1
|
Alhumaid S, Alnaim AA, Al Ghamdi MA, Alahmari AA, Alabdulqader M, Al HajjiMohammed SM, Alalwan QM, Al Dossary N, Alghazal HA, Al Hassan MH, Almaani KM, Alhassan FH, Almuhanna MS, Alshakhes AS, BuMozah AS, Al-Alawi AS, Almousa FM, Alalawi HS, Al Matared SM, Alanazi FA, Aldera AH, AlBesher MA, Almuhaisen RH, Busubaih JS, Alyasin AH, Al Majhad AA, Al Ithan IA, Alzuwaid AS, Albaqshi MA, Alhmeed N, Albaqshi YA, Al Alawi Z. International treatment outcomes of neonates on extracorporeal membrane oxygenation (ECMO) with persistent pulmonary hypertension of the newborn (PPHN): a systematic review. J Cardiothorac Surg 2024; 19:493. [PMID: 39182148 PMCID: PMC11344431 DOI: 10.1186/s13019-024-03011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND PPHN is a common cause of neonatal respiratory failure and is still a serious condition and associated with high mortality. OBJECTIVES To compare the demographic variables, clinical characteristics, and treatment outcomes in neonates with PHHN who underwent ECMO and survived compared to neonates with PHHN who underwent ECMO and died. METHODS We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline and searched ProQuest, Medline, Embase, PubMed, CINAHL, Wiley online library, Scopus and Nature for studies on the development of PPHN in neonates who underwent ECMO, published from January 1, 2010 to May 31, 2023, with English language restriction. RESULTS Of the 5689 papers that were identified, 134 articles were included in the systematic review. Studies involving 1814 neonates with PPHN who were placed on ECMO were analyzed (1218 survived and 594 died). Neonates in the PPHN group who died had lower proportion of normal spontaneous vaginal delivery (6.4% vs 1.8%; p value > 0.05) and lower Apgar scores at 1 min and 5 min [i.e., low Apgar score: 1.5% vs 0.5%, moderately abnormal Apgar score: 10.3% vs 1.2% and reassuring Apgar score: 4% vs 2.3%; p value = 0.039] compared to those who survived. Neonates who had PPHN and died had higher proportion of medical comorbidities such as omphalocele (0.7% vs 4.7%), systemic hypotension (1% vs 2.5%), infection with Herpes simplex virus (0.4% vs 2.2%) or Bordetella pertussis (0.7% vs 2%); p = 0.042. Neonates with PPHN in the death group were more likely to present due to congenital diaphragmatic hernia (25.5% vs 47.3%), neonatal respiratory distress syndrome (4.2% vs 13.5%), meconium aspiration syndrome (8% vs 12.1%), pneumonia (1.6% vs 8.4%), sepsis (1.5% vs 8.2%) and alveolar capillary dysplasia with misalignment of pulmonary veins (0.1% vs 4.4%); p = 0.019. Neonates with PPHN who died needed a longer median time of mechanical ventilation (15 days, IQR 10 to 27 vs. 10 days, IQR 7 to 28; p = 0.024) and ECMO use (9.2 days, IQR 3.9 to 13.5 vs. 6 days, IQR 3 to 12.5; p = 0.033), and a shorter median duration of hospital stay (23 days, IQR 12.5 to 46 vs. 58.5 days, IQR 28.2 to 60.7; p = 0.000) compared to the neonates with PPHN who survived. ECMO-related complications such as chylothorax (1% vs 2.7%), intracranial bleeding (1.2% vs 1.7%) and catheter-related infections (0% vs 0.3%) were more frequent in the group of neonates with PPHN who died (p = 0.031). CONCLUSION ECMO in the neonates with PPHN who failed supportive cardiorespiratory care and conventional therapies has been successfully utilized with a neonatal survival rate of 67.1%. Mortality in neonates with PPHN who underwent ECMO was highest in cases born via the caesarean delivery mode or neonates who had lower Apgar scores at birth. Fatality rate in neonates with PPHN who underwent ECMO was the highest in patients with higher rate of specific medical comorbidities (omphalocele, systemic hypotension and infection with Herpes simplex virus or Bordetella pertussis) or cases who had PPHN due to higher rate of specific etiologies (congenital diaphragmatic hernia, neonatal respiratory distress syndrome and meconium aspiration syndrome). Neonates with PPHN who died may need a longer time of mechanical ventilation and ECMO use and a shorter duration of hospital stay; and may experience higher frequency of ECMO-related complications (chylothorax, intracranial bleeding and catheter-related infections) in comparison with the neonates with PPHN who survived.
Collapse
Affiliation(s)
- Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, 7000, Australia.
| | - Abdulrahman A Alnaim
- Department of Pediatrics, College of Medicine, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed A Al Ghamdi
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Abdulaziz A Alahmari
- Department of Pediatrics, King Fahad Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, 34212, Dammam, Saudi Arabia
| | - Muneera Alabdulqader
- Pediatric Nephrology Specialty, Pediatric Department, Medical College, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Sarah Mahmoud Al HajjiMohammed
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Qasim M Alalwan
- Pediatric Radiology Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Nourah Al Dossary
- General Surgery Department, Alomran General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36358, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Header A Alghazal
- Microbiology Laboratory, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed H Al Hassan
- Administration of Nursing, Al-Ahsa Health Cluster, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Khadeeja Mirza Almaani
- Alyahya Primary Health Centre, Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 36341, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Fatimah Hejji Alhassan
- Alyahya Primary Health Centre, Primary Care Medicine, Al-Ahsa Health Cluster, Ministry of Health, 36341, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed S Almuhanna
- Department of Pharmacy, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Aqeel S Alshakhes
- Department of Psychiatry, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed Salman BuMozah
- Administration of Dental Services, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed S Al-Alawi
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, 36421, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Fawzi M Almousa
- Pharmacy Department, Al Jabr Hospital for Eye, Ear, Nose and Throat, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Hassan S Alalawi
- Pharmacy Department, Imam Abdulrahman Alfaisal Hospital, C1 Riyadh Health Cluster, Ministry of Health, 14723, Riyadh, Saudi Arabia
| | - Saleh Mana Al Matared
- Department of Public Health, Kubash General Hospital, Ministry of Health, 66244, Najran, Saudi Arabia
| | | | - Ahmed H Aldera
- Pharmacy Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mustafa Ahmed AlBesher
- Regional Medical Supply, Al-Ahsa Health Cluster, Ministry of Health, 36361, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ramzy Hasan Almuhaisen
- Quality Assurance and Patient Safety Administration, Directorate of Health Affairs, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Jawad S Busubaih
- Gastroenterology Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ali Hussain Alyasin
- Medical Store Department, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Abbas Ali Al Majhad
- Radiology Department, Prince Saud Bin Jalawi Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36424, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ibtihal Abbas Al Ithan
- Renal Dialysis Department, King Fahad Hofuf Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36441, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Ahmed Saeed Alzuwaid
- Pharmacy Department, Aljafr General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 7110, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mohammed Ali Albaqshi
- Pharmacy Department, Aljafr General Hospital, Al-Ahsa Health Cluster, Ministry of Health, 7110, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Naif Alhmeed
- Administration of Supply and Shared Services, C1 Riyadh Health Cluster, Ministry of Health, 14723, Riyadh, Saudi Arabia
| | - Yasmine Ahmed Albaqshi
- Respiratory Therapy Department, Maternity and Children Hospital, Al-Ahsa Health Cluster, Ministry of Health, 36422, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, 31982, Al-Hofuf, Al-Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Avena-Zampieri CL, Dassios T, Milan A, Santos R, Kyriakopoulou V, Cromb D, Hall M, Egloff A, McGovern M, Uus A, Hutter J, Payette K, Rutherford M, Greenough A, Story L. Correlation of fetal lung area with MRI derived pulmonary volume. Early Hum Dev 2024; 194:106047. [PMID: 38851106 DOI: 10.1016/j.earlhumdev.2024.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Neonatal chest-Xray (CXR)s are commonly performed as a first line investigation for the evaluation of respiratory complications. Although lung area derived from CXRs correlates well with functional assessments of the neonatal lung, it is not currently utilised in clinical practice, partly due to the lack of reference ranges for CXR-derived lung area in healthy neonates. Advanced MR techniques now enable direct evaluation of both fetal pulmonary volume and area. This study therefore aims to generate reference ranges for pulmonary volume and area in uncomplicated pregnancies, evaluate the correlation between prenatal pulmonary volume and area, as well as to assess the agreement between antenatal MRI-derived and neonatal CXR-derived pulmonary area in a cohort of fetuses that delivered shortly after the antenatal MRI investigation. METHODS Fetal MRI datasets were retrospectively analysed from uncomplicated term pregnancies and a preterm cohort that delivered within 72 h of the fetal MRI. All examinations included T2 weighted single-shot turbo spin echo images in multiple planes. In-house pipelines were applied to correct for fetal motion using deformable slice-to-volume reconstruction. An MRI-derived lung area was manually segmented from the average intensity projection (AIP) images generated. Postnatal lung area in the preterm cohort was measured from neonatal CXRs within 24 h of delivery. Pearson correlation coefficient was used to correlate MRI-derived lung volume and area. A two-way absolute agreement was performed between the MRI-derived AIP lung area and CXR-derived lung area. RESULTS Datasets from 180 controls and 10 preterm fetuses were suitable for analysis. Mean gestational age at MRI was 28.6 ± 4.2 weeks for controls and 28.7 ± 2.7 weeks for preterm neonates. MRI-derived lung area correlated strongly with lung volumes (p < 0.001). MRI-derived lung area had good agreement with the neonatal CXR-derived lung area in the preterm cohort [both lungs = 0.982]. CONCLUSION MRI-derived pulmonary area correlates well with absolute pulmonary volume and there is good correlation between MRI-derived pulmonary area and postnatal CXR-derived lung area when delivery occurs within a few days of the MRI examination. This may indicate that fetal MRI derived lung area may prove to be useful reference ranges for pulmonary areas derived from CXRs obtained in the perinatal period.
Collapse
Affiliation(s)
- Carla L Avena-Zampieri
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.
| | - Theodore Dassios
- Department of Women and Children's Health King's College London, United Kingdom
| | - Anna Milan
- Neonatal Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Rui Santos
- Children's Radiology Department, Evelina London Children's Hospital, Guy's and St Thomas NHS Foundation Trust, United Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Megan Hall
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Matthew McGovern
- Neonatal Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health King's College London, United Kingdom
| | - Lisa Story
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
3
|
Thatrimontrichai A, Phatigomet M, Maneenil G, Dissaneevate S, Janjindamai W. Risk Factors for Mortality or Major Morbidities of Very Preterm Infants: A Study from Thailand. Am J Perinatol 2024; 41:1379-1387. [PMID: 36669757 DOI: 10.1055/a-2016-7568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Very preterm neonates have high rates of composite outcomes featuring mortality and major morbidities. If the modifiable risk factors could be identified, perhaps the rates could be decreased especially in resource-limited settings. STUDY DESIGN We performed a prospective study in a Thai neonatal intensive care unit to identify the risk factors of composite outcomes between 2014 and 2021. The inclusion criterion was neonates who were born in our hospital at a gestational age (GA) of less than 32 weeks. The exclusion criteria were neonates who died in the delivery room or had major congenital anomalies. The composite outcomes were analyzed by multivariable logistic regression with adjusted odds ratios (aORs) and a 95% confidence interval (CI). RESULTS Over the 8-year study period, 555 very preterm inborn neonates without major birth defects were delivered. The composite outcomes were 29.4% (163/555). The medians (interquartile ranges) of GA and birth weights of the neonates were 29 (27-31) weeks and 1,180 (860-1,475) grams, respectively. By multivariable analysis, GA (aOR: 0.65; 95% CI: 0.55-0.77), small for GA (aOR: 4.93; 95% CI: 1.79-13.58), multifetal gestation (aOR: 2.23; 95% CI: 1.12-4.46), intubation within 24 hours (aOR: 5.39; 95% CI: 1.35-21.64), and severe respiratory distress syndrome (aOR: 5.00; 95% CI: 1.05-23.89) were significantly associated with composite outcomes. CONCLUSION Very preterm infants who had a lower GA were small for GA, twins or more, respiratory failure on the first day of life, and severe respiratory distress syndrome were associated with mortality and/or major morbidities. KEY POINTS · In very preterm neonates, the composite outcomes and mortality rate were 29.4 and 12.3%.. · Composite outcomes were associated with lower GA, SGA, multifetal gestation, intubation, and severe RDS.. · Mortality was associated with lower GA or Apgar score at 5 minutes, SGA, and PPHN..
Collapse
MESH Headings
- Humans
- Thailand/epidemiology
- Infant, Newborn
- Prospective Studies
- Female
- Male
- Risk Factors
- Intensive Care Units, Neonatal/statistics & numerical data
- Gestational Age
- Logistic Models
- Infant, Extremely Premature
- Respiratory Distress Syndrome, Newborn/mortality
- Respiratory Distress Syndrome, Newborn/epidemiology
- Infant Mortality
- Infant, Premature, Diseases/mortality
- Infant, Premature, Diseases/epidemiology
- Multivariate Analysis
- Infant
- Odds Ratio
- Infant, Small for Gestational Age
- Birth Weight
Collapse
Affiliation(s)
- Anucha Thatrimontrichai
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Manapat Phatigomet
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Gunlawadee Maneenil
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Supaporn Dissaneevate
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Waricha Janjindamai
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
4
|
He XG, Huang TL, Xu FD, Xie HQ, Li JF, Xie CX. Clinical features and prognosis of severe meconium aspiration syndrome with acute respiratory distress syndrome. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:903-908. [PMID: 34535204 PMCID: PMC8480166 DOI: 10.7499/j.issn.1008-8830.2106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the clinical features and prognosis of neonates with severe meconium aspiration syndrome (MAS) and acute respiratory distress syndrome (ARDS). METHODS A retrospective analysis was performed on the medical data of 60 neonates with severe MAS who were admitted from January 2017 to December 2019. According to the presence or absence of ARDS, they were divided into two groups: ARDS (n=45) and non-ARDS (n=15). Clinical features and prognosis were compared between the two groups. RESULTS Among the 60 neonates with severe MAS, 45 (75%) developed ARDS. Arterial blood gas analysis showed that the ARDS group had a significantly higher median oxygenation index within 1 hour after birth than the non-ARDS group (4.7 vs 2.1, P<0.05), while there was no significant difference between the two groups in white blood cell count, C-reactive protein (CRP), and interleukin-6 (IL-6) on admission and the peak values of procalcitonin, CRP, and IL-6 during hospitalization (P>0.05). The ARDS group had a significantly higher incidence rate of shock than the non-ARDS group (84% vs 47%, P<0.05). There was no significant difference between the two groups in the incidence rates of persistent pulmonary hypertension, pneumothorax, pulmonary hemorrhage, hypoxic-ischemic encephalopathy, intracranial hemorrhage, and disseminated intravascular coagulation (P>0.05). The ARDS group required a longer median duration of mechanical ventilation than the non-ARDS group (53 hours vs 3 hours, P<0.05). In the ARDS group, 43 neonates (96%) were cured and 2 neonates (4%) died. In the non-ARDS group, all 15 neonates (100%) were cured. CONCLUSIONS Neonates with severe MAS and ARDS tend to develop respiratory distress earlier, require a longer duration of mechanical ventilation, and have a higher incidence rate of shock. During the management of children with severe MAS, it is recommended to closely monitor oxygenation index, give timely diagnosis and treatment of ARDS, evaluate tissue perfusion, and actively prevent and treat shock. Citation.
Collapse
Affiliation(s)
- Xiao-Guang He
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| | - Tian-Li Huang
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| | - Feng-Dan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| | - Hao-Qiang Xie
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| | - Jin-Feng Li
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| | - Cai-Xuan Xie
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China (715643709@qq. com)
| |
Collapse
|