1
|
Sundercombe SL, Berbic M, Evans CA, Cliffe C, Elakis G, Temple SEL, Selvanathan A, Ewans L, Quayum N, Nixon CY, Dias KR, Lang S, Richards A, Goh S, Wilson M, Mowat D, Sachdev R, Sandaradura S, Walsh M, Farrar MA, Walsh R, Fletcher J, Kirk EP, Teunisse GM, Schofield D, Buckley MF, Zhu Y, Roscioli T. Clinically Responsive Genomic Analysis Pipelines: Elements to Improve Detection Rate and Efficiency. J Mol Diagn 2021; 23:894-905. [PMID: 33962052 DOI: 10.1016/j.jmoldx.2021.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Massively parallel sequencing has markedly improved mendelian diagnostic rates. This study assessed the effects of custom alterations to a diagnostic genomic bioinformatic pipeline in response to clinical need and derived practice recommendations relative to diagnostic rates and efficiency. The Genomic Annotation and Interpretation Application (GAIA) bioinformatics pipeline was designed to detect panel, exome, and genome sample integrity and prioritize gene variants in mendelian disorders. Reanalysis of selected negative cases was performed after improvements to the pipeline. GAIA improvements and their effect on sensitivity are described, including addition of a PubMed search for gene-disease associations not in the Online Mendelian Inheritance of Man database, inclusion of a process for calling low-quality variants (known as QPatch), and gene symbol nomenclature consistency checking. The new pipeline increased the diagnostic rate and reduced staff costs, resulting in a saving of US$844.34 per additional diagnosis. Recommendations for genomic analysis pipeline requirements are summarized. Clinically responsive bioinformatics pipeline improvements increase diagnostic sensitivity and increase cost-effectiveness.
Collapse
Affiliation(s)
| | - Marina Berbic
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Corrina Cliffe
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - George Elakis
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Suzanna E L Temple
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia
| | - Arthavan Selvanathan
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Discipline of Child and Adolescent Health, The University of Sydney, New South Wales, Australia
| | - Lisa Ewans
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Central Clinical School, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Nila Quayum
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Cheng-Yee Nixon
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Kerith-Rae Dias
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Sarah Lang
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Anna Richards
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Shuxiang Goh
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, Westmead, New South Wales, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia
| | - Sarah Sandaradura
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, Westmead, New South Wales, Australia
| | - Maie Walsh
- Genetic Medicine Department, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Michelle A Farrar
- School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia; Neurology Department, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia
| | - Rebecca Walsh
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Janice Fletcher
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Edwin P Kirk
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; School of Women's and Children's Health, University of New South Wales Sydney, Kensington, New South Wales, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia
| | - Guus M Teunisse
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Michael Francis Buckley
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Ying Zhu
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Genetics of Learning Disability Service, Hunter Genetics, Waratah Newcastle, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics, Prince of Wales Hospital, Randwick, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Randwick, New South Wales, Australia.
| |
Collapse
|
3
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|