1
|
Gerik-Celebi HB, Dokurel Çetin İ, Bolat H, Unsel-Bolat G. Investigation of patients with childhood epilepsy in single center: Comprehensive genetic testing experience. Int J Dev Neurosci 2024. [PMID: 38984718 DOI: 10.1002/jdn.10360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a common multifactorial neurological disease usually diagnosed during childhood. In this study, we present the contribution of consecutive genetic testing to the genetic diagnostic yield of childhood epilepsy. METHODS In 100 children (53 female, 47 male) with epilepsy, targeted sequencing (TS) and clinical exome sequencing (CES) were performed. All cases (n = 100) included in the study were epilepsy patients. In addition, we investigated the genetic diagnosis rates according to the associated co-occurring findings (including developmental delay/intellectual disability, brain malformations, macro-/microcephaly, and dysmorphic features). RESULTS The overall diagnostic rate in this study was 33% (n = 33 patients). We identified 11 novel variants in WDR45, ARX, PCDH19, SCN1A, CACNA1A, LGI1, ASPM, MECP2, NF1, TSC2, and CDK13. Genetic diagnosis rates were as follows: cases with developmental delay/intellectual disability 38.7% (24/62) and without developmental delay/intellectual disability 23.6% (9/38); cases with brain malformations 46.8% (15/32) and without brain malformations 25% (16/64); cases with macro-/microcephaly 50% (6/12) and without macro-/microcephaly 28.4% (25/88); and cases with dysmorphic features 48.2% (14/29) and without dysmorphic features 23.9% (17/71). CONCLUSION Genotype-phenotype correlation is even more important in diseases such as epilepsy, which include many genes and variants of these genes in etiopathogenesis. We presented the clinical findings of the cases carrying 11 novel variants in detail, including dysmorphic features, accompanying neurodevelopmental disorders, EEG results, and brain MRI results.
Collapse
Affiliation(s)
| | - İpek Dokurel Çetin
- Department of Pediatrics, Division of Child Neurology, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Hilmi Bolat
- Department of Medical Genetics, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| | - Gul Unsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
2
|
Badura-Stronka M, Wołyńska K, Winczewska-Wiktor A, Marcinkowska J, Karolewska D, Tomkowiak-Kędzia D, Piechota M, Przyborska M, Kochalska N, Steinborn B. Validation of targeted next-generation sequencing panels in a cohort of Polish patients with epilepsy: assessing variable performance across clinical endophenotypes and uncovering novel genetic variants. Front Neurol 2024; 14:1316933. [PMID: 38328757 PMCID: PMC10849089 DOI: 10.3389/fneur.2023.1316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Targeted Next-Generation Sequencing Panels (TNGSP) have become a standard in global clinical practice. Instead of questioning the necessity of next-generation sequencing in epilepsy patients, contemporary large-scale research focuses on factors such as the size of TNGSP, the comparative advantages of exome or genome-wide sequencing over TNGSP, and the impact of clinical, electrophysiological, and demographic variables on genetic test performance. This study aims to elucidate the demographic and clinical factors influencing the performance of TNGSP in 138 Polish patients with epilepsy, recognizing the pivotal role of genetic testing in guiding patient management and therapy. Methods A retrospective analysis was conducted on patients from a genetic clinic in Poznań, Poland, who underwent commercial gene panel studies at Invitae Corporation (USA) between 2020 and 2022. Patient groups were defined based on the age of onset of the first epileptic seizures, seizure type, gender, fever dependence of seizures, presence of intellectual disability or developmental delay, abnormalities in MRI, and the presence of dysmorphic features or congenital malformations. Seizure classification followed the 2017 ILAE criteria. Results Among the 138 patients, 30 (21.7%) exhibited a pathogenic or likely pathogenic variant, with a distribution of 20.7% in males and 22.5% in females. Diagnostic performance correlated with the patient's age at the onset of the first seizure and the type of seizure. Predominant variants were identified in the SCN1A, PRRT2, CDKL5, DEPDC5, TSC2, and SLC2A1 genes. Additionally, 12 genes (CACNA1A, SCN2A, GRIN2A, KCNQ2, CHD2, DYNC1H1, NEXMIF, SCN1B, DDX3X, EEF1A2, NPRL3, UBE3A) exhibited single instances of damage. Notably, novel variants were discovered in DEPDC5, SCN1A, TSC2, CDKL5, NPRL3, DYNC1H1, CHD2, and DDX3X. Discussion Identified variants were present in genes previously recognized in both European and non-European populations. A thorough examination of Variants of Uncertain Significance (VUSs), specifically focusing on gene copy number changes, may unveil more extensive chromosomal aberrations. The relatively frequent occurrence of pathological variants in X chromosome-linked genes in girls warrants further investigation, challenging the prevailing notion of male predominance in X-linked epilepsy.
Collapse
Affiliation(s)
- Magdalena Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
- Centers for Medical Genetics GENESIS, Poznań, Poland
| | - Katarzyna Wołyńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Anna Winczewska-Wiktor
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Marcinkowska
- Chair and Department of Informatics and Statistics, Poznan University of Medical Sciences, Poznań, Poland
| | | | | | | | | | | | - Barbara Steinborn
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Esterhuizen AI, Tiffin N, Riordan G, Wessels M, Burman RJ, Aziz MC, Calhoun JD, Gunti J, Amiri EE, Ramamurthy A, Bamshad MJ, Mefford HC, Ramesar R, Wilmshurst JM, Carvill GL, Leal SM, Nickerson DA, Anderson P, Bacus TJ, Blue EE, Brower K, Buckingham KJ, Chong JX, Cornejo Sánchez D, Davis CP, Davis CJ, Frazar CD, Gomeztagle-Burgess K, Gordon WW, Horike-Pyne M, Hurless JR, Jarvik GP, Johanson E, Thomas Kolar J, Marvin CT, McGee S, McGoldrick DJ, Mekonnen B, Nielsen PM, Patterson K, Radhakrishnan A, Richardson MA, Roote GT, Ryke EL, Schrauwen I, Shively KM, Smith JD, Tackett M, Wang G, Weiss JM, Wheeler MM, Yi Q, Zhang X. Precision medicine for developmental and epileptic encephalopathies in Africa-strategies for a resource-limited setting. Genet Med 2023; 25:100333. [PMID: 36480001 DOI: 10.1016/j.gim.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sub-Saharan Africa bears the highest burden of epilepsy worldwide. A presumed proportion is genetic, but this etiology is buried under the burden of infections and perinatal insults in a setting of limited awareness and few options for testing. Children with developmental and epileptic encephalopathies (DEEs) are most severely affected by this diagnostic gap in Africa, because the rate of actionable findings is highest in DEE-associated genes. METHODS We tested 234 genetically naive South African children diagnosed with/possible DEE using gene panels, exome sequencing, and chromosomal microarray. Statistical comparison of electroclinical features in children with and children without candidate variants was performed to identify characteristics most likely predictive of a positive genetic finding. RESULTS Of the 41 (of 234) children with likely/pathogenic variants, 26 had variants supporting precision therapy. Multivariate regression modeling highlighted neonatal or infantile-onset seizures and movement abnormalities as predictive of a positive genetic finding. We used this, coupled with an emphasis on precision medicine outcomes, to propose the pragmatic "Think-Genetics" strategy for early recognition of a possible genetic etiology. CONCLUSION Our findings emphasize the importance of an early genetic diagnosis in DEE. We designed the Think-Genetics strategy for early recognition, appropriate interim management, and genetic testing for DEE in resource-constrained settings.
Collapse
Affiliation(s)
- Alina I Esterhuizen
- The South African MRC/UCT Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Nicki Tiffin
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, Western Cape, South Africa
| | - Gillian Riordan
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Marie Wessels
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Richard J Burman
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Miriam C Aziz
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jeffrey D Calhoun
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jonathan Gunti
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ezra E Amiri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aishwarya Ramamurthy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA; Brotman Baty Institute, Seattle, WA
| | | | - Heather C Mefford
- Centre for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN
| | - Raj Ramesar
- The South African MRC/UCT Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Scheffer IE, Bennett CA, Gill D, de Silva MG, Boggs K, Marum J, Baker N, Palmer EE, Howell KB. Exome sequencing for patients with developmental and epileptic encephalopathies in clinical practice. Dev Med Child Neurol 2023; 65:50-57. [PMID: 35701389 PMCID: PMC10952465 DOI: 10.1111/dmcn.15308] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.
Collapse
Affiliation(s)
- Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
- Department of PaediatricsThe University of MelbourneVictoria
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
| | - Caitlin A. Bennett
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
| | - Deepak Gill
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadNew South Wales
| | - Michelle G. de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
- Australian Genomics Health AllianceMelbourne
| | - Kirsten Boggs
- Australian Genomics Health AllianceMelbourne
- Sydney Children's Hospitals NetworkSydney
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | - Naomi Baker
- Department of PaediatricsThe University of MelbourneVictoria
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | | | - Katherine B. Howell
- Department of PaediatricsThe University of MelbourneVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
6
|
Neubauer BA. Epilepsy in Neuropediatrics. Neuropediatrics 2021; 52:71-72. [PMID: 33742431 DOI: 10.1055/s-0041-1726339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bernd A Neubauer
- Department of Child Neurology, Social Pediatrics and Epileptology, University Hospital Giessen/Marburg, Giessen, Germany
| |
Collapse
|