1
|
Daly AF, Beckers A. The Genetic Pathophysiology and Clinical Management of the TADopathy, X-Linked Acrogigantism. Endocr Rev 2024; 45:737-754. [PMID: 38696651 DOI: 10.1210/endrev/bnae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Pituitary gigantism is a rare manifestation of chronic growth hormone (GH) excess that begins before closure of the growth plates. Nearly half of patients with pituitary gigantism have an identifiable genetic cause. X-linked acrogigantism (X-LAG; 10% of pituitary gigantism) typically begins during infancy and can lead to the tallest individuals described. In the 10 years since its discovery, about 40 patients have been identified. Patients with X-LAG usually develop mixed GH and prolactin macroadenomas with occasional hyperplasia that secrete copious amounts of GH, and frequently prolactin. Circulating GH-releasing hormone is also elevated in a proportion of patients. X-LAG is caused by constitutive or sporadic mosaic duplications at chromosome Xq26.3 that disrupt the normal chromatin architecture of a topologically associating domain (TAD) around the orphan G-protein-coupled receptor, GPR101. This leads to the formation of a neo-TAD in which GPR101 overexpression is driven by ectopic enhancers ("TADopathy"). X-LAG has been seen in 3 families due to transmission of the duplication from affected mothers to sons. GPR101 is a constitutively active receptor with an unknown natural ligand that signals via multiple G proteins and protein kinases A and C to promote GH/prolactin hypersecretion. Treatment of X-LAG is challenging due to the young patient population and resistance to somatostatin analogs; the GH receptor antagonist pegvisomant is often an effective option. GH, insulin-like growth factor 1, and prolactin hypersecretion and physical overgrowth can be controlled before definitive adult gigantism occurs, often at the cost of permanent hypopituitarism.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège, Domaine Universitaire Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
2
|
Elizabeth MSM, Verkerk AJMH, Hokken-Koelega ACS, Verlouw JAM, Argente J, Pfaeffle R, Neggers SJCMM, Visser JA, de Graaff LCG. Congenital hypopituitarism in two brothers with a duplication of the 'acrogigantism gene' GPR101: clinical findings and review of the literature. Pituitary 2021; 24:229-241. [PMID: 33184694 PMCID: PMC7966638 DOI: 10.1007/s11102-020-01101-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE Congenital hypopituitarism (CH) can cause significant morbidity or even mortality. In the majority of patients, the etiology of CH is unknown. Understanding the etiology of CH is important for anticipation of clinical problems and for genetic counselling. Our previous studies showed that only a small proportion of cases have mutations in the known 'CH genes'. In the current project, we present the results of SNP array based copy number variant analysis in a family with unexplained congenital hypopituitarism. METHODS DNA samples of two affected brothers with idiopathic CH and their mother were simultaneously analyzed by SNP arrays for copy number variant analysis and Whole Exome Sequencing (WES) for mutation screening. DNA of the father was not available. RESULTS We found a 6 Mb duplication including GPR101 and SOX3 on the X-chromosome (Xq26.2-q27.1) in the two siblings and their mother, leading to 2 copies of this region in the affected boys and 3 copies in the mother. Duplications of GPR101 are associated with X-linked acrogigantism (the phenotypic 'opposite' of the affected brothers), whereas alterations in SOX3 are associated with X-linked hypopituitarism. CONCLUSION In our patients with hypopituitarism we found a 6 Mb duplication which includes GPR101, a gene associated with X- linked gigantism, and SOX3, a gene involved in early pituitary organogenesis that is associated with variable degrees of hypopituitarism. Our findings show that in duplications containing both GPR101 and SOX3, the growth hormone deficiency phenotype is dominant. This suggests that, if GPR101 is duplicated, it might not be expressed phenotypically when early patterning of the embryonic pituitary is affected due to SOX3 duplication. These results, together with the review of the literature, shed a new light on the role of GPR101 and SOX3 in pituitary function.
Collapse
Affiliation(s)
- Melitza S M Elizabeth
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Pediatrics, Subdiv. Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
- Dutch Growth Research Foundation, Rotterdam, The Netherlands.
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Subdiv. Endocrinology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
- Academic Center for Rare Growth Disorders, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Joost A M Verlouw
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jesús Argente
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
- Department of Pediatrics, University Autonoma de Madrid, Madrid, Spain
| | - Roland Pfaeffle
- Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Sebastian J C M M Neggers
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laura C G de Graaff
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Academic Center for Rare Growth Disorders, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Abstract
Pituitary adenomas are common intracranial neoplasms, with diverse phenotypes. Most of these tumors occur sporadically and are not part of genetic disorders. Over the last decades numerous genetic studies have led to identification of somatic and germline mutations associated with pituitary tumors, which has advanced the understanding of pituitary tumorigenesis. Exploring the genetic background of pituitary neuroendocrine tumors can lead to early diagnosis associated with better outcomes, and their molecular mechanisms should lead to novel targeted therapies even for sporadic tumors. This article summarizes the genes and the syndromes associated with pituitary tumors.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
4
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
5
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Hou ZS, Tao YX. Mutations in GPR101 as a potential cause of X-linked acrogigantism and acromegaly. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 161:47-67. [DOI: 10.1016/bs.pmbts.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Abstract
In the general population, height is determined by a complex interplay between genetic and environmental factors. Pituitary gigantism is a rare but very important subgroup of patients with excessive height, as it has an identifiable and clinically treatable cause. The disease is caused by chronic growth hormone and insulin-like growth factor 1 secretion from a pituitary somatotrope adenoma that forms before the closure of the epiphyses. If not controlled effectively, this hormonal hypersecretion could lead to extremely elevated final adult height. The past 10 years have seen marked advances in the understanding of pituitary gigantism, including the identification of genetic causes in ~50% of cases, such as mutations in the AIP gene or chromosome Xq26.3 duplications in X-linked acrogigantism syndrome. Pituitary gigantism has a male preponderance, and patients usually have large pituitary adenomas. The large tumour size, together with the young age of patients and frequent resistance to medical therapy, makes the management of pituitary gigantism complex. Early diagnosis and rapid referral for effective therapy appear to improve outcomes in patients with pituitary gigantism; therefore, a high level of clinical suspicion and efficient use of diagnostic resources is key to controlling overgrowth and preventing patients from reaching very elevated final adult heights.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium.
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases and Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
8
|
Trivellin G, Hernández-Ramírez LC, Swan J, Stratakis CA. An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations. Best Pract Res Clin Endocrinol Metab 2018; 32:125-140. [PMID: 29678281 DOI: 10.1016/j.beem.2018.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked acrogigantism (X-LAG) is a recently described form of familial or sporadic pituitary gigantism characterized by very early onset GH and IGF-1 excess, accelerated growth velocity, gigantism and/or acromegaloid features. Germline or somatic microduplications of the Xq26.3 chromosomal region, invariably involving the GPR101 gene, constitute the genetic defect leading to X-LAG. GPR101 encodes a class A G protein-coupled receptor that activates the 3',5'-cyclic adenosine monophosphate signaling pathway. Highly expressed in the central nervous system, the main physiological function and ligand of GPR101 remain unknown, but it seems to play a role in the normal development of the GHRH-GH axis. Early recognition of X-LAG cases is imperative because these patients require clinical management that differs from that of other patients with acromegaly or gigantism. Medical treatment with pegvisomant seems to be the best approach, since X-LAG tumors are resistant to the treatment with somatostatin analogues and dopamine agonists; surgical cure requires near-total hypophysectomy. Currently, the efforts of our research focus on the identification of GPR101 ligands; in addition, the long-term follow-up of X-LAG patients is of extreme interest as this is expected to lead to better understanding of GPR101 effects on human pathophysiology.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Jeremy Swan
- Computer Support Services Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892-1862, USA.
| |
Collapse
|
9
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
Beckers A, Rostomyan L, Potorac I, Beckers P, Daly AF. X-LAG: How did they grow so tall? ANNALES D'ENDOCRINOLOGIE 2017; 78:131-136. [DOI: 10.1016/j.ando.2017.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Jedidi H, Rostomyan L, Potorac L, Depierreux-Lahaye F, Petrossians P, Beckers A. Advances in diagnosis and management of familial pituitary adenomas. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2016. [DOI: 10.2217/ije-2016-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial pituitary adenomas account for approximately 5–8% of all pituitary adenomas. Besides the adenomas occurring as part of syndromic entities that group several endocrine or nonendocrine disorders (multiple endocrine neoplasia type 1 or 4, Carney complex and McCune–Albright syndrome), 2–3% of familial pituitary adenomas fit into the familial isolated pituitary adenomas (FIPA) syndrome, an autosomal dominant condition with incomplete penetrance. About 20% of FIPA cases are due to mutations in the AIP gene and have distinct clinical characteristics. Recent findings have isolated a new non-AIP FIPA syndrome called X-linked acrogigantism, resulting from a microduplication that always includes the GPR101 gene. These new advances in the field of pituitary disease are opening up a new challenging domain to both clinicians and researchers. This review will focus on these recent findings and their contribution to the diagnosis and the management of familial pituitary adenomas.
Collapse
Affiliation(s)
- Haroun Jedidi
- Neurology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - Liliya Rostomyan
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - lulia Potorac
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | | | - Patrick Petrossians
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| | - Albert Beckers
- Endocrinology Department, CHU of Liège, 1 Avenue de l'hopital, 4000 Liège, Belgium
| |
Collapse
|
12
|
Rostomyan L, Beckers A. Screening for genetic causes of growth hormone hypersecretion. Growth Horm IGF Res 2016; 30-31:52-57. [PMID: 27756606 DOI: 10.1016/j.ghir.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022]
Abstract
Growth hormone (GH) secreting pituitary tumors may be caused by genetic abnormalities in a variety of genes including AIP, MEN1, CDKN1B, and PRKAR1A. These can lead to GH secreting pituitary adenomas as an isolated occurrence (e.g. as aggressive sporadic adenomas or in familial isolated pituitary adenomas (FIPA)) or as part of syndromic conditions such as MEN1 or Carney complex. These tumors have more aggressive features than sporadic acromegaly, including a younger age at disease onset and larger tumor size, and they can be challenging to manage. In addition to mutations or deletions, copy number variation at the GPR101 locus may also lead to mixed GH and prolactin secreting pituitary adenomas in the setting of X-linked acrogigantism (X-LAG syndrome). In X-LAG syndrome and in McCune Albright syndrome, mosaicism for GPR101 duplications and activating GNAS1 mutations, respectively, contribute to the genetic pathogenesis. As only 5% of pituitary adenomas have a known cause, efficient deployment of genetic testing requires detailed knowledge of clinical characteristics and potential associated syndromic features in the patient and their family.
Collapse
Affiliation(s)
- Liliya Rostomyan
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium.
| |
Collapse
|
13
|
Iacovazzo D, Korbonits M. Gigantism: X-linked acrogigantism and GPR101 mutations. Growth Horm IGF Res 2016; 30-31:64-69. [PMID: 27743704 DOI: 10.1016/j.ghir.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 12/30/2022]
Abstract
X-linked acrogigantism (XLAG) is a recently identified condition of early-onset GH excess resulting from the germline or somatic duplication of the GPR101 gene on chromosome Xq26.3. Thirty patients have been formally reported so far. The disease affects mostly females, occurs usually sporadically, and is characterised by early onset and marked overgrowth. Most patients present with concomitant hyperprolactinaemia. Histopathology shows pituitary hyperplasia or pituitary adenoma with or without associated hyperplasia. XLAG-related pituitary adenomas present peculiar histopathological features that should contribute to raise the suspicion of this rare condition. Treatment is frequently challenging and multi-modal. While females present with germline mutations, the sporadic male patients reported so far were somatic mosaics with variable levels of mosaicism, although no differences in the clinical phenotype were observed between patients with germline or somatic duplication. The GPR101 gene encodes an orphan G protein-coupled receptor normally expressed in the central nervous system, and at particularly high levels in the hypothalamus. While the physiological function and the endogenous ligand of GPR101 are unknown, the high expression of GPR101 in the arcuate nucleus and the occurrence of increased circulating GHRH levels in some patients with XLAG, suggest that increased hypothalamic GHRH secretion could play a role in the pathogenesis of this condition. In this review, we summarise the published evidence on XLAG and GPR101 and discuss the results of recent studies that have investigated the potential role of GPR101 variants in the pathogenesis of pituitary adenomas.
Collapse
Affiliation(s)
- Donato Iacovazzo
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Trivellin G, Correa RR, Batsis M, Faucz FR, Chittiboina P, Bjelobaba I, Larco DO, Quezado M, Daly AF, Stojilkovic SS, Wu TJ, Beckers A, Lodish M, Stratakis CA. Screening for GPR101 defects in pediatric pituitary corticotropinomas. Endocr Relat Cancer 2016; 23:357-365. [PMID: 26962002 PMCID: PMC5017905 DOI: 10.1530/erc-16-0091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cushing disease (CD) in children is caused by adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas. Germline or somatic mutations in genes such as MEN1, CDKIs, AIP, and USP8 have been identified in pediatric CD, but the genetic defects in a significant percentage of cases are still unknown. We investigated the orphan G protein-coupled receptor GPR101, a gene known to be involved in somatotropinomas, for its possible involvement in corticotropinomas. We performed GPR101 sequencing, expression analyses by RT-qPCR and immunostaining, and functional studies (cell proliferation, pituitary hormones secretion, and cAMP measurement) in a series of patients with sporadic CD secondary to ACTH-secreting adenomas in whom we had peripheral and tumor DNA (N=36). No increased GPR101 expression was observed in tumors compared to normal pituitary (NP) tissues, nor did we find a correlation between GPR101 and ACTH expression levels. Sequence analysis revealed a very rare germline heterozygous GPR101 variant (p.G31S) in one patient with CD. Overexpression of the p.G31S variant did not lead to increased growth and proliferation, although modest effects on cAMP signaling were seen. GPR101 is not overexpressed in ACTH-secreting tumors compared to NPs. A rare germline GPR101 variant was found in one patient with CD but in vitro studies did not support a consistent pathogenic effect. GPR101 is unlikely to be involved in the pathogenesis of CD.
Collapse
Affiliation(s)
- Giampaolo Trivellin
- G Trivellin, Section Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, 20892, United States
| | - Ricardo R Correa
- R Correa, Section Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, United States
| | - Maria Batsis
- M Batsis, Section Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, United States
| | - Fabio R Faucz
- F Faucz, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, United States
| | - Prashant Chittiboina
- P Chittiboina, Surgical Neurology Branch, National Institute for Neurological Diseases and Stroke, National Institutes of Health, Bethesda, 20892, United States
| | - Ivana Bjelobaba
- I Bjelobaba, Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Darwin O Larco
- D Larco, Department of Obstretics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Martha Quezado
- M Quezado, Laboratory of Pathology, National Cancer Institute, Bethesda, 20892, United States
| | - Adrian F Daly
- A Daly, Department of Endocrinology, University of Liège, Liège, Belgium
| | - Stanko S Stojilkovic
- S Stojilkovic, Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health, Bethesda, United States
| | - T John Wu
- T Wu, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Albert Beckers
- A Beckers, Department of Endocrinology, CHU de Liege, Liege, Belgium
| | - Maya Lodish
- M Lodish, Pediatric Endocrinology, NIH, Bethesda, 20892, United States
| | - Constantine A Stratakis
- C Stratakis, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
15
|
Daly AF, Yuan B, Fina F, Caberg JH, Trivellin G, Rostomyan L, de Herder WW, Naves LA, Metzger D, Cuny T, Rabl W, Shah N, Jaffrain-Rea ML, Zatelli MC, Faucz FR, Castermans E, Nanni-Metellus I, Lodish M, Muhammad A, Palmeira L, Potorac I, Mantovani G, Neggers SJ, Klein M, Barlier A, Liu P, Ouafik L, Bours V, Lupski JR, Stratakis CA, Beckers A. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer 2016; 23:221-33. [PMID: 26935837 PMCID: PMC4877443 DOI: 10.1530/erc-16-0082] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Somatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG) syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic chromosome Xq26.3 duplications that include GPR101 We studied XLAG syndrome patients (n= 18) to determine if somatic mosaicism contributed to the genomic pathophysiology. Eighteen subjects with XLAG syndrome caused by Xq26.3 duplications were identified using high-definition array comparative genomic hybridization (HD-aCGH). We noted that males with XLAG had a decreased log2ratio (LR) compared with expected values, suggesting potential mosaicism, whereas females showed no such decrease. Compared with familial male XLAG cases, sporadic males had more marked evidence for mosaicism, with levels of Xq26.3 duplication between 16.1 and 53.8%. These characteristics were replicated using a novel, personalized breakpoint junction-specific quantification droplet digital polymerase chain reaction (ddPCR) technique. Using a separate ddPCR technique, we studied the feasibility of identifying XLAG syndrome cases in a distinct patient population of 64 unrelated subjects with acromegaly/gigantism, and identified one female gigantism patient who had had increased copy number variation (CNV) threshold for GPR101 that was subsequently diagnosed as having XLAG syndrome on HD-aCGH. Employing a combination of HD-aCGH and novel ddPCR approaches, we have demonstrated, for the first time, that XLAG syndrome can be caused by variable degrees of somatic mosaicism for duplications at chromosome Xq26.3. Somatic mosaicism was shown to occur in sporadic males but not in females with XLAG syndrome, although the clinical characteristics of the disease were similarly severe in both sexes.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TexasUSA
| | - Frederic Fina
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France Laboratoire de Biologie Médicale, and Aix-Marseille UniversitéInserm, CRO2 UMR_S 911, Marseille, France
| | - Jean-Hubert Caberg
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Liliya Rostomyan
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Wouter W de Herder
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Luciana A Naves
- Department of Endocrinology, University of Brasilia, Brasilia, Brazil
| | - Daniel Metzger
- Endocrinology and Diabetes Unit, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Thomas Cuny
- Department of Endocrinology, University Hospital, Nancy, France
| | - Wolfgang Rabl
- Kinderklinik, Technische Universität München, Munich, Germany
| | - Nalini Shah
- Department of Endocrinology, KEM Hospital, Mumbai, India
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila and Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emilie Castermans
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Isabelle Nanni-Metellus
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - Maya Lodish
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ammar Muhammad
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Leonor Palmeira
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Iulia Potorac
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium Department of Human GeneticsCentre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sebastian J Neggers
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Marc Klein
- Department of Endocrinology, University Hospital, Nancy, France
| | - Anne Barlier
- Laboratory of Molecular Biology, APHM, Hopital la Conception, Aix Marseille Universite, Marseilles, France CRNSCRN2M-UMR 7286, Marseille, France
| | - Pengfei Liu
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'Houcine Ouafik
- Laboratoire de Biologie Médicale, and Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France
| | - Vincent Bours
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| |
Collapse
|