1
|
Muniz AC, de Lemos-Filho JP, Lovato MB. Non-adaptedness and vulnerability to climate change threaten Plathymenia trees (Fabaceae) from the Cerrado and Atlantic Forest. Sci Rep 2024; 14:25611. [PMID: 39465275 PMCID: PMC11514217 DOI: 10.1038/s41598-024-75664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Climate change is increasing species extinction risk. The ability of a species to cope with climate change can be quantified by projecting distribution models and by estimating the risk of non-adaptedness using genomic data. The Cerrado and the Atlantic Forest in Tropical South America are increasingly threatened by habitat loss and anthropogenic climate change. This work aims to evaluate the ecological and genomic vulnerability of Plathymenia taxa and its lineages, P. reticulata, a Cerrado species, and P. foliolosa, an Atlantic Forest species, to determine their current and future habitat suitability and the mismatch between current local adaptation with the expected climate changes. The species distribution models predicted a high range loss for the Plathymenia lineages. The genotype-environment association analyses showed that the Plathymenia lineages have populations adapted to different precipitation and temperature seasonality regimes. The genomic offset analyses predict a mismatch between local adaptations and future climate for the Plathymenia indicating a high risk of non-adaptedness, especially in the pessimistic scenario. Our results show an elevated extinction risk of the species due to climate change. We suggest reevaluating the extinction risk and management of the Plathymenia species separately based on their differences in vulnerability to climate change.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| | - José Pires de Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
2
|
Conceição TA, Santos AS, Fernandes AKC, Meireles GN, de Oliveira FA, Barbosa RM, Gaiotto FA. Guiding seed movement: environmental heterogeneity drives genetic differentiation in Plathymenia reticulata, providing insights for restoration. AOB PLANTS 2024; 16:plae032. [PMID: 38883565 PMCID: PMC11176975 DOI: 10.1093/aobpla/plae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Forest and landscape restoration is one of the main strategies for overcoming the environmental crisis. This activity is particularly relevant for biodiversity-rich areas threatened by deforestation, such as tropical forests. Efficient long-term restoration requires understanding the composition and genetic structure of native populations, as well as the factors that influence these genetic components. This is because these populations serve as the seed sources and, therefore, the gene reservoirs for areas under restoration. In the present study, we investigated the influence of environmental, climatic and spatial distance factors on the genetic patterns of Plathymenia reticulata, aiming to support seed translocation strategies for restoration areas. We collected plant samples from nine populations of P. reticulata in the state of Bahia, Brazil, located in areas of Atlantic Forest and Savanna, across four climatic types, and genotyped them using nine nuclear and three chloroplast microsatellite markers. The populations of P. reticulata evaluated generally showed low to moderate genotypic variability and low haplotypic diversity. The populations within the Savanna phytophysiognomy showed values above average for six of the eight evaluated genetic diversity parameters. Using this classification based on phytophysiognomy demonstrated a high predictive power for genetic differentiation in P. reticulata. Furthermore, the interplay of climate, soil and geographic distance influenced the spread of alleles across the landscape. Based on our findings, we propose seed translocation, taking into account the biome, with restricted use of seed sources acquired or collected from the same environment as the areas to be restored (Savanna or Atlantic Forest).
Collapse
Affiliation(s)
- Taise Almeida Conceição
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
| | - Alesandro Souza Santos
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Ane Karoline Campos Fernandes
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Gabriela Nascimento Meireles
- Laboratório de Marcadores Moleculares, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Ancelmo de Oliveira
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-875, Brazil
| | - Rafael Marani Barbosa
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| | - Fernanda Amato Gaiotto
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, USP, Piracicaba, São Paulo 13418-900, Brazil
- Laboratório de Ecologia Aplicada à Conservação, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus, Bahia 45662-900, Brazil
| |
Collapse
|
3
|
Muniz AC, de Oliveira Buzatti RS, de Lemos-Filho JP, Heuertz M, Nazareno AG, Lovato MB. Genomic signatures of ecological divergence between savanna and forest populations of a Neotropical tree. ANNALS OF BOTANY 2023; 132:523-540. [PMID: 37642427 PMCID: PMC10667007 DOI: 10.1093/aob/mcad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND AIMS In eastern Neotropical South America, the Cerrado, a large savanna vegetation, and the Atlantic Forest harbour high biodiversity levels, and their habitats are rather different from each other. The biomes have intrinsic evolutionary relationships, with high lineage exchange that can be attributed, in part, to a large contact zone between them. The genomic study of ecotypes, i.e. populations adapted to divergent habitats, can be a model to study the genomic signatures of ecological divergence. Here, we investigated two ecotypes of the tree Plathymenia reticulata, one from the Cerrado and the other from the Atlantic Forest, which have a hybrid zone in the ecotonal zone of Atlantic Forest-Cerrado. METHODS The ecotypes were sampled in the two biomes and their ecotone. The evolutionary history of the divergence of the species was analysed with double-digest restriction site-associated DNA sequencing. The genetic structure and the genotypic composition of the hybrid zone were determined. Genotype-association analyses were performed, and the loci under putative selection and their functions were investigated. KEY RESULTS High divergence between the two ecotypes was found, and only early-generation hybrids were found in the hybrid zone, suggesting a partial reproductive barrier. Ancient introgression between the Cerrado and Atlantic Forest was not detected. The soil and climate were associated with genetic divergence in Plathymenia ecotypes and outlier loci were found to be associated with the stress response, with stomatal and root development and with reproduction. CONCLUSIONS The high genomic, ecological and morphophysiological divergence between ecotypes, coupled with partial reproductive isolation, indicate that the ecotypes represent two species and should be managed as different evolutionary lineages. We advise that the forest species should be re-evaluated and restated as vulnerable. Our results provide insights into the genomic mechanisms underlying the diversification of species across savanna and forest habitats and the evolutionary forces acting in the species diversification in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | | | - José Pires de Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Myriam Heuertz
- Biogeco, INRAE, Univ. Bordeaux, 69 route d’Arcachon, 33610 Cestas, France
| | - Alison Gonçalves Nazareno
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, CP 486, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
4
|
Duan X, Jia Z, Li J, Wu S. The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Muniz AC, Pimenta RJG, Cruz MV, Rodrigues JG, Buzatti RSDO, Heuertz M, Lemos‐Filho JP, Lovato MB. Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation. Ecol Evol 2022; 12:e8540. [PMID: 35127043 PMCID: PMC8803295 DOI: 10.1002/ece3.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
The Cerrado, the largest Neotropical savanna, and the Brazilian Atlantic Forest form large ecotonal areas where savanna and forest habitats occupy adjacent patches with closely related species occurring side by side, providing opportunities for hybridization. Here, we investigated the evolutionary divergence between the savanna and forest ecotypes of the widely distributed tree Plathymenia reticulata (n = 233 individuals). Genetic structure analysis of P. reticulata was congruent with the recognition of two ecotypes, whose divergence captured the largest proportion of genetic variance in the data (F CT = 0.222 and F ST = 0.307). The ecotonal areas between the Cerrado and the Atlantic Forest constitute a hybrid zone in which a diversity of hybrid classes was observed, most of them corresponding to second-generation hybrids (F2) or backcrosses. Gene flow occurred mainly toward the forest ecotype. The genetic structure was congruent with isolation by environment, and environmental correlates of divergence were identified. The observed pattern of high genetic divergence between ecotypes may reflect an incipient speciation process in P. reticulata. The low genetic diversity of the P. reticulata forest ecotype indicate that it is threatened in areas with high habitat loss on Atlantic Forest. In addition, the high divergence from the savanna ecotype suggests it should be treated as a different unit of management. The high genetic diversity found in the ecotonal hybrid zone supports the view of ecotones as important areas for the origin and conservation of biodiversity in the Neotropics.
Collapse
Affiliation(s)
- André Carneiro Muniz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Mariana Vargas Cruz
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | | | | | - José P. Lemos‐Filho
- Departamento de BotânicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Maria Bernadete Lovato
- Departamento de Genética, Ecologia e EvoluçãoUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
6
|
Maternal Environmental Light Conditions Affect the Morphological Allometry and Dispersal Potential of Acer palmatum Samaras. FORESTS 2021. [DOI: 10.3390/f12101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seed dispersal plays critical roles in determining species survival and community structures. Since the dispersal is biologically under maternal control, it is hypothesized that intraspecific variation of dispersal potential and associated traits of seeds (diaspores) should be influenced by maternal habitat quality. We tested this hypothesis by examining the effects of maternal environmental light condition on morphological traits and descending performance of nearly 1800 wind-dispersed samaras collected from maple species Acer palmatum. Results showed that samaras produced by trees from shaded microhabitats had greater dispersal potential, in terms of slower terminal velocity of descent, than those produced in open microhabitats. This advantage was largely attributed to morphological plasticity. On average, samaras produced in shaded microhabitats, as compared to those produced in open habitats, had lower wing loading by only reducing weight but not area. In allometric details, in the large size range, samaras from shaded microhabitats had larger areas than those from open microhabitats; in the small size range, samaras from shaded microhabitats had wider wings. These findings suggest that greater dispersal potential of samaras in response to stressful maternal light environment reflected an active maternal control through the morphological allometry of samaras.
Collapse
|
7
|
Buzatti RSDO, Pfeilsticker TR, Muniz AC, Ellis VA, de Souza RP, Lemos-Filho JP, Lovato MB. Disentangling the Environmental Factors That Shape Genetic and Phenotypic Leaf Trait Variation in the Tree Qualea grandiflora Across the Brazilian Savanna. FRONTIERS IN PLANT SCIENCE 2019; 10:1580. [PMID: 31850045 PMCID: PMC6900740 DOI: 10.3389/fpls.2019.01580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Identifying the environmental factors that shape intraspecific genetic and phenotypic diversity of species can provide insights into the processes that generate and maintain divergence in highly diverse biomes such as the savannas of the Neotropics. Here, we sampled Qualea grandiflora, the most widely distributed tree species in the Cerrado, a large Neotropical savanna. We analyzed genetic variation with microsatellite markers in 23 populations (418 individuals) and phenotypic variation of 10 metamer traits (internode, petiole and corresponding leaf lamina) in 36 populations (744 individuals). To evaluate the role of geography, soil, climate, and wind speed in shaping the divergence of genetic and phenotypic traits among populations, we used Generalized Dissimilarity Modelling. We also used multiple regressions to further investigate the contributions of those environmental factors on leaf trait diversity. We found high genetic diversity, which was geographically structured. Geographic distance was the main factor shaping genetic divergence in Qualea grandiflora, reflecting isolation by distance. Genetic structure was more related to past climatic changes than to the current climate. We also found high metamer trait variation, which seemed largely influenced by precipitation, soil bulk density and wind speed during the period of metamer development. The high degree of metamer trait variation seems to be due to both, phenotypic plasticity and local adaptation to different environmental conditions, and may explain the success of the species in occupying all the Cerrado biome.
Collapse
Affiliation(s)
- Renata Santiago de Oliveira Buzatti
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Ribeiro Pfeilsticker
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Carneiro Muniz
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo A. Ellis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, United States
| | - Renan Pedra de Souza
- Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Pires Lemos-Filho
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Bernadete Lovato
- Laboratório de Genética de Populações, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Souza ML, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP. Soil fertility and rainfall during specific phenological phases affect seed trait variation in a widely distributed Neotropical tree, Copaifera langsdorffii. AMERICAN JOURNAL OF BOTANY 2019; 106:1096-1105. [PMID: 31334843 DOI: 10.1002/ajb2.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Knowledge of intra-specific variation in seed traits and its environmental determinants is important for predicting plant responses to environmental changes. Here, we tested the hypothesis that differences in soil fertility and rainfall during specific phenological phases drive variation in seed traits in a widely distributed tree, Copaifera langsdorffii. We also tested the hypothesis that climatic heterogeneity increases within-plant variation in seed traits. METHODS Inter- and intra-population and within-plant variation in seed mass, number, and seed size/seed number were evaluated for 50 individuals from five populations distributed along a rainfall gradient and occurring on varying soil types. Using multivariate approaches, we tested the effects of soil fertility characteristics and rainfall in five reproductive phenological phases on seed traits. RESULTS The seed traits varied greatly both among populations and within plants. Inter-population variation in seed mass was driven by total rainfall during fruit development, and variation in seed number was influenced by total rainfall during the dry season before the reproductive phase. Phosphorus levels and potential acidity of the soil also explained the variations in seed mass and seed mass/seed number, respectively. A positive association between intra-annual variation in rainfall and within-plant variation in seed mass and seed number was found. CONCLUSION Both rainfall during specific reproductive phases and soil conditions shape the variation in the seed mass and number of C. langsdorffii. Environment-driven seed trait variation may contribute to this species' broad niche breadth, which in turn may determine the species' persistence under future climatic conditions.
Collapse
Affiliation(s)
- Matheus Lopes Souza
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| | - Marcilio Fagundes
- Departamento de Biologia Geral, Universidade Estadual de Montes Claros, CCBS-UNIMONTES, Montes Claros, 39401, Brazil
| | - Fernando Valladares
- LINCGlobal Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, 28006, Spain
- Departamento de Biología y Geología ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - José Pires Lemos-Filho
- Departamento de Botânica, Universidade Federal de Minas Gerais, ICB-UFMG, Belo Horizonte, 31270, Brazil
| |
Collapse
|
9
|
Ribeiro PC, Souza ML, Muller LAC, Ellis VA, Heuertz M, Lemos-Filho JP, Lovato MB. Climatic drivers of leaf traits and genetic divergence in the tree Annona crassiflora: a broad spatial survey in the Brazilian savannas. GLOBAL CHANGE BIOLOGY 2016; 22:3789-3803. [PMID: 27062055 DOI: 10.1111/gcb.13312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east-west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.
Collapse
Affiliation(s)
- Priciane C Ribeiro
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus L Souza
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Larissa A C Muller
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Vincenzo A Ellis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Myriam Heuertz
- Forest Ecology and Genetics, Forest Research Centre, INIA, 28040, Madrid, Spain
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
| | - José P Lemos-Filho
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Bernadete Lovato
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Coquillard P, Muzy A, Diener F. Optimal phenotypic plasticity in a stochastic environment minimises the cost/benefit ratio. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2012.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Goulart MF, Lovato MB, de Vasconcellos Barros F, Valladares F, Lemos-Filho JP. Which Extent is Plasticity to Light Involved in the Ecotypic Differentiation of a Tree Species from Savanna and Forest? Biotropica 2011. [DOI: 10.1111/j.1744-7429.2011.00760.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Lemos Filho JPD, Goulart MF, Lovato MB. Populational approach in ecophysiological studies: the case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest. ACTA ACUST UNITED AC 2008. [DOI: 10.1590/s1677-04202008000300005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The variability of ecophysiological traits among populations can be a result of selection in response to environmental pressure and/or due to random factors, like the genetic drift. The analysis of both genetic and phenotypic variation within populations can lead to better understanding of adaptation in order to colonize different habitats. In the last years we have developed several studies with an widely ecogeographic distributed legume tree species, Plathymenia reticulata, which were focused on identifying specific morphological and physiological traits related to adaptation to the habitats of origin of each studied population. We studied populations from Atlantic Forest, Cerrado and ecotonal sites in relation to phenology, seed morphological traits and their relation with seed dispersion, seed dormancy and germination, and growth traits in a common garden experiment. In several analyzed traits we found high diversity in this species that can explain its occurrence in a broad geographical range. The existence of genetically based differences of traits in an adaptive way among savanna and forest populations suggests a degree of divergence that characterizes the existence of ecotypes from Cerrado and Atlantic Forest. We also pointed future perspectives in studies at population level in evolutionary ecophysiology and implications of these studies for flora conservation and habitat restoration.
Collapse
Affiliation(s)
| | - Maíra Figueiredo Goulart
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brasil; Instituto Biotrópicos de Pesquisa em Vida Silvestre, Brasil
| | | |
Collapse
|