1
|
Risman RA, Sen M, Tutwiler V, Hudson NE. Deconstructing fibrin(ogen) structure. J Thromb Haemost 2025; 23:368-380. [PMID: 39536819 PMCID: PMC11786978 DOI: 10.1016/j.jtha.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that play important roles in blood coagulation, wound healing, and immune responses. This review highlights research from the last 24 months connecting our progressing view of fibrin(ogen)'s structure, and in particular its conformational flexibility and posttranslational modifications, to its (patho)physiologic roles, molecular interactions, mechanical properties, use as a biomaterial, and potential as a therapeutic target. Recent work suggests that fibrinogen structure is highly dynamic, sampling multiple conformations, which may explain its myriad physiologic functions and the presence of cryptic binding sites. Investigations into fibrin clot structure elucidated the impact of posttranslational modifications, therapeutic interventions, and pathologic conditions on fibrin network morphology, offering insights into thrombus formation and embolization. Studies exploring the mechanical properties of fibrin reveal its response to blood flow and platelet-driven contraction, offering implications for clot stability and embolization risk. Moreover, advancements in tissue engineering leverage fibrin's biocompatibility and customizable properties for diverse applications, from wound healing to tissue regeneration and biomaterial interactions. These findings underscore the structural origins of fibrin(ogen)'s multifaceted roles and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/rebecca_risman
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/vatutwiler
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
2
|
Yamashita A, Gi T, Sato Y. Histological differences among thrombi in thrombotic diseases. Curr Opin Hematol 2025:00062752-990000000-00101. [PMID: 39874150 DOI: 10.1097/moh.0000000000000860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
PURPOSE OF REVIEW This review aims to summarize the histological differences among thrombi in acute myocardial infarction, ischemic stroke, venous thromboembolism, and amniotic fluid embolism, a newly identified thrombosis. RECENT FINDINGS Acute coronary thrombi have a small size, are enriched in platelets and fibrin, and show the presence of fibrin and von Willebrand factor, but not collagen, at plaque rupture sites. Symptomatic deep vein thrombi are large and exhibit various phases of time-dependent histological changes. Cancer-associated venous thromboemboli contain invasive cancer cells that penetrate the vascular walls, and small cancer cell aggregates are observed within the thrombi. The thrombus composition in atherosclerotic and cardioembolic ischemic strokes varies from case to case, while the thrombi in cancer-associated ischemic stroke are rich in platelets and fibrin. A pathological study on amniotic fluid embolism identified uterine vein thrombi and massive platelet-rich microthrombi in the lungs. SUMMARY Atherothrombus formation is induced by plaque disruption and may occlude a narrow lumen within a short time. Venous thrombi may grow to a large size in a multistage or chronic manner. Cancer cells can directly contribute to venous thrombus formation. The thrombus formation in amniotic fluid embolism may explain the occurrence of consumptive coagulopathy and cardiopulmonary collapse.
Collapse
Affiliation(s)
| | - Toshihiro Gi
- Department of Pathology, Division of Pathophysiology
| | - Yuichiro Sato
- Department of Pathology, Section of Oncopathology and Morphological Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
3
|
Griffin MS, Dahlgren AR, Nagaswami C, Litvinov RI, Keeler K, Madenjian C, Fuentes R, Fish RJ, Neerman-Arbez M, Holinstat M, Adili R, Weisel JW, Shavit JA. Composition of thrombi in zebrafish: similarities and distinctions with mammals. J Thromb Haemost 2024; 22:1056-1068. [PMID: 38160724 PMCID: PMC11293624 DOI: 10.1016/j.jtha.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Blood clots are primarily composed of red blood cells (RBCs), platelets/thrombocytes, and fibrin. Despite the similarities observed between mammals and zebrafish, the composition of fish thrombi is not as well known. OBJECTIVES To analyze the formation of zebrafish blood clots ex vivo and arterial and venous thrombi in vivo. METHODS Transgenic zebrafish lines and laser-mediated endothelial injury were used to determine the relative ratio of RBCs and thrombocytes in clots. Scanning electron and confocal microscopy provided high-resolution images of the structure of adult and larval clots. Adult and larval thrombocyte spreading on fibrinogen was evaluated ex vivo. RESULTS RBCs were present in arterial and venous thrombi, making up the majority of cells in both circulations. However, bloodless mutant fish demonstrated that fibrin clots can form in vivo in the absence of blood cells. Scanning electron and confocal microscopy showed that larval and adult zebrafish thrombi and mammalian thrombi look surprisingly similar externally and internally, even though the former have nucleated RBCs and thrombocytes. Although adult thrombocytes spread on fibrinogen, we found that larval cells do not fully activate without the addition of plasma from adult fish, suggesting a developmental deficiency of a plasma activating factor. Finally, mutants lacking αIIbβ3 demonstrated that this integrin mediates thrombocyte spreading on fibrinogen. CONCLUSION Our data showed strong conservation of arterial and venous and clot/thrombus formation across species, including developmental regulation of thrombocyte function. This correlation supports the possibility that mammals also do not absolutely require circulating cells to form fibrin clots in vivo.
Collapse
Affiliation(s)
- Megan S Griffin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna R Dahlgren
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin Keeler
- US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan, USA
| | - Charles Madenjian
- US Geological Survey Great Lakes Science Center, Ann Arbor, Michigan, USA
| | - Ricardo Fuentes
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard J Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Lassila R, Weisel JW. Role of red blood cells in clinically relevant bleeding tendencies and complications. J Thromb Haemost 2023; 21:3024-3032. [PMID: 37210074 PMCID: PMC10949759 DOI: 10.1016/j.jtha.2023.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
The multiple roles of red blood cells (RBCs) are often neglected as contributors in hemostasis and thrombosis. Proactive opportunities to increase RBC numbers, either acutely or subacutely in the case of iron deficiency, are critical as RBCs are the cellular elements that initiate hemostasis together with platelets and stabilize fibrin and clot structure. RBCs also possess several functional properties to assist hemostasis: releasing platelet agonists, promoting shear force-induced von Willebrand factor unfolding, procoagulant capacity, and binding to fibrin. Additionally, blood clot contraction is important to compress RBCs to form a tightly packed array of polyhedrocytes, making an impermeable seal for hemostasis. All these functions are important for patients having intrinsically poor capacity to cease bleeds (ie, hemostatic disorders) but, conversely, can also play a role in thrombosis if these RBC-mediated reactions overshoot. One acquired example of bleeding with anemia is in patients treated with anticoagulants and/or antithrombotic medication because upon initiation of these drugs, baseline anemia doubles the risk of bleeding complications and mortality. Also, anemia is a risk factor for reoccurring gastrointestinal and urogenital bleeds, pregnancy, and delivery complications. This review summarizes the clinically relevant properties and profiles of RBCs at various steps of platelet adhesion, aggregation, thrombin generation, and fibrin formation, including both structural and functional elements. Regarding patient blood management guidelines, they support minimizing transfusions, but this approach does not deal with severe inherited and acquired bleeding disorders where a poor hemostatic propensity is exacerbated by limited RBC availability, for which future guidance will be needed.
Collapse
Affiliation(s)
- Riitta Lassila
- Research Program Unit in Systems Oncology, Oncosys, Medical Faculty, University of Helsinki, Helsinki, Finland; Coagulation Disorders Unit, Department of Hematology, Helsinki University Hospital, Helsinki, Finland.
| | - John W Weisel
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Yakusheva A, Slater A, Payrastre B, Garcia C, D'Italia G, Allan H, Cosemans JMEM, Harper M, Gawaz M, Armstrong P, Troitiño S, Trivigno SMG, Naik UP, Senis YA. Illustrated Abstracts of the 5 th EUPLAN International Conference. Res Pract Thromb Haemost 2023; 7:102140. [PMID: 37867586 PMCID: PMC10589886 DOI: 10.1016/j.rpth.2023.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
These illustrated capsules have been prepared by some speakers of State-of-the-Art talks and of original investigations, presented at the 5th European Platelet Network (EUPLAN) International Conference, which was held at the Università degli Studi di Milano (Italy) on September 28-30, 2022. The programme featured various state-of-the-art lectures and a selection of oral presentations covering a broad range of topics in platelet and megakaryocyte biology, from basic science to recent advances in clinical studies. As usual, the meeting brought together senior scientists and trainees in an informal atmosphere to discuss platelet science in person.
Collapse
Affiliation(s)
- Alexandra Yakusheva
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, Level 1 IBR, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK, B15 2SQ
| | - Bernard Payrastre
- Inserm U1297, I2MC, 1 Avenue J. Poulhes, 31432 Toulouse cedex 4, France
| | - Cédric Garcia
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Inserm UMR1297 and Université Toulouse 3, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Giorgia D'Italia
- Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands
| | - Harriet Allan
- Blizard Institute, Queen Mary University of London, London
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Meinrad Gawaz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Paul Armstrong
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Sara Troitiño
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Ulhas P Naik
- Cardeza Center for Hemostasis, Thrombosis and Vascular Biology, Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia USA 19107
| | - Yotis A Senis
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Liu D, Zhang P, Zhang K, Bi C, Li L, Xu Y, Zhang T, Zhang J. Role of GPR56 in Platelet Activation and Arterial Thrombosis. Thromb Haemost 2023; 123:295-306. [PMID: 36402131 DOI: 10.1055/a-1983-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adhesion G protein-coupled receptor GPR56 mediates cell-cell and cell-extracellular matrix interactions. To examine the function of GPR56 in platelet activation and arterial thrombosis, we generated GPR56-knockout mice and evaluated GPR56 expression in human and mouse platelets. The results revealed that the levels of the GPR56 N-terminal fragment were significantly higher on the first day after myocardial infarction than on the seventh day in the plasma of patients with ST-segment-elevation myocardial infarction. Next, we investigated the effects of GPR56 on platelet function in vitro and in vivo. We observed that collagen-induced aggregation and adenosine triphosphate release were reduced in Gpr56 -/- platelets. Furthermore, P-selectin expression on the Gpr56 -/- platelet surface was also reduced, and the spreading area on immobilized collagen was decreased in Gpr56 -/- platelets. Furthermore, collagen-induced platelet activation in human platelets was inhibited by an anti-GPR56 antibody. Gpr56 -/- mice showed an extended time to the first occlusion in models with cremaster arteriole laser injury and FeCl3-induced carotid artery injury. GPR56 activated the G protein 13 signaling pathway following collagen stimulation, which promoted platelet adhesion and thrombus formation at the site of vascular injury. Thus, our study confirmed that GPR56 regulated the formation of arterial thrombosis. Inhibition of the initial response of GPR56 to collagen could significantly inhibit platelet activation and thrombus formation. Our results provide new insights for research into antiplatelet drugs.
Collapse
Affiliation(s)
- Dongsheng Liu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kandi Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlong Bi
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiantian Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Trigani KT, DeCortin M, Diamond S. ADP and thromboxane inhibitors both reduce global contraction of clot length, while thromboxane inhibition attenuates internal aggregate contraction. TH OPEN 2022; 6:e135-e143. [PMID: 35707619 PMCID: PMC9192180 DOI: 10.1055/a-1832-9293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Platelet contractility drives clot contraction to enhance clot density and stability. Clot contraction is typically studied under static conditions, with fewer studies of wall-adherent platelet clots formed under flow. We tested the effect of inhibitors of ADP and/or thromboxane A2 (TXA2) signaling on clot contraction. Using an eight-channel microfluidic device, we perfused PPACK-treated whole blood (WB) ± acetylsalicylic acid (ASA), 2-methylthioAMP (2-MeSAMP), and/or MRS-2179 over collagen (100/s) for 7.5 min, then stopped flow to observe contraction for 7.5 minutes. Two automated imaging methods scored fluorescent platelet percent contraction over the no-flow observation period: (1) “global” measurement of clot length and (2) “local” changes in surface area coverage of the numerous platelet aggregates within the clot. Total platelet fluorescence intensity (FI) decreased with concomitant decrease in global aggregate contraction when ASA, 2-MeSAMP, and/or MRS-2179 were present. Total platelet FI and global aggregate contraction were highly correlated (
R2
= 0.87). In contrast, local aggregate contraction was more pronounced than global aggregate contraction across all inhibition conditions. However, ASA significantly reduced local aggregate contraction relative to conditions without TXA2 inhibition. P-selectin display was significantly reduced by ADP and TXA2 inhibition, but there was limited detection of global or local aggregate contraction in P-selectin-positive platelets across all conditions, as expected for densely packed “core” platelets. Our results demonstrate that global aggregate contraction is inhibited by ASA, 2-MeSAMP, and MRS-2179, while ASA more potently inhibited local aggregate contraction. These results help resolve how different platelet antagonists affect global and local clot structure and function.
Collapse
Affiliation(s)
- Kevin Timothy Trigani
- Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Michael DeCortin
- Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, United States
| | - Scott Diamond
- Institute for Medicine and Engineering, U Penn Vagelos Research Laboratories, Philadelphia, United States
| |
Collapse
|
8
|
McFadyen JD, Peter K. Not all thrombi are created equal: Understanding thrombus structure on the time-space continuum. Thromb Haemost 2021; 122:315. [PMID: 34768302 DOI: 10.1055/a-1695-8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
No Abstract.
Collapse
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart Research Institute - BHRI, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart Research Institute - BHRI, Melbourne, Australia
| |
Collapse
|