1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Grønbæk-Thygesen M, Voutsinos V, Johansson KE, Schulze TK, Cagiada M, Pedersen L, Clausen L, Nariya S, Powell RL, Stein A, Fowler DM, Lindorff-Larsen K, Hartmann-Petersen R. Deep mutational scanning reveals a correlation between degradation and toxicity of thousands of aspartoacylase variants. Nat Commun 2024; 15:4026. [PMID: 38740822 DOI: 10.1038/s41467-024-48481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Unstable proteins are prone to form non-native interactions with other proteins and thereby may become toxic. To mitigate this, destabilized proteins are targeted by the protein quality control network. Here we present systematic studies of the cytosolic aspartoacylase, ASPA, where variants are linked to Canavan disease, a lethal neurological disorder. We determine the abundance of 6152 of the 6260 ( ~ 98%) possible single amino acid substitutions and nonsense ASPA variants in human cells. Most low abundance variants are degraded through the ubiquitin-proteasome pathway and become toxic upon prolonged expression. The data correlates with predicted changes in thermodynamic stability, evolutionary conservation, and separate disease-linked variants from benign variants. Mapping of degradation signals (degrons) shows that these are often buried and the C-terminal region functions as a degron. The data can be used to interpret Canavan disease variants and provide insight into the relationship between protein stability, degradation and cell fitness.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vasileios Voutsinos
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer E Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thea K Schulze
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Cagiada
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Line Pedersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Clausen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Snehal Nariya
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L Powell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amelie Stein
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
4
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
5
|
Benson MD, Plemel DJA, Freund PR, Lewis JR, Sass JO, Bähr L, Gemperle-Britschgi C, Ferreira P, MacDonald IM. Severe retinal degeneration in a patient with Canavan disease. Ophthalmic Genet 2020; 42:75-78. [PMID: 32975148 DOI: 10.1080/13816810.2020.1827441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Canavan disease is an autosomal recessive, neurodegenerative disorder caused by mutations in ASPA, a gene encoding the enzyme aspartoacylase. Patients present with macrocephaly, developmental delay, hypotonia, vision impairment and accumulation of N-acetylaspartic acid. Progressive white matter changes occur in the central nervous system. The disorder is often fatal in early childhood, but milder forms exist. Materials and methods: Case report. Results: We present the case of a 31-year-old male with mild/juvenile Canavan disease who had severe vision loss due to a retinal degeneration resembling retinitis pigmentosa. Prior to this case, vision loss in Canavan disease had been attributed to optic atrophy based on fundoscopic evidence of optic nerve pallor. Investigations for an alternative cause for our patient's retinal degeneration were non-revealing. Conclusion: We wonder if retinal degeneration may not have been previously recognized as a feature of Canavan disease. We highlight findings from animal models of Canavan disease to further support the association between Canavan disease and retinal degeneration.
Collapse
Affiliation(s)
- Matthew D Benson
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Canada
| | - David J A Plemel
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Canada
| | - Paul R Freund
- Department of Ophthalmology and Visual Sciences, Dalhousie University , Halifax, Canada
| | - James R Lewis
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Canada
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Department of Natural Science & Institute for Functional Gene Analytics (IFGA), Bonn-Rhein Sieg University of Applied Sciences , Rheinbach, Germany
| | - Luzy Bähr
- Clinical Chemistry & Biochemistry and Children's Research Center, University Children's Hospital , Zürich, Switzerland
| | - Corinne Gemperle-Britschgi
- Clinical Chemistry & Biochemistry and Children's Research Center, University Children's Hospital , Zürich, Switzerland
| | - Patrick Ferreira
- Division of Medical Genetics, Alberta Children's Hospital , Calgary, Canada
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta , Edmonton, Canada
| |
Collapse
|
6
|
Çakar NE, Aksu Uzunhan T. A case of juvenile Canavan disease with distinct pons involvement. Brain Dev 2020; 42:222-225. [PMID: 31839386 DOI: 10.1016/j.braindev.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/03/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Canavan disease is a genetic neurodegenerative leukodystrophy that results in the spongy degeneration of the white matter. Its key clinical features in the infantile form are developmental delay, visual problems and macrocephaly. Congenital and juvenile forms have also been described. PATIENT DESCRIPTION We report on a 13-year-old boy who is a high school student in a public school. He was diagnosed with juvenile Canavan disease, presenting with intentional tremor as the only clinical finding. RESULTS Magnetic resonance imaging revealed mainly the involvement of the caudate nucleus and pons extending to the mesencephalon and also the putamen and the thalamus, with no apparent signal increase in the cerebral white matter. A homozygous p.Gly274Arg (c.820A>G) missense mutation was identified. CONCLUSION Juvenile Canavan disease with mainly pons involvement has not been published before. Pons, caudate nucleus and basal ganglia involvement without any white matter being involved could be expected in juvenile Canavan disease as a rare form of the disease.
Collapse
Affiliation(s)
- Nafiye Emel Çakar
- University of Health Sciences, Okmeydanı Training and Research Hospital, Division of Paediatric Metabolism, Turkey
| | - Tuğçe Aksu Uzunhan
- University of Health Sciences, Okmeydanı Training and Research Hospital, Division of Pediatric Neurology, Turkey.
| |
Collapse
|
7
|
Kots ED, Khrenova MG, Nemukhin AV, Varfolomeev SD. Aspartoacylase: a central nervous system enzyme. Structure, catalytic activity and regulation mechanisms. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease. Front Mol Neurosci 2017; 10:161. [PMID: 28626388 PMCID: PMC5454052 DOI: 10.3389/fnmol.2017.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023] Open
Abstract
Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA) twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation), expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF-2) in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.
Collapse
Affiliation(s)
- Abhilash P. Appu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Sean Moran
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Vikram Nambiar
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Jishnu K. S. Krishnan
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| |
Collapse
|
9
|
Mendes MI, Smith DE, Pop A, Lennertz P, Fernandez Ojeda MR, Kanhai WA, van Dooren SJ, Anikster Y, Barić I, Boelen C, Campistol J, de Boer L, Kariminejad A, Kayserili H, Roubertie A, Verbruggen KT, Vianey-Saban C, Williams M, Salomons GS. Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity. Hum Mutat 2017; 38:524-531. [PMID: 28101991 PMCID: PMC5412892 DOI: 10.1002/humu.23181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Abstract
We describe 14 patients with 12 novel missense mutations in ASPA, the gene causing Canavan disease (CD). We developed a method to study the effect of these 12 variants on the function of aspartoacylase—the hydrolysis of N‐acetyl‐l‐aspartic acid (NAA) to aspartate and acetate. The wild‐type ASPA open reading frame (ORF) and the ORFs containing each of the variants were transfected into HEK293 cells. Enzyme activity was determined by incubating cell lysates with NAA and measuring the released aspartic acid by LC–MS/MS. Clinical data were obtained for 11 patients by means of questionnaires. Four patients presented with a non‐typical clinical picture or with the milder form of CD, whereas seven presented with severe CD. The mutations found in the mild patients corresponded to the variants with the highest residual enzyme activities, suggesting that this assay can help evaluate unknown variants found in patients with atypical presentation. We have detected a correlation between clinical presentation, enzyme activity, and genotype for CD.
Collapse
Affiliation(s)
- Marisa I Mendes
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Desirée Ec Smith
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ana Pop
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Pascal Lennertz
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matilde R Fernandez Ojeda
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Warsha A Kanhai
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Silvy Jm van Dooren
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Caroline Boelen
- Department of Pediatrics, Admiraal De Ruyter Ziekenhuis, Goes, Zeeland, The Netherlands
| | - Jaime Campistol
- Neurology Department, CIBERER ISCIII, Hospital Sant Joan de Deu, University of Barcelona, Barcelona, Spain
| | - Lonneke de Boer
- Department of pediatrics, metabolic diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Hulya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hopital Gui de Chauliac, Montpellier, Languedoc-Roussillon, France.,INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Krijn T Verbruggen
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine Vianey-Saban
- Centre de Biologie et de Pathologie Est CHU de Lyon, Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Lyon, France
| | - Monique Williams
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Abstract
The autosomal recessive Canavan disease (CD) is a neurological disorder that begins in infancy. CD is caused by mutations in the gene encoding the ASPA enzyme. It has been reported with high frequency in patients with Jewish ancestry, and with low frequency in non-Jewish patients. This review will shed light on some updates regarding CD prevalence and causative mutations across the Arab World. CD was reported in several Arab countries such as Saudi Arabia, Egypt, Jordan, Yemen, Kuwait, and Tunisia. The population with the highest risk is in Saudi Arabia due the prevalent consanguineous marriage culture. In several studies, four novel mutations were found among Arabian CD patients, including two missense mutations (p.C152R, p.C152W), a 3346bp deletion leading to the removal of exon 3 of the ASPA gene, and an insertion mutation (698insC). Other previously reported mutations, which led to damage in the ASPA enzyme activities found among CD Arab patients are c.530 T>C (p.I177T), c.79G>A (p.G27R), IVS4+1G>T, and a 92kb deletion, which is 7.16kb upstream from the ASPA start site. This review will help in developing customized molecular diagnostic approaches and promoting CD carrier screening in the Arab world in areas where consanguineous marriage is common particularly within Saudi Arabia.
Collapse
|
11
|
Wijayasinghe YS, Pavlovsky AG, Viola RE. Aspartoacylase catalytic deficiency as the cause of Canavan disease: a structural perspective. Biochemistry 2014; 53:4970-8. [PMID: 25003821 DOI: 10.1021/bi500719k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Canavan disease (CD) is a fatal, childhood neurological disorder caused by mutations in the ASPA gene, leading to catalytic deficiencies in the aspartoacylase (ASPA) enzyme and impaired N-acetyl-l-aspartic acid metabolism in the brain. To study the possible structural defects triggered by these mutations, four ASPA missense mutations associated with different disease severities have been structurally characterized. These mutant enzymes each have overall structures similar to that of the native ASPA enzyme, but with varying degrees of alterations that offer explanations for the respective loss of catalytic activity. The K213E mutant, a nonconservative mutant associated with a mild disease phenotype, has minimal structural differences compared to the native enzyme. In contrast, the loss of van der Waals contacts in the F295S mutant and the loss of hydrophobic and hydrogen bonding interactions in the Y231C mutant lead to a local collapse of the hydrophobic core structure in the carboxyl-terminal domain, contributing to a decrease in protein stability. The structure of the E285A mutant, the most common clinical mutant, reveals that the loss of hydrogen bonding interactions with the carboxylate side chain of Glu285 disturbs the active site architecture, leading to altered substrate binding and lower catalytic activity. Our improved understanding of the nature of these structural defects provides a basis for the development of treatment therapies for CD.
Collapse
|
12
|
Glicksman S, Borgen C, Blackstein M, Gordon A, Hanon I, Kusin D, Leibowitz B, Halle J. A thematic review of scientific and family interests in Canavan Disease: where are the developmentalists? JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:815-825. [PMID: 22676184 DOI: 10.1111/j.1365-2788.2012.01576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Canavan Disease is a degenerative neurological condition resulting in a spongy deterioration of the brain. Much research has been conducted by the medical community regarding this condition, but little research can be found in the psychological literature. METHOD A review of the scientific literature related to Canavan Disease using the Psychinfo and PubMed databases was conducted covering a 5-year span from 2006 through 2011. Concurrently, a review of parent initiated topics found on the most popular Canavan Disease Internet discussion board was conducted for comparison purposes. RESULTS When comparing the topics discussed and information sought among parents with the themes noted in the extant scientific literature, researchers found an exceedingly small overlap between the two communities of interest. In the scientific literature, published research on Canavan Disease focused on three areas: the biochemistry of Canavan Disease, diagnosis and genetic counselling, and clinical therapeutic approaches in Canavan Disease. Of the 42 unique topics raised on a popular Internet discussion board, however, only three (7%) fell into the category of diagnosis and genetic counselling, none (0%) fell into the category of the biochemistry of Canavan Disease, and four fell into the category of clinical therapeutic approaches in Canavan Disease (10%). Of the four posts addressing clinical therapeutic approaches to Canavan Disease, only one post truly overlapped with the topics addressed by the scientific community. Worded differently, while these three categories comprise 100% of the extant scientific literature regarding Canavan Disease, they comprise only 17% of the parent-raised topics. The remaining 83% of parent-raised topics addressed concerns not currently being focusing upon by the scientific community, namely, non-medical practical issues, information regarding specific characteristics of Canavan Disease, non-medical developmental and quality of life issues, and day-to-day developmental and medical concerns. CONCLUSION By comparing the extant literature on Canavan Disease with the topics of interest raised by parents and caregivers, it seems clear that there is a significant 'underlap' of topics raised by these two communities of interest, one that may reflect a lack of sensitivity on the part of the scientific community to meet the needs of this population of knowledge seekers. It is the suggestion of these authors that developmental psychology may be the appropriate scientific field within which to address this need and fill this gap in the current literature.
Collapse
|
13
|
Zano S, Wijayasinghe YS, Malik R, Smith J, Viola RE. Relationship between enzyme properties and disease progression in Canavan disease. J Inherit Metab Dis 2013; 36:1-6. [PMID: 22850825 DOI: 10.1007/s10545-012-9520-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
Canavan disease (CD) is a fatal neurological disorder caused by defects in the gene that encodes for a critical metabolic enzyme. The enzyme aspartoacylase catalyzes the deacetylation of N-acetylaspartate to produce acetate required for fatty acid biosynthesis in the brain. The loss of aspartoacylase activity leads to the demyelination and disrupted brain development that is found in CD patients. Sixteen different clinical mutants of aspartoacylase have been cloned, expressed and purified to examine their properties and the relationship between enzyme properties and disease phenotype. In contrast to numerous cell culture studies that reported virtually complete loss of function, each of these purified mutant enzymes was found to have measureable catalytic activity. However, the activities of these mutants are diminished, by as little as three-fold to greater than 100-fold when compared to the native enzyme. Many of these mutated enzyme forms show decreased thermal stability and an increased propensity for denaturation upon exposure to urea, but only four of the 16 mutants examined showed both diminished thermal and diminished conformational stability. Significantly, each of these lower stability mutants are responsible for the more severe phenotypes of CD, while patients with milder forms of CD have aspartoacylase mutants with generally high catalytic activity and with either good thermal or good conformational stability. These results suggest that the loss of catalytic function and the accumulation of N-acetylaspartate in Canavan disease is at least partially a consequence of the decreased protein stability caused by these mutations.
Collapse
Affiliation(s)
- Stephen Zano
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | | | | | | | | |
Collapse
|
14
|
Durmaz AA, Akin H, Onay H, Vahabi A, Ozkinay F. A novel aspartoacylase (ASPA) gene mutation in Canavan disease. Fetal Pediatr Pathol 2012; 31:236-9. [PMID: 22468686 DOI: 10.3109/15513815.2011.650292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Canavan disease is a severe autosomal recessive leukodystrophy characterized by macrocephaly, ataxia, severe motor and mental retardation, dysmyelination, and progressive spongial atrophy of the brain. The human aspartoacylase (ASPA) gene, which catalyzes the deacetylation of N-acetyl-L-aspartate, is mutated in Canavan disease. In the presented family sequencing analysis for the aspartoacylase gene was performed on the blood samples of the parents as the affected child had died due to Canavan disease. After the mutation was detected, prenatal diagnosis was also performed and heterozygous Y88X mutation was detected in the fetus. In this report, we present a novel mutation Y88X within the aspartoacylase gene in a consanguineous family with an affected child diagnosed as Canavan disease.
Collapse
Affiliation(s)
- Asude Alpman Durmaz
- Ege University Medical Faculty, Department of Medical Genetics, Bornova, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
15
|
Sommer A, Sass JO. Expression of aspartoacylase (ASPA) and Canavan disease. Gene 2012; 505:206-10. [PMID: 22750302 DOI: 10.1016/j.gene.2012.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/07/2023]
Abstract
Canavan disease (CD) is a neurodegenerative disorder usually presenting in the first six months of life. CD patients can be identified via elevated levels of N-acetyl-l-aspartate in the pattern of urinary organic acids assessed by gas chromatography-mass spectrometry. They are characterized by deficiency of aspartoacylase (aminoacylase 2; ASPA) due to mutations in the ASPA gene. Information on the molecular basis of CD is rather sparse. A lack of expression studies of ASPA mutant proteins in appropriate expression systems has prompted this investigation. Studies with overexpressed ASPA mutant proteins were carried out in the HEK293 cell line, which provides the authentic human machinery for posttranslational modifications. All ASPA mutants tested (ASPA Arg168His, ASPA Pro181Thr, ASPA Tyr288Cys, ASPA Phe295Ser, and ASPA Ala305Glu) showed loss of ASPA activity, which can be explained by the intramolecular effects of the mutations in the enzyme. The mutation p.Phe295Ser even leads to absent ASPA mRNA expression, as revealed by quantitative real-time PCR. Using this approach, ASPA gene expression analysis yielded high levels of human ASPA gene expression not only in brain and kidney, but also in lung and liver. More information of ASPA localization in human organs and detailed characterization of mutations leading to a deficiency of ASPA can contribute to a better understanding of this inborn error of metabolism.
Collapse
Affiliation(s)
- Anke Sommer
- Labor für Klinische Biochemie & Stoffwechsel, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Freiburg, Freiburg, Germany
| | | |
Collapse
|
16
|
A missense mutation (p.G274R) in gene ASPA causes Canavan disease in a Pakistani family. Mol Biol Rep 2012; 39:6197-201. [DOI: 10.1007/s11033-011-1438-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/26/2011] [Indexed: 01/09/2023]
|
17
|
Mersmann N, Tkachev D, Jelinek R, Röth PT, Möbius W, Ruhwedel T, Rühle S, Weber-Fahr W, Sartorius A, Klugmann M. Aspartoacylase-lacZ knockin mice: an engineered model of Canavan disease. PLoS One 2011; 6:e20336. [PMID: 21625469 PMCID: PMC3098885 DOI: 10.1371/journal.pone.0020336] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/26/2011] [Indexed: 11/19/2022] Open
Abstract
Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial β-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspalacZ/+) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (aspalacZ/lacZ) mutants are ASPA-deficient, show CD-like histopathology and moderate neurological impairment with behavioural deficits that are more pronounced in aspalacZ/lacZ males than females. Non-invasive ultrahigh field proton magnetic resonance spectroscopy revealed increased levels of NAA, myo-inositol and taurine in the aspalacZ/lacZ brain. Spongy degeneration was prominent in hippocampus, thalamus, brain stem, and cerebellum, whereas white matter of optic nerve and corpus callosum was spared. Intracellular vacuolisation in astrocytes coincides with axonal swellings in cerebellum and brain stem of aspalacZ/lacZ mutants indicating that astroglia may act as an osmolyte buffer in the aspa-deficient CNS. In summary, the aspalacZ mouse is an accurate model of CD and an important tool to identify novel aspects of its complex pathology.
Collapse
Affiliation(s)
- Nadine Mersmann
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Dmitri Tkachev
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Thomas Röth
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Sabine Rühle
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Wolfgang Weber-Fahr
- Neuroimaging Department, Central Institute of Mental Health, Mannheim, Mannheim, Germany
| | - Alexander Sartorius
- Neuroimaging Department, Central Institute of Mental Health, Mannheim, Mannheim, Germany
| | - Matthias Klugmann
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Translational Neuroscience Facility, Department of Physiology, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
18
|
Surendran S, Bhatnagar M. Upregulation of N-acetylaspartic acid induces oxidative stress to contribute in disease pathophysiology. Int J Neurosci 2011; 121:305-9. [PMID: 21348802 DOI: 10.3109/00207454.2011.558225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N-acetylaspartic acid (NAA) is predominantly present in brain and also present in lower amount in peripheral organs. The role of NAA in pathophysiology is poorly understood. Therefore the review was aimed to understand contribution of NAA in disease process. Amniotic fluid of mothers with Canavan disease (CD) fetus and patients with the disease show increased levels of NAA. Increase of this pathway is also reported in Parkinson's disease and type 2 diabetes. In HIV-related dementia, NAA is affected. Recent studies suggest that upregulation of NAA leads to oxidative stress including upregulation of nitric oxide and reducing potential antioxidants. NAA also leads to physiological abnormalities including walking disorder. These changes suggest that NAA contributes in disease pathophysiology.
Collapse
|
19
|
Two novel missense mutations in the aspartoacylase gene in a Chinese patient with congenital Canavan disease. Brain Dev 2010; 32:879-82. [PMID: 20129749 DOI: 10.1016/j.braindev.2010.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/24/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022]
Abstract
We herein describe the first Chinese case of Canavan disease diagnosed by biochemical analysis and confirmed by DNA studies. We report two novel mutations: c.2T>C/M1T, an initiation codon mutation, and c.209A>G/N70S, which is located at the enzyme-substrate binding site. The combination of these two mutations resulted in a congenital form of Canavan disease.
Collapse
|
20
|
Velinov M, Zellers N, Styles J, Wisniewski K. Homozygosity for mutation G212A of the gene for aspartoacylase is associated with atypical form of Canavan's disease. Clin Genet 2007; 73:288-9. [PMID: 18070137 DOI: 10.1111/j.1399-0004.2007.00934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MA. Mutational analysis of aspartoacylase: implications for Canavan disease. Brain Res 2007; 1148:1-14. [PMID: 17391648 PMCID: PMC1933483 DOI: 10.1016/j.brainres.2007.02.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/07/2007] [Accepted: 02/11/2007] [Indexed: 11/18/2022]
Abstract
Mutations that result in near undetectable activity of aspartoacylase, which catalyzes the deacetylation of N-acetyl-l-aspartate, correlate with Canavan Disease, a neurodegenerative disorder usually fatal during childhood. The underlying biochemical mechanisms of how these mutations ablate activity are poorly understood. Therefore, we developed and tested a three-dimensional homology model of aspartoacylase based on zinc dependent carboxypeptidase A. Mutations of the putative zinc-binding residues (H21G, E24D/G, and H116G), the general proton donor (E178A), and mutants designed to switch the order of the zinc-binding residues (H21E/E24H and E24H/H116E) yielded wild-type aspartoacylase protein levels and undetectable ASPA activity. Mutations that affect substrate carboxyl binding (R71N) and transition state stabilization (R63N) also yielded wild-type aspartoacylase protein levels and undetectable aspartoacylase activity. Alanine substitutions of Cys124 and Cys152, residues indicated by homology modeling to be in close proximity and in the proper orientation for disulfide bonding, yielded reduced ASPA protein and activity levels. Finally, expression of several previously tested (E24G, D68A, C152W, E214X, D249V, E285A, and A305E) and untested (H21P, A57T, I143T, P183H, M195R, K213E/G274R, G274R, and F295S) Canavan Disease mutations resulted in undetectable enzyme activity, and only E285A and P183H showed wild-type aspartoacylase protein levels. These results show that aspartoacylase is a member of the caboxypeptidase A family and offer novel explanations for most loss-of-function aspartoacylase mutations associated with Canavan Disease.
Collapse
Affiliation(s)
- Jeremy R. Hershfield
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814
| | - Nagarajan Pattabiraman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Chikkathur N. Madhavarao
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814
| | - M.A. Aryan Namboodiri
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814
| |
Collapse
|
22
|
Bitto E, Bingman CA, Wesenberg GE, McCoy JG, Phillips GN. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease. Proc Natl Acad Sci U S A 2007; 104:456-61. [PMID: 17194761 PMCID: PMC1766406 DOI: 10.1073/pnas.0607817104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Indexed: 11/18/2022] Open
Abstract
Aspartoacylase catalyzes hydrolysis of N-acetyl-l-aspartate to aspartate and acetate in the vertebrate brain. Deficiency in this activity leads to spongiform degeneration of the white matter of the brain and is the established cause of Canavan disease, a fatal progressive leukodystrophy affecting young children. We present crystal structures of recombinant human and rat aspartoacylase refined to 2.8- and 1.8-A resolution, respectively. The structures revealed that the N-terminal domain of aspartoacylase adopts a protein fold similar to that of zinc-dependent hydrolases related to carboxypeptidases A. The catalytic site of aspartoacylase shows close structural similarity to those of carboxypeptidases despite only 10-13% sequence identity between these proteins. About 100 C-terminal residues of aspartoacylase form a globular domain with a two-stranded beta-sheet linker that wraps around the N-terminal domain. The long channel leading to the active site is formed by the interface of the N- and C-terminal domains. The C-terminal domain is positioned in a way that prevents productive binding of polypeptides in the active site. The structures revealed that residues 158-164 may undergo a conformational change that results in opening and partial closing of the channel entrance. We hypothesize that the catalytic mechanism of aspartoacylase is closely analogous to that of carboxypeptidases. We identify residues involved in zinc coordination, and propose which residues may be involved in substrate binding and catalysis. The structures also provide a structural framework necessary for understanding the deleterious effects of many missense mutations of human aspartoacylase.
Collapse
Affiliation(s)
- Eduard Bitto
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706-1544
| | - Craig A. Bingman
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706-1544
| | - Gary E. Wesenberg
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706-1544
| | - Jason G. McCoy
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706-1544
| | - George N. Phillips
- Center for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706-1544
| |
Collapse
|
23
|
Janson CG, Kolodny EH, Zeng BJ, Raghavan S, Pastores G, Torres P, Assadi M, McPhee S, Goldfarb O, Saslow B, Freese A, Wang DJ, Bilaniuk L, Shera D, Leone P. Mild-onset presentation of Canavan's disease associated with novel G212A point mutation in aspartoacylase gene. Ann Neurol 2006; 59:428-31. [PMID: 16437572 DOI: 10.1002/ana.20787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe two sisters with a mild-onset variant of Canavan's disease who presented at age 50 and 19 months with developmental delay but without macrocephaly, hypotonia, spasticity, or seizures. Remarkably, both patients had age-appropriate head control, gross motor development, and muscle tone. There were very mild deficits in fine motor skills, coordination, and gait. Both sisters had a history of strabismus, but otherwise vision was normal. The older child showed evidence of mild cognitive and social impairment, whereas language and behavior were normal for age in the infant. Both patients were found to be compound heterozygotes for C914A (A305E) and G212A (R71H) mutations in ASPA. Like all other known ASPA mutations, this previously unknown G212A mutation appears to have low absolute enzyme activity. Nevertheless, it is associated in these patients with an extremely benign phenotype that is highly atypical of Canavan's disease. Biochemical and clinical data were evaluated using a generalized linear mixed model generated from 25 other subjects with Canavan's disease. There were statistically significant differences in brain chemistry and clinical evaluations, supporting a distinct variant of Canavan's disease. Future studies of ASPA enzyme structure and gene regulation in these subjects could lead to a better understanding of Canavan's pathophysiology and improvements in ASPA gene therapy.
Collapse
Affiliation(s)
- Christopher G Janson
- Department of Neurology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Camden, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life. These early childhood WM diseases are described as hypomyelination or dysmyelination arising from a primary block in normal myelin synthesis because of a genetic mutation expressed in oligodendrocytes, or failure in myelination secondary to neuronal or astroglial dysfunctions (van der Knaap 2001 Dev. Med. Child Neurol. 43:705-712). Here, we describe the pathophysiological parameters of Canavan disease (CD), caused by genetic mutations of the aspartoacylase (ASPA) gene, a metabolic enzyme restricted in the central nervous system (CNS) to oligodendrocytes. CD presents pathophysiological dysfunctions similar to diseases caused by myelin gene mutations, such as Pelizaeus-Merzbacher disease (PMD) and several animal models, such as myelin deficient rat (md), jimpy (jp), shiverer (sh), and quaking (qk viable) mutant mice. These single gene mutations have pleiotropic effects, whereby the alteration of one myelin gene expression disrupts functional expression of other oligodendrocyte genes with an outcome of hypomyelination/dysmyelination. Among all of the known leukodystrophies, CD is the first disorder, which was approved and tested for the adeno-associated virus vector (AAV)-ASPA gene therapy (Leone et al. 2000 Ann. Neurol. 48:27-38; Janson et al. 2001 Trends Neurosci. 24:706-712) without much success following the first two attempts. ASPA gene delivery attempts in animal models have shown a lowering of N-acetyl L-aspartate and a change in motor functions, while sponginess of the WM, a characteristic of CD remained unchanged (Matalon et al. 2003 Mol. Ther. 7 (5, Part 1):580-587; McPhee et al. 2005 Brain Res. Mol. Brain Res. 135:112-121) even with better viral serotype and delivery of the gene during early phase of development (Klugmann et al. 2005 Mol. Ther. 11:745-753). While different approaches are being sought for the success of gene therapy, there are pivotal developmental questions to address regarding the specific regions of the CNS and cell lineages that become the target for the onset and progression of CD symptoms from early to late stages of development.
Collapse
Affiliation(s)
- Shalini Kumar
- Department of Neurobiology, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California 90095-7332, USA
| | | | | |
Collapse
|