1
|
Liu ZR, Herbert S, Schirok H, Ma C, Mei TS. Synthesis of 1,2-Benzothiazine via Nickel-Catalyzed Electrochemical Intramolecular Amination. Org Lett 2024; 26:9034-9039. [PMID: 39373662 DOI: 10.1021/acs.orglett.4c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Constructing a C-N bond by merging electrochemistry and nickel catalysis is considered a powerful strategy. Herein, we investigate highly efficient intramolecular amination at room temperature with excellent functional group tolerance. Mechanistic studies suggest that the rapid ligand exchange may lead to the NiI/NiIII catalytic cycle. This method not only provides a new perspective for intramolecular amination but also offers a novel approach for constructing the benzothiazine scaffold.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 42113 Wuppertal, Germany
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Qin J, Li Y, Hu Y, Huang Z, Miao W, Chu L. Photoinduced Nickel-Catalyzed Homolytic C(sp 3)-N Bond Activation of Isonitriles for Selective Carbo- and Hydro-Cyanation of Alkynes. J Am Chem Soc 2024; 146:27583-27593. [PMID: 39325022 DOI: 10.1021/jacs.4c08631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The exploration of strong chemical bonds as synthetic handles offers new disconnection strategies for the synthesis of functionalized molecules via transition metal catalysis. However, the slow oxidative addition rate of these covalent bonds to a transition metal center hampers their synthetic utility. Here, we report a C(sp3)-N bond activation strategy that bypasses thermodynamically challenging 2e- or 1e- oxidative addition via a distinct pathway in nickel catalysis. This strategy leverages a previously unknown activation pathway of photoinduced inner-sphere charge transfer of low-valent nickel(isonitriles), triggering a C(sp3)-N bond cleavage distal to the metal-ligand interaction to deliver nickel(cyanide) and versatile alkyl radicals. Utilizing this catalytic strategy, the selective intermolecular 1,2-carbocyanation reaction of alkynes with alkyl isonitriles as both alkylating and cyanating agents can be achieved, delivering a wide array of trisubstituted alkenyl nitriles with excellent atom-economy, regio-, and stereoselectivity under mild conditions. Furthermore, Markovnikov-selective hydrocyanation of aliphatic alkynes can be accomplished through the synergistic action of a photocatalyst utilizing isonitriles as the cyanation agents. Mechanistic investigations support the photogeneration of low-valent Ni(isonitrile) complexes that undergo photochemical homolysis of the C(sp3)-N bond to engage catalytic cyanation with alkynes.
Collapse
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuntong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Weihang Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Al Zubaydi S, Waske S, Akyildiz V, Starbuck HF, Majumder M, Moore CE, Kalyani D, Sevov CS. Reductive alkyl-alkyl coupling from isolable nickel-alkyl complexes. Nature 2024; 634:585-591. [PMID: 39208848 DOI: 10.1038/s41586-024-07987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The selective cross-coupling of two alkyl electrophiles to construct complex molecules remains a challenge in organic synthesis1,2. Known reactions are optimized for specific electrophiles and are not amenable to interchangeably varying electrophilic substrates that are sourced from common alkyl building blocks, such as amines, carboxylic acids and halides3-5. These limitations restrict the types of alkyl substrate that can be modified and, ultimately, the chemical space that can be explored6. Here we report a general solution to these limitations that enables a combinatorial approach to alkyl-alkyl cross-coupling reactions. This methodology relies on the discovery of unusually persistent Ni(alkyl) complexes that can be formed directly by oxidative addition of alkyl halides, redox-active esters or pyridinium salts. The resulting alkyl complexes can be isolated or directly telescoped to couple with a second alkyl electrophile, which represent cross-selective reactions that were previously unknown. The utility of this synthetic capability is showcased in the rapid diversification of amino acids, natural products, pharmaceuticals and drug-like building blocks by various combinations of dehalogenative, decarboxylative or deaminative coupling. In addition to a robust scope, this work provides insights into the organometallic chemistry of synthetically relevant Ni(alkyl) complexes through crystallographic analysis, stereochemical probes and spectroscopic studies.
Collapse
Affiliation(s)
- Samir Al Zubaydi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Shivam Waske
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Volkan Akyildiz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hunter F Starbuck
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mayukh Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | | | - Christo S Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Dawson GA, Seith MC, Neary MC, Diao T. Redox Activity and Potentials of Bidentate N-Ligands Commonly Applied in Nickel-Catalyzed Cross-Coupling Reactions. Angew Chem Int Ed Engl 2024:e202411110. [PMID: 39264261 DOI: 10.1002/anie.202411110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Bidentate N-ligands are paramount to recent advances in nickel-catalyzed cross-coupling reactions. Through comprehensive organometallic, spectroscopic, and computational studies on bi-oxazoline and imidazoline ligands, we reveal that a square planar geometry enables redox activity of these ligands in stabilizing nickel radical species. This finding contrasts with the prior assumption that bi-oxazoline lacks redox activity due to strong mesomeric donation. Moreover, we conducted systematic cyclic voltammetry (CV) analyses of bidentate pyridyl, oxazoline, and imidazoline nitrogen ligands, along with their corresponding nickel complexes. Complexation with nickel shifts the reduction potentials to a more positive region and narrows the differences in redox potentials among the ligands. Additionally, various ligands led to different degrees of bromide dissociation from singly reduced (L)Ni(Ar)(Br) complexes, reflecting varying reactivity in the subsequent activation of alkyl halides, a crucial step in cross-electrophile coupling. These insights highlight the significant electronic effects of ligands on the stability of metalloradical species and their redox potentials, which interplay with coordination geometry. Quantifying the electron-donating, π-accepting properties of these ligands, as well as their effect on catalyst speciation, provides crucial benchmarks for controlling catalytic activity and enhancing catalyst stability.
Collapse
Affiliation(s)
- Gregory A Dawson
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Maria C Seith
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Michelle C Neary
- Department of Chemistry, CUNY - Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
5
|
Li ZQ, Alturaifi TM, Cao Y, Joannou MV, Liu P, Engle KM. Hemilabile and Redox-Active Quinone Ligands Unlock sp 3-Rich Couplings in Nickel-Catalyzed Olefin Carbosulfenylation. Angew Chem Int Ed Engl 2024:e202411870. [PMID: 39222319 DOI: 10.1002/anie.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L-type ligand to promote N-S oxidative addition at a relatively more electron-rich Ni(I) center.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew V Joannou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
7
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
8
|
Huang S, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation of Common Ketones. J Am Chem Soc 2024; 146:12895-12900. [PMID: 38696162 DOI: 10.1021/jacs.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.
Collapse
Affiliation(s)
- Shuai Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
9
|
Liu H, Huang H. Construction of Bidentate Phosphines Enabled by Photoinduced Reductive Diphosphination of Alkenes. Chemistry 2024; 30:e202304109. [PMID: 38340028 DOI: 10.1002/chem.202304109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 02/12/2024]
Abstract
The diphosphination of alkenes through a radical pathway offers a promising approach for the rapid construction of aryl bisphosphines. However, such a synthetic strategy has not been successfully applied to the preparation of alkyl bisphosphines, partially due to the difficulties in the generation of phosphorus-centered radicals from common alkyl phosphine compounds. We herein demonstrate that this challenge can be overcome by hiring Janus-faced chlorophosphine as the phosphine source that can act as not only a radical precursor to generate phosphine-centered radicals but also a radicalphile to capture alkyl radicals. With this novel strategy, a photocatalyzed reductive diphosphination reaction has been established, allowing for a straightforward synthesis of both aryl and alkyl 1,2-bisphosphines from readily accessible alkenes and chlorophosphines.
Collapse
Affiliation(s)
- Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, 235000, P. R. China
| |
Collapse
|
10
|
Mills LR, Simmons EM, Lee H, Nester E, Kim J, Wisniewski SR, Pecoraro MV, Chirik PJ. (Phenoxyimine)nickel-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling: Evidence for a Recovering Radical Chain Mechanism. J Am Chem Soc 2024; 146:10124-10141. [PMID: 38557045 DOI: 10.1021/jacs.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A β-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eva Nester
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Baldinelli L, Belanzoni P, Bistoni G. Mechanism of Nitrous Oxide Activation in C(sp 2)-O Bond Formation Reactions Catalyzed by Nickel Complexes. J Am Chem Soc 2024; 146:6016-6024. [PMID: 38377396 DOI: 10.1021/jacs.3c12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Recent groundbreaking experimental reports demonstrated that Ni complexes bearing a bidentate- or tridentate-bipyridine-based ligand can be used to activate N2O for use as an O-transfer agent in C(sp2)-O bond formation reactions under mild experimental conditions. In this work, quantum chemical calculations are used to shed light on the mechanism through which such metal complexes catalytically activate nitrous oxide, providing new fundamental insights into the development of novel catalysts for N2O revalorization. As a case study, we consider the recent work by Cornella and co-workers (Nature, 2022, 604, 677) concerning the synthesis of phenols from aryl halides at room temperature, which requires the use of an external reducing agent. Our results suggest that the metal center remains in its Ni(II) oxidation state throughout the whole catalytic cycle, despite the presence of various redox steps in the mechanism and the Ni ability to maneuver between a number of oxidation states. This counterintuitive behavior is made possible by the ligand redox activity in the catalytic process, which involves accepting electrons from the reducing agent. Several possible pathways are systematically investigated, each associated with distinct activation modes, kinetics, and reaction outcomes. The governing factors in dictating the preferred path lie in the electronic nature of the ligand (strong vs weak field) and its geometric structure (specifically, the number of coordinating arms). These characteristics play a pivotal role in determining whether the process follows a catalytic or stoichiometric route and can be in principle modulated for the design of new metal complexes with tailored redox properties and reactivity.
Collapse
Affiliation(s)
- Lorenzo Baldinelli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Paola Belanzoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Giovanni Bistoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| |
Collapse
|
12
|
Epping RF, de Zwart FJ, van Leest NP, van der Vlugt JI, Siegler MA, Mathew S, Reek JNH, de Bruin B. PhenTAA: A Redox-Active N 4-Macrocyclic Ligand Featuring Donor and Acceptor Moieties. Inorg Chem 2024; 63:1974-1987. [PMID: 38215498 PMCID: PMC10828995 DOI: 10.1021/acs.inorgchem.3c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/14/2024]
Abstract
Here, we present the development and characterization of the novel PhenTAA macrocycle as well as a series of [Ni(R2PhenTAA)]n complexes featuring two sites for ligand-centered redox-activity. These differ in the substituent R (R = H, Me, or Ph) and overall charge of the complex n (n = -2, -1, 0, +1, or +2). Electrochemical and spectroscopic techniques (CV, UV/vis-SEC, X-band EPR) reveal that all redox events of the [Ni(R2PhenTAA)] complexes are ligand-based, with accessible ligand charges of -2, -1, 0, +1, and +2. The o-phenylenediamide (OPD) group functions as the electron donor, while the imine moieties act as electron acceptors. The flanking o-aminobenzaldimine groups delocalize spin density in both the oxidized and reduced ligand states. The reduced complexes have different stabilities depending on the substituent R. For R = H, dimerization occurs upon reduction, whereas for R = Me/Ph, the reduced imine groups are stabilized. This also gives electrochemical access to a [Ni(R2PhenTAA)]2- species. DFT and TD-DFT calculations corroborate these findings and further illustrate the unique donor-acceptor properties of the respective OPD and imine moieties. The novel [Ni(R2PhenTAA)] complexes exhibit up to five different ligand-based oxidation states and are electrochemically stable in a range from -2.4 to +1.8 V for the Me/Ph complexes (vs Fc/Fc+).
Collapse
Affiliation(s)
- Roel F.
J. Epping
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nicolaas P. van Leest
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jarl Ivar van der Vlugt
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Simon Mathew
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular Catalysis and Bio-Inspired Catalysis Group, van ’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Rubel CZ, Cao Y, El-Hayek Ewing T, Laudadio G, Beutner GL, Wisniewski SR, Wu X, Baran PS, Vantourout JC, Engle KM. Electroreductive Synthesis of Nickel(0) Complexes. Angew Chem Int Ed Engl 2024; 63:e202311557. [PMID: 37984444 DOI: 10.1002/anie.202311557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tamara El-Hayek Ewing
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriele Laudadio
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory L Beutner
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Dawson G, Spielvogel EH, Diao T. Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules. Acc Chem Res 2023; 56:3640-3653. [PMID: 38033206 PMCID: PMC10734253 DOI: 10.1021/acs.accounts.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Nickel excels at facilitating selective radical chemistry, playing a pivotal role in metalloenzyme catalysis and modern cross-coupling reactions. Radicals, being nonpolar and neutral, exhibit orthogonal reactivity to nucleophilic and basic functional groups commonly present in biomolecules. Harnessing this compatibility, we delve into the application of nickel-catalyzed radical pathways in the synthesis of noncanonical peptides and carbohydrates, critical for chemical biology studies and drug discovery.We previously characterized a sequential reduction mechanism that accounts for chemoselectivity in cross-electrophile coupling reactions. This catalytic cycle begins with nickel(I)-mediated radical generation from alkyl halides, followed by carbon radical capture by nickel(II) complexes, and concludes with reductive elimination. These steps resonate with mechanistic proposals in nickel-catalyzed cross-coupling, photoredox, and electrocatalytic reactions. Herein, we present our insights into each step involving radicals, including initiation, propagation, termination, and the nuances of kinetics, origins of selectivity, and ligand effects.Radical generation from C(sp3) electrophiles via one-electron oxidative addition with low-valent nickel radical intermediates provides the basis for stereoconvergent and cross-electrophile couplings. Our electroanalytical studies elucidate a concerted halogen atom abstraction mechanism, where electron transfer is coupled with halide dissociation. Using this pathway, we have developed a nickel-catalyzed stereoselective radical addition to dehydroalanine, facilitating the synthesis of noncanonical peptides. In this application, chiral ligands modulate the stereochemical outcome through the asymmetric protonation of a nickel-enolate intermediate.The capture of the alkyl radical by nickel(II) expands the scope of cross-coupling, promotes reductive elimination through the formation of high-valent nickel(III) species, and governs chemo- and stereoselectivity. We discovered that nickel(II)-aryl efficiently traps radicals with a barrier ranging from 7 to 9 kcal/mol, followed by fast reductive elimination. In contrast, nickel(II)-alkyl captures radicals to form a nickel(III) species, which was characterized by EPR spectroscopy. However, the subsequent slow reductive elimination resulted in minimal product formation. The observed high diastereoselectivity of radical capture inspired investigations into C-aryl and C-acyl glycosylation reactions. We developed a redox auxiliary that readily couples with natural carbohydrates and produces glycosyl radicals upon photoredox activation. Nickel-catalyzed cross-coupling of the glycosyl radical with bromoarenes and carboxylic acids leads to diverse non-natural glycosides that can facilitate drug discovery.Stoichiometric studies on well-defined d8-nickel complexes have showcased means to promote reductive elimination, including ligand association, oxidation, and oxidative addition.In the final section, we address the influence of auxiliary ligands on the electronic structure and redox activity of organonickel intermediates. Synthesis of a series of low-valent nickel radical complexes and characterization of their electronic structures led us to a postulate that ligand redox activity correlates with coordination geometry. Our data reveal that a change in ligand redox activity can shift the redox potentials of reaction intermediates, potentially altering the mechanism of catalytic reactions. Moreover, coordinating additives and solvents may stabilize nickel radicals during catalysis by adjusting ligand redox activity, which is consistent with known catalytic conditions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ethan H. Spielvogel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
15
|
Dawson G, Lin Q, Neary MC, Diao T. Ligand Redox Activity of Organonickel Radical Complexes Governed by the Geometry. J Am Chem Soc 2023; 145:20551-20561. [PMID: 37695362 PMCID: PMC10515493 DOI: 10.1021/jacs.3c07031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/12/2023]
Abstract
Nickel-catalyzed cross-coupling reactions often employ bidentate π-acceptor N-ligands to facilitate radical pathways. This report presents the synthesis and characterization of a series of organonickel radical complexes supported by bidentate N-ligands, including bpy, phen, and pyrox, which are commonly proposed and observed intermediates in catalytic reactions. Through a comparison of relevant analogues, we have established an empirical rule governing the electronic structures of these nickel radical complexes. The N-ligands exhibit redox activity in four-coordinate, square-planar nickel radical complexes, leading to the observation of ligand-centered radicals. In contrast, these ligands do not display redox activity when supporting three-coordinate, trigonal planar nickel radical complexes, which are better described as nickel-centered radicals. This trend holds true irrespective of the nature of the actor ligands. These results provide insights into the beneficial effect of coordinating salt additives and solvents in stabilizing nickel radical intermediates during catalytic reactions by modulating the redox activity of the ligands. Understanding the electronic structures of these active intermediates can contribute to the development and optimization of nickel catalysts for cross-coupling reactions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Qiao Lin
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Michelle C. Neary
- Department
of Chemistry, CUNY − Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
16
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
17
|
Clapson ML, Sharma H, Zurakowski JA, Drover MW. Cooperative Nitrile Coordination Using Nickel and a Boron-Containing Secondary Coordination Sphere. Chemistry 2023; 29:e202203763. [PMID: 36534339 DOI: 10.1002/chem.202203763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Metal-ligand cooperation has emerged as a versatile tool for substrate activation in chemical reactivity. Herein, we provide the synthesis and characterization of a monoboranyl-containing analogue of the ubiquitous bulky diphosphine ligand, 1,2-bis(di-tert-butylphosphino)ethane, whose reactivity has been examined using nickel. Together, the pairing of nickel and boron provides a platform that allows for the cooperative coordination of organonitriles, giving unusual examples of intermolecularly bound dinickelacycles.
Collapse
Affiliation(s)
- Marissa L Clapson
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Harvey Sharma
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Joseph A Zurakowski
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
18
|
Zheng P, Xu W, Wang H, Wang D, Wu X, Xu T. Deoxygenative Arylboration of Aldehydes via Copper and Nickel/Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Purui Zheng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Hepan Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xiaoqiang Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
19
|
Xu W, Zheng P, Zhou J, Hu Z, XU T. Modular and Fast Synthesis of Versatile Secondary α,α‐Dialkyl Boronates via Deoxygenative Alkylboration of Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202214213. [DOI: 10.1002/anie.202214213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Purui Zheng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Jun Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| |
Collapse
|
20
|
Dodd NA, Cao Y, Bacsa J, Towles EC, Gray TG, Sadighi JP. Three-Electron Nickel(I)/Nickel(0) Half-Bond. Inorg Chem 2022; 61:16317-16324. [PMID: 36179078 DOI: 10.1021/acs.inorgchem.2c02291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An (N-heterocyclic carbene)nickel(I) cation precursor reacts with the corresponding nickel(0) complex to form a dinickel(I,0) monocation. The Ni···Ni distance in this cation is 0.93 Å shorter than in the analogous dinickel(0) complex. Although the solid-state structure shows equivalent Ni centers, density functional theory calculations indicate significant electronic localization. Reactions with CO and NO form mononuclear carbonyl and nitrosyl complexes. Oxidative addition of an aryl bromide results in C-arylation of the carbene ligands.
Collapse
Affiliation(s)
- Neil A Dodd
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Yu Cao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,X-ray Crystallography Center, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Eric C Towles
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Thomas G Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joseph P Sadighi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
21
|
Turro RF, Brandstätter M, Reisman SE. Nickel-Catalyzed Reductive Alkylation of Heteroaryl Imines. Angew Chem Int Ed Engl 2022; 61:e202207597. [PMID: 35791274 PMCID: PMC9474666 DOI: 10.1002/anie.202207597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 09/20/2023]
Abstract
The preparation of heterobenzylic amines by a Ni-catalyzed reductive cross-coupling between heteroaryl imines and C(sp3 ) electrophiles is reported. This umpolung-type alkylation proceeds under mild conditions, avoids the pre-generation of organometallic reagents, and exhibits good functional group tolerance. Mechanistic studies are consistent with the imine substrate acting as a redox-active ligand upon coordination to a low-valent Ni center. The resulting bis(2-imino)heterocycle⋅Ni complexes can engage in alkylation reactions with a variety of C(sp3 ) electrophiles, giving heterobenzylic amine products in good yields.
Collapse
Affiliation(s)
- Raymond F Turro
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marco Brandstätter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
22
|
Cypcar AD, Kerr TA, Yang JY. Thermochemical Studies of Nickel Hydride Complexes with Cationic Ligands in Aqueous and Organic Solvents. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew D. Cypcar
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
23
|
Tendera L, Krummenacher I, Radius U. Cationic Nickel d9‐Metalloradicals [Ni(NHC)2]+. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lukas Tendera
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Anorganische Chemie GERMANY
| | - Udo Radius
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institut für Anorganische Chemie Am Hubland 97074 Würzburg GERMANY
| |
Collapse
|
24
|
Turro RF, Brandstätter M, Reisman SE. Nickel‐Catalyzed Reductive Alkylation of Heteroaryl Imines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raymond F. Turro
- California Institute of Technology Chemistry & Chemical Engineering UNITED STATES
| | - Marco Brandstätter
- California Institute of Technology Chemistry & Chemical Engineering UNITED STATES
| | - Sarah E. Reisman
- California Institute of Technology Divisional Chemistry and Chemical Enineering 1200 E California BoulevardMail Code 101-20 91125 Pasadena UNITED STATES
| |
Collapse
|
25
|
Hamby TB, LaLama MJ, Sevov CS. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling. Science 2022; 376:410-416. [PMID: 35446658 PMCID: PMC9260526 DOI: 10.1126/science.abo0039] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cross-electrophile coupling (XEC) reactions of aryl and alkyl electrophiles are appealing but limited to specific substrate classes. Here, we report electroreductive XEC of previously incompatible electrophiles including tertiary alkyl bromides, aryl chlorides, and aryl/vinyl triflates. Reactions rely on the merger of an electrochemically active complex that selectively reacts with alkyl bromides through 1e- processes and an electrochemically inactive Ni0(phosphine) complex that selectively reacts with aryl electrophiles through 2e- processes. Accessing Ni0(phosphine) intermediates is critical to the strategy but is often challenging. We uncover a previously unknown pathway for electrochemically generating these key complexes at mild potentials through a choreographed series of ligand-exchange reactions. The mild methodology is applied to the alkylation of a range of substrates including natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Taylor B. Hamby
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew J. LaLama
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Christo S. Sevov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Sun C, Yin G. Integrating aryl chlorides into nickel-catalyzed 1,1-difunctionalization of alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Xie H, Breit B. Organophotoredox/Ni-Cocatalyzed Allylation of Allenes: Regio- and Diastereoselective Access to Homoallylic Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
28
|
Wang H, Zheng P, Wu X, Li Y, Xu T. Modular and Facile Access to Chiral α-Aryl Phosphates via Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling. J Am Chem Soc 2022; 144:3989-3997. [PMID: 35192328 DOI: 10.1021/jacs.1c12424] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chiral phosphine-containing skeletons are important motifs in bioactive natural products, pharmaceuticals, chiral catalysts, and ligands. Herein, we report a general and modular platform to access chiral α-aryl phosphorus compounds via a Ni/photoredox-catalyzed enantioconvergent reductive cross-coupling between α-bromophosphates and aryl iodides. This dual catalytic regime exhibited high efficiency and good functional group compacity. A wide variety of substrates bearing a diverse set of functional groups could be converted into chiral phosphates in good to excellent yields and enantioselectivities. The utility of the method was also demonstrated by the development of a new phosphine ligand and the synthesis of enzyme inhibitor derivatives. The detailed mechanistic studies supported a radical chain process and revealed a unique distinction compared with traditional reductive cross-coupling.
Collapse
Affiliation(s)
- Hepan Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Purui Zheng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xiaoqiang Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Yuqiang Li
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha 410083, P. R. China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
29
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
30
|
Dorsheimer JR, Ashley MA, Rovis T. Dual Nickel/Photoredox-Catalyzed Deaminative Cross-Coupling of Sterically Hindered Primary Amines. J Am Chem Soc 2021; 143:19294-19299. [PMID: 34767360 DOI: 10.1021/jacs.1c10150] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report a method to activate α-3° amines for deaminative arylation via condensation with an electron-rich aldehyde and merge this reactivity with nickel metallaphotoredox to generate benzylic quaternary centers, a common motif in pharmaceuticals and natural products. The reaction is accelerated by added ammonium salts. Evidence is provided in support of two roles for the additive: inhibition of nickel black formation and acceleration of the overall reaction rate. We demonstrate a robust scope of amine and haloarene coupling partners and show an expedited synthesis of ALK2 inhibitors.
Collapse
Affiliation(s)
- Julia R Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Melissa A Ashley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
31
|
Ju L, Lin Q, LiBretto NJ, Wagner CL, Hu CT, Miller JT, Diao T. Reactivity of (bi-Oxazoline)organonickel Complexes and Revision of a Catalytic Mechanism. J Am Chem Soc 2021; 143:14458-14463. [PMID: 34463481 DOI: 10.1021/jacs.1c07139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bi-Oxazoline (biOx) has emerged as an effective ligand framework for promoting nickel-catalyzed cross-coupling, cross-electrophile coupling, and photoredox-nickel dual catalytic reactions. This report fills the knowledge gap of the organometallic reactivity of (biOx)Ni complexes, including catalyst reduction, oxidative electrophile activation, radical capture, and reductive elimination. The biOx ligand displays no redox activity in (biOx)Ni(I) complexes, in contrast to other chelating imine and oxazoline ligands. The lack of ligand redox activity results in more negative reduction potentials of (biOx)Ni(II) complexes and accounts for the inability of zinc and manganese to reduce (biOx)Ni(II) species. On the basis of these results, we revise the formerly proposed "sequential reduction" mechanism of a (biOx)Ni-catalyzed cross-electrophile coupling reaction by excluding catalyst reduction steps.
Collapse
Affiliation(s)
- Luchuan Ju
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Qiao Lin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Nicole J LiBretto
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Clifton L Wagner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Chunhua Tony Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Jeffrey T Miller
- Department of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
32
|
Abstract
Ruben Martin is a professor at the Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain. He received his Ph.D. in 2003 from the University of Barcelona under the guidance of Prof. Antoni Riera. In 2004, he moved to the Max-Planck Institut für Kohlenforschung as a Humboldt postdoctoral fellow with Prof. Alois Fürstner. In 2005, he undertook further postdoctoral studies at MIT with Prof. Stephen L. Buchwald as a MEC-Fulbright fellow. In 2008, he began his independent career as an assistant professor at the ICIQ (Tarragona). In 2013, he was promoted to associate professor and shortly after to ICREA Research Professor. Ruben Martin has focused his career on designing synthetically useful Ni-catalyzed methodologies for streamlining the preparation of added-value chemicals from simple precursors without losing sight of mechanistic considerations, when appropriate.
Gary A. Molander is a professor at the University of Pennsylvania, Philadelphia, United States. He completed his undergraduate studies in chemistry at Iowa State University under the tutelage of Prof. Richard C. Larock. He earned his Ph.D. at Purdue University under the direction of Prof. Herbert Brown and undertook postdoctoral training with Prof. Barry Trost at the University of Wisconsin, Madison. He began his academic career at the University of Colorado, Boulder, moving to the University of Pennsylvania in 1999, where he is currently Professor of Chemistry. His research interests have focused on the utilization of organolanthanides, Pd-catalyzed cross-coupling reactions with trifluoroborate salts, and the merger of photoredox catalysis and Ni catalysis for tackling a priori uphill transformations under visible-light irradiation for accessing valuable scaffolds in both academic and pharmaceutical laboratories.
Collapse
Affiliation(s)
- Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology
- ICREA
| | | |
Collapse
|