERM, U955, Equipe 06, 8, rue du General Sarrail, 94010, Creteil Cedex, France
| | - Anthula Kavo
- INSERM, U955, Equipe 06, 8, rue du General Sarrail, 94010, Creteil Cedex, France.,Faculte de Medecine, Universite Paris Est, 94000, Creteil, France
| | - Lisa Zerad
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Universite Paris Descartes-Universite de Paris, Paris, France
| | - Laurence Richard
- Department of Neurology, Centre de Reference Neuropathies Peripheriques Rares, 2 avenue Martin-Luther-King, 87042, Limoges, France
| | - Stephane Mathis
- Department of Neurology (Nerve-Muscle Unit) and Grand Sud-Ouest National Reference Center for Neuromuscular Disorders, CHU Bordeaux, Pellegrin Hospital, 33076, Bordeaux, France
| | - Raj P Kapur
- Department of Pathology, Seattle Children's Hospital and University of Washington, 4800 Sand Point Way NE, Seattle, WA, 98105, USA
| | - Melanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Federative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UMS3633, 24 bvd Montparnasse, 75015, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Universite Paris Descartes-Universite de Paris, Paris, France
| | - Sylvie Dufour
- INSERM, U955, Equipe 06, 8, rue du General Sarrail, 94010, Creteil Cedex, France.,Faculte de Medecine, Universite Paris Est, 94000, Creteil, France
| | | | - Veronique Pingault
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Universite Paris Descartes-Universite de Paris, Paris, France.,Service de Genetique Moleculaire, Hopital Necker-Enfants-Malades, 149 rue de Sevres, 75015, Paris, France
| | - Jean Michel Vallat
- Department of Neurology, Centre de Reference Neuropathies Peripheriques Rares, 2 avenue Martin-Luther-King, 87042, Limoges, France
| | - Nadege Bondurand
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR 1163, Universite Paris Descartes-Universite de Paris, Paris, France. .,INSERM, U955, Equipe 06, 8, rue du General Sarrail, 94010, Creteil Cedex, France.
| |
Collapse
|
47
|
Adang L, Gavazzi F, De Simone M, Fazzi E, Galli J, Koh J, Kramer-Golinkoff J, De Giorgis V, Orcesi S, Peer K, Ulrick N, Woidill S, Shults J, Vanderver A. Developmental Outcomes of Aicardi Goutières Syndrome. J Child Neurol 2020; 35:7-16. [PMID: 31559893 PMCID: PMC7402202 DOI: 10.1177/0883073819870944] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aicardi Goutières syndrome is a monogenic interferonopathy caused by abnormalities in the intracellular nucleic acid sensing machinery (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or IFIH1). Most individuals affected by Aicardi Goutières syndrome exhibit some degree of neurologic impairment, from spastic paraparesis with relatively preserved cognition to tetraparesis and severe intellectual disability. Because of this heterogeneity, it is important to fully characterize the developmental trajectory in Aicardi Goutières syndrome. To characterize the clinical presentation in Aicardi Goutières syndrome, early features were collected from an international cohort of children (n = 100) with genetically confirmed Aicardi Goutières syndrome. There was a heterogeneous age of onset, with overlapping clusters of presenting symptoms: altered mental status, systemic inflammatory symptoms, and acute neurologic disability. Next, we created genotype-specific developmental milestone acquisition curves. Individuals with microcephaly or TREX1-related Aicardi Goutières syndrome secondary were the most severely affected and less likely to reach milestones, including head control, sitting, and nonspecific mama/dada. Individuals affected by SAMHD1, IFIH1, and ADAR attained the most advanced milestones, with 44% achieving verbal communication and 31% independently ambulating. Retrospective function scales (Gross Motor Function Classification System, Manual Ability Classification System, and Communication Function Classification System) demonstrated that two-thirds of the Aicardi Goutières syndrome population are severely affected. Our results suggest multifactorial influences on developmental trajectory, including a strong contribution from genotype. Further studies are needed to identify the additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.
Collapse
Affiliation(s)
- Laura Adang
- Division of Neurology, Children’s Hospital of Philadelphia
| | | | | | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia,Department of Clinical and Experimental Sciences, University of Brescia
| | - Jessica Galli
- Child Neurology and Psychiatry Unit, ASST Spedali Civili of Brescia,Department of Clinical and Experimental Sciences, University of Brescia
| | - Jamie Koh
- Division of Neurology, Children’s Hospital of Philadelphia
| | | | | | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Kyle Peer
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Nicole Ulrick
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Sarah Woidill
- Division of Neurology, Children’s Hospital of Philadelphia
| | - Justine Shults
- Department of Biostatistics. Perelman School of Medicine at University of Pennsylvania
| | | |
Collapse
|
48
|
Chalk AM, Taylor S, Heraud-Farlow JE, Walkley CR. The majority of A-to-I RNA editing is not required for mammalian homeostasis. Genome Biol 2019; 20:268. [PMID: 31815657 PMCID: PMC6900863 DOI: 10.1186/s13059-019-1873-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing, mediated by ADAR1 and ADAR2, occurs at tens of thousands to millions of sites across mammalian transcriptomes. A-to-I editing can change the protein coding potential of a transcript and alter RNA splicing, miRNA biology, RNA secondary structure and formation of other RNA species. In vivo, the editing-dependent protein recoding of GRIA2 is the essential function of ADAR2, while ADAR1 editing prevents innate immune sensing of endogenous RNAs by MDA5 in both human and mouse. However, a significant proportion of A-to-I editing sites can be edited by both ADAR1 and ADAR2, particularly within the brain where both are highly expressed. The physiological function(s) of these shared sites, including those evolutionarily conserved, is largely unknown. RESULTS To generate completely A-to-I editing-deficient mammals, we crossed the viable rescued ADAR1-editing-deficient animals (Adar1E861A/E861AIfih1-/-) with rescued ADAR2-deficient (Adarb1-/-Gria2R/R) animals. Unexpectedly, the global absence of editing was well tolerated. Adar1E861A/E861AIfih1-/-Adarb1-/-Gria2R/R were recovered at Mendelian ratios and age normally. Detailed transcriptome analysis demonstrated that editing was absent in the brains of the compound mutants and that ADAR1 and ADAR2 have similar editing site preferences and patterns. CONCLUSIONS We conclude that ADAR1 and ADAR2 are non-redundant and do not compensate for each other's essential functions in vivo. Physiologically essential A-to-I editing comprises a small subset of the editome, and the majority of editing is dispensable for mammalian homeostasis. Moreover, in vivo biologically essential protein recoding mediated by A-to-I editing is an exception in mammals.
Collapse
Affiliation(s)
- Alistair M Chalk
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Scott Taylor
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia
| | - Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
49
|
Crow Y, Keshavan N, Barbet JP, Bercu G, Bondet V, Boussard C, Dedieu N, Duffy D, Hully M, Giardini A, Gitiaux C, Rice GI, Seabra L, Bader-Meunier B, Rahman S. Cardiac valve involvement in ADAR-related type I interferonopathy. J Med Genet 2019; 57:475-478. [DOI: 10.1136/jmedgenet-2019-106457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
BackgroundAdenosine deaminases acting on RNA (ADAR) mutations cause a spectrum of neurological phenotypes ranging from severe encephalopathy (Aicardi-Goutières syndrome) to isolated spastic paraplegia and are associated with enhanced type I interferon signalling. In children, non-neurological involvement in the type I interferonopathies includes autoimmune and rheumatological phenomena, with calcifying cardiac valve disease only previously reported in the context of MDA5 gain-of-function.ResultsWe describe three patients with biallelic ADAR mutations who developed calcifying cardiac valvular disease in late childhood (9.5–14 years). Echocardiography revealed progressive calcification of the valvular leaflets resulting in valvular stenosis and incompetence. Two patients became symptomatic with biventricular failure after 5–6.5 years. In one case, disease progressed to severe cardiac failure despite maximal medical management, with death occurring at 17 years. Another child received mechanical mitral and aortic valve replacement at 16 years with good postoperative outcome. Histological examination of the affected valves showed fibrosis and calcification.ConclusionsType I interferonopathies of differing genetic aetiology demonstrate an overlapping phenotypic spectrum which includes calcifying cardiac valvular disease. Individuals with ADAR-related type I interferonopathy may develop childhood-onset multivalvular stenosis and incompetence which can progress insidiously to symptomatic, and ultimately fatal, cardiac failure. Regular surveillance echocardiograms are recommended to detect valvular disease early.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The direct modification of RNA is now understood to be widespread, evolutionarily conserved and of consequence to cellular and organismal homeostasis. adenosine-to-inosine (A-to-I) RNA editing is one of the most common mammalian RNA modifications. Transcriptome-wide maps of the A-to-I editing exist, yet functions for the majority of editing sites remain opaque. Herein we discuss how hematology has been applied to determine physiological and malignant functions of A-to-I editing. RECENT FINDINGS Functional studies have established that A-to-I editing and ADAR1, responsible for the majority of editing in blood cells, are essential for normal blood cell homeostasis. ADAR1 edits endogenous RNA and reshapes its secondary structure, preventing MDA5 from perceiving the cells own RNA as pathogenic. Roles for ADAR1 in human leukaemia, and most recently, cancer cell intrinsic and extrinsic functions of ADAR1 have been identified that highlight ADAR1 as a therapeutic target in cancer. SUMMARY The studies reviewed have identified the key physiological function of ADAR1 and mechanistic basis for A-to-I editing in normal physiology and have now been extended to cancer. As our understanding of the biology and consequences of A-to-I editing evolve, it may be possible to target ADAR1 function advantageously in a number of settings.
Collapse
|