1
|
Razi O, Tartibian B, Teixeira AM, Zamani N, Govindasamy K, Suzuki K, Laher I, Zouhal H. Thermal dysregulation in patients with multiple sclerosis during SARS-CoV-2 infection. The potential therapeutic role of exercise. Mult Scler Relat Disord 2022; 59:103557. [PMID: 35092946 PMCID: PMC8785368 DOI: 10.1016/j.msard.2022.103557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022]
Abstract
Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, Allameh Tabataba'i University, Tehran, Iran
| | - Ana Maria Teixeira
- University of Coimbra, Research Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes F-35000, France; Institut International des Sciences du Sport (2I2S), Irodouer 35850, France.
| |
Collapse
|
2
|
Iredahl F, Högstedt A, Henricson J, Sjöberg F, Tesselaar E, Farnebo S. Skin glucose metabolism and microvascular blood flow during local insulin delivery and after an oral glucose load. Microcirculation 2018; 23:597-605. [PMID: 27681957 DOI: 10.1111/micc.12325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Insulin causes capillary recruitment in muscle and adipose tissue, but the metabolic and microvascular effects of insulin in the skin have not been studied in detail. The aim of this study was to measure glucose metabolism and microvascular blood flow in the skin during local insulin delivery and after an oral glucose load. METHODS Microdialysis catheters were inserted intracutanously in human subjects. In eight subjects two microdialysis catheters were inserted, one perfused with insulin and one with control solution. First the local effects of insulin was studied, followed by a systemic provocation by an oral glucose load. Additionally, as control experiment, six subjects did not recieve local delivery of insulin or the oral glucose load. During microdialysis the local blood flow was measured by urea clearance and by laser speckle contrast imaging (LSCI). RESULTS Within 15 minutes of local insulin delivery, microvascular blood flow in the skin increased (urea clearance: P=.047, LSCI: P=.002) paralleled by increases in pyruvate (P=.01) and lactate (P=.04), indicating an increase in glucose uptake. An oral glucose load increased urea clearance from the catheters, indicating an increase in skin perfusion, although no perfusion changes were detected with LSCI. The concentration of glucose, pyruvate and lactate increased in the skin after the oral glucose load. CONCLUSION Insulin has metabolic and vasodilatory effects in the skin both when given locally and after systemic delivery through an oral glucose load.
Collapse
Affiliation(s)
- Fredrik Iredahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Alexandra Högstedt
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Henricson
- Department of Dermatology and Venerology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Folke Sjöberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hand Surgery, Plastic Surgery, and Burns, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Radiation Physics, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand Surgery, Plastic Surgery, and Burns, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Sauvet F, Arnal PJ, Tardo-Dino PE, Drogou C, Van Beers P, Bougard C, Rabat A, Dispersyn G, Malgoyre A, Leger D, Gomez-Merino D, Chennaoui M. Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects. Int J Cardiol 2017; 232:76-85. [DOI: 10.1016/j.ijcard.2017.01.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
|
4
|
Montero D, Walther G, Diaz-Cañestro C, Pyke KE, Padilla J. Microvascular Dilator Function in Athletes: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2016; 47:1485-94. [PMID: 25386710 DOI: 10.1249/mss.0000000000000567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite the growing research interest in vascular adaptations to exercise training over the last few decades, it remains unclear whether microvascular function in healthy subjects can be further improved by regular training. Herein, we sought to systematically review the literature and determine whether microvascular dilator function is greater in athletes compared to age-matched healthy untrained subjects. METHODS We conducted a systematic search of MEDLINE, Cochrane, EMBASE, and Web of Science since their inceptions until October 2013 for articles evaluating indices of primarily microvascular endothelium-dependent or endothelium-independent dilation (MVEDD and MVEID, respectively) in athletes. A meta-analysis was performed to determine the standardized mean difference (SMD) in MVEDD and MVEID between athletes and age-matched controls. Subgroup analyses were used to study potential moderating factors. RESULTS Thirty-six studies were selected after systematic review, comprising 521 athletes (506 endurance-trained and 15 endurance- and strength-trained) and 496 age-matched control subjects. After data pooling, athletes presented higher MVEDD (31 studies; SMD, 0.47; P < 0.00001) and MVEID (14 studies; SMD, 0.51; P < 0.00001) compared with the control subjects. Similar results were observed in young (younger than 40 yr) and master (older than 55 yr) athletes when analyzed separately. CONCLUSION Both young and master athletes present enhanced microvascular function compared with age-matched untrained but otherwise healthy subjects. These data provide evidence of a positive association between exercise training and microvascular function in the absence of known underlying cardiovascular disease.
Collapse
Affiliation(s)
- David Montero
- 1Avignon University, Avignon, FRANCE; 2Department of Internal Medicine, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht, THE NETHERLANDS; 3Applied Biology Department, Institute of Bioengineering, Miguel Hernandez University, SPAIN; 4School of Exercise Sciences, Australian Catholic University, Fitzroy, AUSTRALIA; 5School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, CANADA; 6Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO;7Department of Child Health, University of Missouri, Columbia, MO; 8Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | | | | | | | | |
Collapse
|
5
|
Vinet A, Obert P, Dutheil F, Diagne L, Chapier R, Lesourd B, Courteix D, Walther G. Impact of a lifestyle program on vascular insulin resistance in metabolic syndrome subjects: the RESOLVE study. J Clin Endocrinol Metab 2015; 100:442-50. [PMID: 25353072 DOI: 10.1210/jc.2014-2704] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT AND OBJECTIVE Impaired insulin-dependent vasodilation might contribute to microvascular dysfunction of metabolic syndrome (MetS). The aims of this study were to assess the insulin vasoreactivity in MetS, and to evaluate the effects of a lifestyle program. DESIGN, SETTING, PARTICIPANTS, AND OUTCOME MEASURES: Laser Doppler measurements were used to assess cutaneous blood flux (CBF) and flowmotion in response to iontophoresis of insulin and acetylcholine (ACh) in 38 MetS and 18 controls. Anthropometric, plasma insulin, glycemia, and inflammatory markers were measured. MetS subjects (n = 24) underwent a 6-month lifestyle intervention (M6) with a 3-week residential program (D21). RESULTS The absolute and relative peak insulin and ACh CBF were significantly higher in controls than in MetS subjects. Significant inverse correlations were found between peak insulin CBF and glycemia, insulin and glycated hemoglobin, active plasminogen activator inhibitor-1 (PAI-1), C-reactive protein (CRP), and IL-6. With respect to flowmotion, MetS subjects showed lower values in total spectrum CBF and in all its components (except respiratory one). At D21 and M6, peak insulin CBF increased and was no longer different from control values whereas peak ACh CBF did not change. From D21, all the different components and the total CBF spectrum became similar to the control values. The changes in peak insulin CBF and in endothelial component between M6 and baseline were inversely correlated with the change in CRP and PAI-1. CONCLUSIONS The local vasodilatory effects to insulin and its overall flowmotion are impaired in MetS subjects in relation to inflammation. The lifestyle intervention reversed this insulin-induced vascular dysfunction in parallel to decreased inflammation level.
Collapse
Affiliation(s)
- Agnes Vinet
- Avignon University (A.V., P.O., L.D., G.W.), LAPEC EA4278, F-84000 Avignon, France; School of Exercise Science (P.O., F.D., D.C.), Australian Catholic University, Melbourne, 3065 Australia; Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions (F.D., B.L., D.C.), EA3533, F-63000 Clermont-Ferrand, France; University Hospital of Clermont-Ferrand (F.D., B.L.), CHU G. Montpied, F-63000 Clermont-Ferrand, France; and Omental (R.C.)-Thermalia Center, F-63140 Châtelguyon, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fontes MT, Silva TLBT, Mota MM, Barreto AS, Rossoni LV, Santos MRV. Resistance exercise acutely enhances mesenteric artery insulin-induced relaxation in healthy rats. Life Sci 2013; 94:24-9. [PMID: 24316143 DOI: 10.1016/j.lfs.2013.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022]
Abstract
AIMS We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.
Collapse
Affiliation(s)
- M T Fontes
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - T L B T Silva
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - M M Mota
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - A S Barreto
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - L V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 05508-900, São Paulo, SP, Brazil
| | - M R V Santos
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
7
|
Ghafouri S, Hajizadeh S, Mani AR. Enhancement of insulin-induced cutaneous vasorelaxation by exercise in rats: A role for nitric oxide and KCa2+ channels. Eur J Pharmacol 2011; 652:89-95. [DOI: 10.1016/j.ejphar.2010.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/16/2022]
|
8
|
Clark MG. Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle. Am J Physiol Endocrinol Metab 2008; 295:E732-50. [PMID: 18612041 PMCID: PMC2575906 DOI: 10.1152/ajpendo.90477.2008] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin has an exercise-like action to increase microvascular perfusion of skeletal muscle and thereby enhance delivery of hormone and nutrient to the myocytes. With insulin resistance, insulin's action to increase microvascular perfusion is markedly impaired. This review examines the present status of these observations and techniques available to measure such changes as well as the possible underpinning mechanisms. Low physiological doses of insulin and light exercise have been shown to increase microvascular perfusion without increasing bulk blood flow. In these circumstances, blood flow is proposed to be redirected from the nonnutritive route to the nutritive route with flow becoming dominant in the nonnutritive route when insulin resistance has developed. Increased vasomotion controlled by vascular smooth muscle may be part of the explanation by which insulin mediates an increase in microvascular perfusion, as seen from the effects of insulin on both muscle and skin microvascular blood flow. In addition, vascular dysfunction appears to be an early development in the onset of insulin resistance, with the consequence that impaired glucose delivery, more so than insulin delivery, accounts for the diminished glucose uptake by insulin-resistant muscle. Regular exercise may prevent and ameliorate insulin resistance by increasing "vascular fitness" and thereby recovering insulin-mediated capillary recruitment.
Collapse
Affiliation(s)
- Michael G Clark
- Menzies Research Institute, University of Tasmania, Private Bag 58, Hobart 7001, Australia.
| |
Collapse
|