1
|
Reyes Ruiz A, Bhale AS, Venkataraman K, Dimitrov JD, Lacroix-Desmazes S. Binding Promiscuity of Therapeutic Factor VIII. Thromb Haemost 2024. [PMID: 38950594 DOI: 10.1055/a-2358-0853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The binding promiscuity of proteins defines their ability to indiscriminately bind multiple unrelated molecules. Binding promiscuity is implicated, at least in part, in the off-target reactivity, nonspecific biodistribution, immunogenicity, and/or short half-life of potentially efficacious protein drugs, thus affecting their clinical use. In this review, we discuss the current evidence for the binding promiscuity of factor VIII (FVIII), a protein used for the treatment of hemophilia A, which displays poor pharmacokinetics, and elevated immunogenicity. We summarize the different canonical and noncanonical interactions that FVIII may establish in the circulation and that could be responsible for its therapeutic liabilities. We also provide information suggesting that the FVIII light chain, and especially its C1 and C2 domains, could play an important role in the binding promiscuity. We believe that the knowledge accumulated over years of FVIII usage could be exploited for the development of strategies to predict protein binding promiscuity and therefore anticipate drug efficacy and toxicity. This would open a mutational space to reduce the binding promiscuity of emerging protein drugs while conserving their therapeutic potency.
Collapse
Affiliation(s)
- Alejandra Reyes Ruiz
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya S Bhale
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Zafarani A, Tabibian S, Barati M, Ghodratnia E, Safa M. Associations of multiple genetic variations with plasma levels of Von Willebrand Factor and clinical phenotype in Iranian patients with Von Willebrand disease type 1. Transfus Apher Sci 2023; 62:103766. [PMID: 37550093 DOI: 10.1016/j.transci.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Genetic variations influence the Von Willebrand Factor plasma level and function. This study aims to evaluate the frequency and clinical phenotype effects of eight single nucleotide polymorphism candidates in four genes (VWF, STXBP5, CLEC4M, and ABO) in Iranian patients with VWD type 1. METHOD The study recruited 50 patients with VWD type 1 and 100 healthy individuals. The demographic data from all participants were collected, and the High-Resolution Melting technique was used to determine the frequency of specific single nucleotide polymorphisms. Bleeding scores were also obtained from all patients to assess how these genetic variations might affect the severity of their bleeding symptoms. RESULTS The study found notable variations in the occurrence of certain SNPs (rs7853989 and rs8176743 for ABO gene and rs1063856 and rs1063857 for VWF gene) between the control group and the patients. Additionally, the study discovered that two SNPs (rs868875 for CLEC4M gene and rs9390459 for STXBP5 gene) were significantly linked to the severity of bleeding, and two others (rs868875 for CLEC4M gene and rs8176746 for ABO gene) were associated with reduced levels of VWF antigen in the patients. CONCLUSION According to this study, the above-selected SNPs can cause variations in VWF plasma levels in patients with VWD type 1. Furthermore, the effects of SNPs on bleeding phenotype prove the role of these SNPs in the severity of bleeding manifestations in patients.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Shadi Tabibian
- Iranian Comprehensive Hemophilia Care Center, Tehran, Islamic Republic of Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Islamic Republic of Iran
| | - Elnaz Ghodratnia
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
3
|
Swystun LL, Michels A, Lillicrap D. The contribution of the sinusoidal endothelial cell receptors CLEC4M, stabilin-2, and SCARA5 to VWF-FVIII clearance in thrombosis and hemostasis. J Thromb Haemost 2023; 21:2007-2019. [PMID: 37085036 PMCID: PMC11539076 DOI: 10.1016/j.jtha.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. https://twitter.com/michels_alison
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
Beccacece L, Abondio P, Giorgetti A, Bini C, Pelletti G, Luiselli D, Pelotti S. A Genome-Wide Analysis of a Sudden Cardiac Death Cohort: Identifying Novel Target Variants in the Era of Molecular Autopsy. Genes (Basel) 2023; 14:1265. [PMID: 37372445 DOI: 10.3390/genes14061265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Sudden cardiac death (SCD) is an unexpected natural death due to cardiac causes, usually happening within one hour of symptom manifestation or in individuals in good health up to 24 h before the event. Genomic screening has been increasingly applied as a useful approach to detecting the genetic variants that potentially contribute to SCD and helping the evaluation of SCD cases in the post-mortem setting. Our aim was to identify the genetic markers associated with SCD, which might enable its target screening and prevention. In this scope, a case-control analysis through the post-mortem genome-wide screening of 30 autopsy cases was performed. We identified a high number of novel genetic variants associated with SCD, of which 25 polymorphisms were consistent with a previous link to cardiovascular diseases. We ascertained that many genes have been already linked to cardiovascular system functioning and diseases and that the metabolisms most implicated in SCD are the lipid, cholesterol, arachidonic acid, and drug metabolisms, suggesting their roles as potential risk factors. Overall, the genetic variants pinpointed herein might be useful markers of SCD, but the novelty of these results requires further investigations.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Arianna Giorgetti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Morfini M, Agnelli Giacchiello J, Baldacci E, Carulli C, Castaman G, Giuffrida AC, Malcangi G, Rocino A, Siragusa S, Zanon E. Managing Relevant Clinical Conditions of Hemophilia A/B Patients. Hematol Rep 2023; 15:384-397. [PMID: 37367088 PMCID: PMC10298198 DOI: 10.3390/hematolrep15020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The Medical Directors of nine Italian Hemophilia Centers reviewed and discussed the key issues concerning the replacement therapy of hemophilia patients during a one-day consensus conference held in Rome one year ago. Particular attention was paid to the replacement therapy needed for surgery using continuous infusion (CI) versus bolus injection (BI) of standard and extended half-life Factor VIII (FVIII) concentrates in severe hemophilia A patients. Among the side effects, the risk of development of neutralizing antibodies (inhibitors) and thromboembolic complications was addressed. The specific needs of mild hemophilia A patients were described, as well as the usage of bypassing agents to treat patients with high-responding inhibitors. Young hemophilia A patients may take significant advantages from primary prophylaxis three times or twice weekly, even with standard half-life (SHL) rFVIII concentrates. Patients affected by severe hemophilia B probably have a less severe clinical phenotype than severe hemophilia A patients, and in about 30% of cases may undergo weekly prophylaxis with an rFIX SHL concentrate. The prevalence of missense mutations in 55% of severe hemophilia B patients allows the synthesis of a partially changed FIX molecule that can play some hemostatic role at the level of endothelial cells or the subendothelial matrix. The flow back of infused rFIX from the extravascular to the plasma compartment allows a very long half-life of about 30 h in some hemophilia B patients. Once weekly, prophylaxis can assure a superior quality of life in a large severe or moderate hemophilia B population. According to the Italian registry of surgery, hemophilia B patients undergo joint replacement by arthroplasty less frequently than hemophilia A patients. Finally, the relationships between FVIII/IX genotypes and the pharmacokinetics of clotting factor concentrates have been investigated.
Collapse
Affiliation(s)
- Massimo Morfini
- Italian Association of Haemophilia Centers (AICE), 21121 Milan, Italy
| | - Jacopo Agnelli Giacchiello
- Hemostasis and Thrombosis Center, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Erminia Baldacci
- Haematology, “Umberto I” Policlinico, Department of Translational and Precision Medicine, Sapienza University of Rome, 00118 Rome, Italy
| | - Christian Carulli
- Department of Orthopaedic Surgery, Orthopaedic Clinic, University of Florence, 50121 Florence, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders and Coagulation, Careggi University Hospital, 50121 Florence, Italy
| | | | - Giuseppe Malcangi
- UOSD Centro Emofilia e Trombosi, Azienda Ospedaliero Universitaria Policlinico di Bari, 70121 Bari, Italy
| | - Angiola Rocino
- Haemophilia and Thrombosis Centre, Haematology, S.M. di Loreto Nuovo Hospital, 80121 Naples, Italy
| | - Sergio Siragusa
- Department PROMISE, University of Palermo, 90121 Palermo, Italy
| | - Ezio Zanon
- Haemophilia Centre, General Medicine, Padua University Hospital, 35121 Padua, Italy
| |
Collapse
|
6
|
Swystun LL, Lillicrap D. Current Understanding of Inherited Modifiers of FVIII Pharmacokinetic Variation. Pharmgenomics Pers Med 2023; 16:239-252. [PMID: 36998673 PMCID: PMC10046206 DOI: 10.2147/pgpm.s383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 04/01/2023] Open
Abstract
The inherited bleeding disorder hemophilia A involves the quantitative deficiency of the coagulation cofactor factor VIII (FVIII). Prophylactic treatment of severe hemophilia A patients with FVIII concentrates aims to reduce the frequency of spontaneous joint bleeding and requires personalized tailoring of dosing regimens to account for the substantial inter-individual variability of FVIII pharmacokinetics. The strong reproducibility of FVIII pharmacokinetic (PK) metrics between repeat analyses in the same individual suggests this trait is genetically regulated. While the influence of plasma von Willebrand factor antigen (VWF:Ag) levels, ABO blood group, and patient age on FVIII PK is well established, estimates suggest these factors account for less than 35% of the overall variability in FVIII PK. More recent studies have identified genetic determinants that modify FVIII clearance or half-life including VWF gene variants that impair VWF-FVIII binding resulting in the accelerated clearance of VWF-free FVIII. Additionally, variants in receptors that regulate the clearance of FVIII or the VWF-FVIII complex have been associated with FVIII PK. The characterization of genetic modifiers of FVIII PK will provide mechanistic insight into a subject of clinical significance and support the development of personalized treatment plans for patients with hemophilia A.
Collapse
Affiliation(s)
- Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
7
|
Lunghi B, Morfini M, Martinelli N, Branchini A, Linari S, Castaman G, Bernardi F. Modulation of factor VIII pharmacokinetics by genetic components in factor VIII receptors. Haemophilia 2023; 29:479-487. [PMID: 36533781 DOI: 10.1111/hae.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gene variation in receptors for circulating factor VIII (FVIII) is candidate to explain the large inter-patient variability of infused FVIII pharmacokinetics (PK) in haemophilia A (HA). AIM To compare in an Italian HA cohort (n = 26) the influence on FVIII PK of genetic components in four von Willebrand factor (VWF)/FVIII receptors. METHODS Genotypes of low-density lipoprotein receptor (LDLR), asialoglycoprotein receptor minor subunit (ASGR2), family 4 member M (CLEC4M), stabilin2 (STAB2) and ABO blood-group, and VWF:Ag levels were included as independent variables in linear regression analyses of two-compartment model (TCM) - standard half-life (SHL) FVIII PK parameters. RESULTS In the initial FVIII distribution phase, the STAB2 rs4981022 AA, ASGR2 rs2289645 TT and LDLR rs688 TT genotypes may contribute to increase Cmax , and prolong or shorten AlphaHL. In the elimination phase, a shorter BetaHL was associated with the CLEC4M rs868875 GG (beta-coefficient .366, p = .025) and ASGR2 rs2289645 TC (beta-coefficient .456, p = .006) genotypes, which also showed shorter mean residence time (MRT) than TT genotypes (p = .021). The alpha and beta phase effects were independent of ABO and VWF:Ag levels at baseline. The association of the LDLR rs2228671 genotypes with clearance was independent of ABO (beta-coefficient -.363, p = .035) but not of other receptors or VWF:Ag, which may point out multiple and competing interactions. CONCLUSIONS With the limitation of the small number of HA patients, these observations highlight multiple genetic components acting in distinct phases of FVIII PK and contributing to explain FVIII PK variability. This analysis provides candidates for genotype-based, individual tailoring of FVIII substitutive treatment.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association of Hemophilia Centers (AICE), Naples, Italy
| | | | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Sacco M, Lancellotti S, Branchini A, Tardugno M, Testa MF, Lunghi B, Bernardi F, Pinotti M, Giusti B, Castaman G, De Cristofaro R. The p.P1127S pathogenic variant lowers von Willebrand factor levels through higher affinity for the macrophagic scavenger receptor LRP1: Clinical phenotype and pathogenic mechanisms. J Thromb Haemost 2022; 20:1818-1829. [PMID: 35596664 PMCID: PMC9545986 DOI: 10.1111/jth.15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The index case is a 21-year-old Italian woman with a mild hemorrhagic syndrome and von Willebrand factor antigen (VWF:Ag) = 34.3 U/dl, VWF recombinant glycoprotein Ib (VWF:GpIbR) = 32.8 U/dl, and factor VIII (FVIII) = 55.3 IU/dl. AIMS The aim of this study is to characterize from a genetic and biochemical standpoint this low VWF phenotype. METHODS Coagulation and biochemical methods were used to study the structural and functional pattern of VWF multimers in the index case's plasma. Recombinant wild-type and p.P1127S VWF variants were produced using human embryonic kidney (HEK)-293 cells. In addition, genetic screening was carried out to detect single nucleotide variants of some scavenger VWF/FVIII receptor genes such as CLEC4M, STAB2, and ASGR2. RESULTS Genetic investigation revealed that the index case inherited from her mother the heterozygous missense mutation c.3379C > T (VWF exon 25), causing the p.P1127S substitution in the VWF D'D3 domain. The index case was also homozygous for the scavenger receptor ASGR2 c.-95 CC-genotype. Desmopressin normalized the VWF level of the patient, although its clearance was faster (t1/2 = 6.7 h) than in normal subjects (t1/2 = 12 ± 0.7 h). FVIII-VWF interaction, A Disintegrin And Metalloprotease with ThromboSpondin type 1 motif-13 levels, ristocetin-induced-platelet-aggregation, and VWF multimeric pattern were normal. The p.P1127S variant was normally synthesized and secreted by HEK-293 cells, and molecular modeling predicts a conformational change showing higher affinity for the macrophagic scavenger receptor lipoprotein receptor-related protein 1 (LRP1), as also experimentally verified. CONCLUSIONS The p.P1127S variant may cause a low VWF phenotype, stemming from an increased VWF affinity for the scavenger receptor LRP1 and, consequently, an accelerated clearance of VWF.
Collapse
Affiliation(s)
- Monica Sacco
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
| | - Stefano Lancellotti
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemell” IRCCSRomaItaly
| | - Alessio Branchini
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Maira Tardugno
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
| | | | - Barbara Lunghi
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Francesco Bernardi
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Mirko Pinotti
- Dipartimento di Scienze della Vita e BiotecnologieUniversità di FerraraFerraraItaly
| | - Betti Giusti
- Dipartimento di Medicina Sperimentale e ClinicaUniversità di FirenzeFirenzeItaly
- Laboratorio Genetico Molecolare Avanzato, SOD Malattie AterotromboticheAzienda Ospedaliero‐ Universitaria “Careggi"FirenzeItaly
| | - Giancarlo Castaman
- Dipartimento di Oncologia, Centro Malattie Emorragiche e della CoagulazioneOspedale Universitario “Careggi”FirenzeItaly
| | - Raimondo De Cristofaro
- Dipartimento di Medicina e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “Agostino Gemelli,” Università Cattolica S. CuoreRomaItaly
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemell” IRCCSRomaItaly
| |
Collapse
|
9
|
Combination of CLEC4M rs868875 G-Carriership and ABO O Genotypes May Predict Faster Decay of FVIII Infused in Hemophilia A Patients. J Clin Med 2022; 11:jcm11030733. [PMID: 35160186 PMCID: PMC8837058 DOI: 10.3390/jcm11030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/26/2022] Open
Abstract
The C-type lectin CLEC4M binds and internalizes factor VIII (FVIII). Common CLEC4M variants have been associated with FVIII pharmacokinetic (PK) profiles in hemophilia A (HA) patients. The two-compartment PK analysis of plasma-derived (pd-) and full length recombinant FVIII concentrates was conducted in twenty-six patients (FVIII:C ≤ 2 IU/dL). F8, ABO blood-groups, and the CLEC4M rs868875A/G polymorphism were genotyped. CLEC4M genotype groups differed for the elimination rate constant K 1-0 (p < 0.001), half-life (K 1-0 HL), and the Beta rate constant. Patients treated with pd-FVIII also differed in the Alpha phase. In linear regression models, the contribution of the CLEC4M genotypes to FVIII PK parameters remained significant after correction for ABO, age, and VWF antigen levels at PK. Combined CLEC4M rs868875A/G and ABO genotypes displayed significant interaction (K 1-0, p = 0.014). Compared to other combined genotypes, the G-carriers/O genotypes showed half-reduced K 1-0 HL (p = 0.008), and faster FVIII clearance (mean 7.1 ± 2.2 mL/h/kg SE) than in the G-carriers/non-O (mean 2.4 ± 0.3 mL/h/kg SE), (p = 0.038). Comparison in HA patients recruited in several countries suggests that CLEC4M genotypes coherently influence infused FVIII half-life and clearance. Our analysis supports substantially faster FVIII decay associated with the rs868875 G-carrier/ABO O genotypes, which has potential implications for genetically tailored substitutive HA treatment.
Collapse
|
10
|
Borràs N, Castillo-González D, Comes N, Martin-Fernandez L, Rivero-Jiménez RA, Chang-Monteagudo A, Ruiz-Moleón V, Garrote-Santana H, Vidal F, Macías-Abraham C. Molecular study of a large cohort of 109 haemophilia patients from Cuba using a gene panel with next generation sequencing-based technology. Haemophilia 2021; 28:125-137. [PMID: 34708896 DOI: 10.1111/hae.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In several countries, molecular diagnosis of haemophilia A (HA) and B (HB) is hampered by a lack of resources for DNA analysis. The advent of next-generation sequencing (NGS) has enabled gene analysis at a reasonable cost. AIM Describe a collaboration between Cuban and Spanish researchers to identify candidate variants and investigate the molecular epidemiology of 106 Cuban haemophilia patients using NGS. PATIENTS/METHODS The molecular analysis protocol included well-established LR-PCR procedures to detect F8 inversions, NGS with a 30-gene panel to sequence F8 and F9, and multiplex ligation-dependent probe amplification to identify large structural variants. RESULTS One-hundred and thirty-one candidate variants were identified along F8, F9, and VWF; 72 were unique and 28 (39%) had not been previously recorded. Putative variants were identified in 105/106 patients. Molecular characterization enabled confirmation and reclassification of: 90 HA (85%), 15 HB (14%), and one type 2N VWD (1%). Null variants leading to non-production of FVIII or FIX were common in severe HA (64%), moderate HA (74%), and severe HB (60%), whereas missense variants were frequent in mild HA (57%) and moderate or mild HB (83%). Additional variants in VWF were identified in 16 patients. CONCLUSION This is the first description of the molecular epidemiology of HA and HB in Cuba. Variants identified in index cases will be of value for local implementation of familial studies and prenatal diagnosis using the molecular approaches available in Cuba. The results of this protocolled genetic study improved the accuracy of the clinical diagnosis and will facilitate management of these patients.
Collapse
Affiliation(s)
- Nina Borràs
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusion Medicine, Universitat Autònoma de Barcelona (VHIR-UAB), Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Natalia Comes
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusion Medicine, Universitat Autònoma de Barcelona (VHIR-UAB), Vall d'Hebron Research Institute, Barcelona, Spain
| | - Laura Martin-Fernandez
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusion Medicine, Universitat Autònoma de Barcelona (VHIR-UAB), Vall d'Hebron Research Institute, Barcelona, Spain
| | | | | | | | | | - Francisco Vidal
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusion Medicine, Universitat Autònoma de Barcelona (VHIR-UAB), Vall d'Hebron Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III (ISCIII), Madrid, Spain
| | | |
Collapse
|
11
|
Lunghi B, Morfini M, Martinelli N, Balestra D, Linari S, Frusconi S, Branchini A, Cervellera CF, Marchetti G, Castaman G, Bernardi F. The Asialoglycoprotein Receptor Minor Subunit Gene Contributes to Pharmacokinetics of Factor VIII Concentrates in Hemophilia A. Thromb Haemost 2021; 122:715-725. [PMID: 34407556 DOI: 10.1055/a-1591-7869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The asialoglycoprotein receptor (ASGPR) binds with high affinity factor VIII (FVIII) through its N-linked oligosaccharides. However, its contribution to the wide inter-individual variation of infused FVIII pharmacokinetics (PK) in hemophilia A (HA) is unknown. OBJECTIVE To investigate the variability in FVIII PK outcomes in relation to genetic variation in the ASGR2, encoding the ASGPR2 subunit. METHODS Thirty-two HA patients with FVIII:C ≤2 IU/dL underwent 66 single-dose FVIII PK studies. PK parameters were evaluated in relation to ASGR2 5' untranslated region (5'UTR) polymorphisms, which were investigated by recombinant and white blood cell reverse transcription-polymerase chain reaction approaches. RESULTS The 5'UTR polymorphisms determine a frequent and conserved haplotype (HT1) in a regulatory region. The HT1 homozygotes may differ in the amounts of alternatively spliced mRNA transcripts and thus ASGPR2 isoforms. Compared with the other ASGR2 genotypes, the c.-95TT homozygotes (n = 9), showed threefold longer Alpha HL (3.60 hours, 95% confidence interval: 1.44-5.76, p = 0.006), and the c.-95TC heterozygotes (n = 17) showed 25% shorter mean residence time (MRT; 18.5 hours, 15.0-22.0, p = 0.038) and 32% shorter Beta HL (13.5 hours, 10.9-16.0, p = 0.016). These differences were confirmed in patients (n = 27) undergoing PK studies (n = 54) with full-length FVIII only. In different linear regression models, the contribution of the ASGR2 genotypes remained significant after adjustment by ABO genotypes and von Willebrand factor (VWF) antigen levels, and explained 14% (MRT), 15 to 18% (Beta HL), and 22% (Alpha HL) of parameter variability. CONCLUSIONS Infused FVIII distribution was modulated by frequent ASGR2 genotypes, independently from and together with ABO and VWF antigen levels, which has potential implications for genetically tailored substitutive treatment in HA.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association Hemophilia Centers (AICE), Naples, Italy
| | | | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Sabrina Frusconi
- Genetic Diagnostics Unit, Laboratory Department, Careggi University Hospital, Florence, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding Disorders, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Marchesini E, Morfini M, Valentino L. Recent Advances in the Treatment of Hemophilia: A Review. Biologics 2021; 15:221-235. [PMID: 34163136 PMCID: PMC8214539 DOI: 10.2147/btt.s252580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Progress in hemophilia therapy has been remarkable in the first 20 years of the third millennium, but the innovation began with the description the fractionation of plasma in 1946. The first concentrates followed the discovery of FVIII in the cryoprecipitate of frozen plasma and FIX in the supernatant in the early 1960s, which led to the initial attempts at replacement therapy. Unfortunately, the lack of screening methods for viral pathogens resulted in people with hemophilia (PWH) receiving concentrates contaminated by hepatitis A virus, hepatitis C virus, and human immunodeficiency virus, as these concentrates were made from large industrial pools of plasma derived from thousands of donors. Fortunately, by 1985, viral screening methods and proper virucidal techniques were developed that made concentrates safe. Increasingly pure products followed the introduction of chromatography steps with monoclonal antibodies in the production process. The problem of immunogenicity of exogenously administered concentrates has not yet had a complete solution. The development of alloantibodies against FVIII in about 25-35% of PWH is the most serious adverse effect of replacement therapy. The next major advance followed the cloning of the F8 gene and later the F9 genes, which paved the way to produce concentrates of factors obtained by the recombinant DNA technology. The injected FVIII and FIX molecules had a relatively short circulating half-life in the plasma of people with hemophilia A and B, approximately 12 and 18 hours, respectively. The ability to prolong the plasma half-life and extend the interval between injections followed the application of methods to conjugate the factor molecule with the fragment crystallizable of IgG1 or albumin or by adding polyethylene glycol, which has led to an increase in the half-life of concentrates, especially for rFIX. The next frontier in hemophilia therapy is the application of durable and potentially curative therapies such as with gene addition therapy. Experiments in hemophilia B have demonstrated durable responses. Unfortunately, the results with gene therapy for hemophilia A have not been as remarkable and the durability must still be demonstrated. Nonetheless, the long-term safety, predictability, durability, and efficacy of gene therapy for hemophilia A and B remain an open question. At present, only healthy adult PWH have been enrolled in gene therapy clinical trials. The application of gene therapy to children and those with pre-existing antibodies against the delivery vector must also be studied before this therapy becomes widespread.
Collapse
Affiliation(s)
- Emanuela Marchesini
- Hemophilia Centre, SC Vascular and Emergency Department, University of Perugia, Perugia, Italy
| | - Massimo Morfini
- Italian Association of Haemophilia Centres (AICE), Naples, Italy
| | - Leonard Valentino
- National Hemophilia Foundation, New York, NY, USA
- Rush University, Chicago, IL, USA
| |
Collapse
|
13
|
Ogiwara K, Swystun LL, Paine AS, Kepa S, Choi SJ, Rejtö J, Hopman W, Pabinger I, Lillicrap D. Factor VIII pharmacokinetics associates with genetic modifiers of VWF and FVIII clearance in an adult hemophilia A population. J Thromb Haemost 2021; 19:654-663. [PMID: 33219619 DOI: 10.1111/jth.15183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Factor VIII (FVIII) pharmacokinetics (PK) in adult hemophilia A populations are highly variable and have been previously determined to be influenced by von Willebrand factor:antigen (VWF:Ag), ABO blood group, and age. However, additional genetic determinants of FVIII PK are largely unknown. OBJECTIVES The contribution of VWF clearance, VWF-FVIII-binding activity, and genetic variants in VWF clearance receptors to FVIII PK in adult patients were assessed. METHODS FVIII PK assessment was performed in 44 adult subjects (age 18-61 years) with moderate or severe hemophilia A. VWF:Ag, VWF propeptide (VWFpp), VWFpp/VWF:Ag, and VWF:FVIII binding activity were measured. The VWF modifying loci CLEC4M, SCARA5, STAB2, and ABO, and the D'D3 FVIII-binding region of the VWF gene were genotyped. RESULTS VWF:Ag, VWFpp, and VWF:FVIIIB positively correlated with FVIII half-life and negatively correlated with FVIII clearance. VWFpp/VWF:Ag negatively correlated with FVIII half-life and positively correlated with FVIII clearance. The correlation between VWFpp/VWF:Ag and FVIII half-life was stronger for type non-O patients than for type O patients, suggesting that slower VWF clearance increases FVIII half-life. Patients heterozygous for the CLEC4M rs868875 variant had increased FVIII clearance when compared with individuals homozygous for the reference allele. The CLEC4M variable number of tandem repeat (VNTR) alleles were also associated with the rate of FVIII clearance. When compared with the quartile of patients with the fastest FVIII clearance, the quartile of patients with the slowest FVIII clearance had a decreased frequency of the CLEC4M 5-VNTR. CONCLUSIONS VWF-FVIII binding activity and genetic determinants of VWF clearance are important contributors to FVIII pharmacokinetics in adult patients.
Collapse
Affiliation(s)
- Kenichi Ogiwara
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - A Simonne Paine
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Sylvia Kepa
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Seon Jai Choi
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Judit Rejtö
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wilma Hopman
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|