1
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
3
|
Flaadt T, Ladenstein RL, Ebinger M, Lode HN, Arnardóttir HB, Poetschger U, Schwinger W, Meisel R, Schuster FR, Döring M, Ambros PF, Queudeville M, Fuchs J, Warmann SW, Schäfer J, Seitz C, Schlegel P, Brecht IB, Holzer U, Feuchtinger T, Simon T, Schulte JH, Eggert A, Teltschik HM, Illhardt T, Handgretinger R, Lang P. Anti-GD2 Antibody Dinutuximab Beta and Low-Dose Interleukin 2 After Haploidentical Stem-Cell Transplantation in Patients With Relapsed Neuroblastoma: A Multicenter, Phase I/II Trial. J Clin Oncol 2023:JCO2201630. [PMID: 36854071 DOI: 10.1200/jco.22.01630] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
PURPOSE Patients with relapsed high-risk neuroblastoma (rHR-NB) have a poor prognosis. We hypothesized that graft-versus-neuroblastoma effects could be elicited by transplantation of haploidentical stem cells (haplo-SCT) exploiting cytotoxic functions of natural killer cells and their activation by the anti-GD2 antibody dinutuximab beta (DB). This phase I/II trial assessed safety, feasibility, and outcomes of immunotherapy with DB plus subcutaneous interleukin-2 (scIL2) after haplo-SCT in patients with rHR-NB. METHODS Patients age 1-21 years underwent T-/B-cell-depleted haplo-SCT followed by DB and scIL2. The primary end point 'success of treatment' encompassed patients receiving six cycles, being alive 180 days after end of trial treatment without progressive disease, unacceptable toxicity, acute graft-versus-host-disease (GvHD) ≥grade 3, or extensive chronic GvHD. RESULTS Seventy patients were screened, and 68 were eligible for immunotherapy. Median number of DB cycles was 6 (range, 1-9). Median number of scIL2 cycles was 3 (1-6). The primary end point was met by 37 patients (54.4%). Median observation time was 7.8 years. Five-year event-free survival (EFS) and overall survival from start of trial treatment were 43% (95% CI, 31 to 55) and 53% (95% CI, 41 to 65), respectively. Five-year EFS among patients in complete remission (CR; 52%; 95% CI, 31 to 69) or partial remission (44%; 95% CI, 27 to 60) before immunotherapy were significantly better compared with patients with nonresponse/mixed response/progressive disease (13%; 95% CI, 1 to 42; P = .026). Overall response rate in 43 patients with evidence of disease after haplo-SCT was 51% (22 patients), with 15 achieving CR (35%). Two patients developed GvHD grade 2 and 3 each. No unexpected adverse events occurred. CONCLUSION DB therapy after haplo-SCT in patients with rHR-NB is feasible, with low risk of inducing GvHD, and results in long-term remissions likely attributable to increased antineuroblastoma activity by donor-derived effector cells.
Collapse
Affiliation(s)
- Tim Flaadt
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ruth L Ladenstein
- St Anna Children's Hospital and Children's Cancer Research Institute, Department of Studies and Statistics for Integrated Research and Projects, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Holger N Lode
- Department of Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Helga Björk Arnardóttir
- Department for Studies and Statistics and Integrated Research, Children's Cancer Research Institute, Vienna, Austria
| | - Ulrike Poetschger
- Department for Studies and Statistics and Integrated Research, Children's Cancer Research Institute, Vienna, Austria
| | - Wolfgang Schwinger
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Friedhelm R Schuster
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Michaela Döring
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Peter F Ambros
- CCRI, Children's Cancer Research Institute, Vienna, Department of Tumor Biology and Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Manon Queudeville
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Steven W Warmann
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Jürgen Schäfer
- Department for Diagnostic and Interventional Radiology, University Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Christian Seitz
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (Exc 2180) "Image-guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Germany
| | - Patrick Schlegel
- Children's Medical Research Institute, The Cancer Centre for Children, The Children's Hospital Westmead, University of Sydney, Sydney, Australia
| | - Ines B Brecht
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ursula Holzer
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, University Hospital, University of Cologne, Cologne, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Heiko-Manuel Teltschik
- Department of Hematology and Oncology, Children's Hospital Stuttgart-Olgahospital, Stuttgart, Germany
| | - Toni Illhardt
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Cluster of Excellence iFIT (Exc 2180) "Image-guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Germany
| |
Collapse
|
4
|
Eichholz T, Döring M, Giardino S, Gruhn B, Seitz C, Flaadt T, Schwinger W, Ebinger M, Holzer U, Mezger M, Teltschik HM, Sparber-Sauer M, Koscielniak E, Abele M, Handgretinger R, Lang P. Haploidentical hematopoietic stem cell transplantation as individual treatment option in pediatric patients with very high-risk sarcomas. Front Oncol 2023; 13:1064190. [PMID: 36895486 PMCID: PMC9990259 DOI: 10.3389/fonc.2023.1064190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Background Prognosis of children with primary disseminated or metastatic relapsed sarcomas remains dismal despite intensification of conventional therapies including high-dose chemotherapy. Since haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is effective in the treatment of hematological malignancies by mediating a graft versus leukemia effect, we evaluated this approach in pediatric sarcomas as well. Methods Patients with bone Ewing sarcoma or soft tissue sarcoma who received haplo-HSCT as part of clinical trials using CD3+ or TCRα/β+ and CD19+ depletion respectively were evaluated regarding feasibility of treatment and survival. Results We identified 15 patients with primary disseminated disease and 14 with metastatic relapse who were transplanted from a haploidentical donor to improve prognosis. Three-year event-free survival (EFS) was 18,1% and predominantly determined by disease relapse. Survival depended on response to pre-transplant therapy (3y-EFS of patients in complete or very good partial response: 36,4%). However, no patient with metastatic relapse could be rescued. Conclusion Haplo-HSCT for consolidation after conventional therapy seems to be of interest for some, but not for the majority of patients with high-risk pediatric sarcomas. Evaluation of its future use as basis for subsequent humoral or cellular immunotherapies is necessary.
Collapse
Affiliation(s)
- Thomas Eichholz
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Michaela Döring
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Stefano Giardino
- Hematopoietic Stem Cell Transplantation Unit, Department of Hematology and Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Christian Seitz
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Tim Flaadt
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Wolfgang Schwinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martin Ebinger
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Ursula Holzer
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Markus Mezger
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | - Heiko-Manuel Teltschik
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany.,University Tübingen, Medical Faculty, Tübingen, Germany
| | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart gKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany.,University Tübingen, Medical Faculty, Tübingen, Germany
| | - Michael Abele
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| | | | - Peter Lang
- University Children's Hospital, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
5
|
Wu KH, Weng TF, Li JP, Chao YH. Antithymocyte Globulin Plus Post-Transplant Cyclophosphamide Combination as an Effective Strategy for Graft-versus-Host Disease Prevention in Haploidentical Peripheral Blood Stem Cell Transplantation for Children with High-Risk Malignancies. Pharmaceuticals (Basel) 2022; 15:1423. [PMID: 36422554 PMCID: PMC9694437 DOI: 10.3390/ph15111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Haploidentical hematopoietic stem cell transplantation using post-transplant cyclophosphamide (PTCy) for graft-versus-host disease (GVHD) prophylaxis has emerged as a valid alternative transplant strategy for patients lacking a suitable HLA-matched related donor. The high risk of severe GVHD remains the major clinical challenge in this setting. The addition of antithymocyte globulin (ATG) in PTCy-based regimens for GVHD reduction in haploidentical hematopoietic stem cell transplantation is rational and was reported in adult series. However, its feasibility is unknown in pediatric patients. Here, we firstly describe our experience of 15 consecutive children with high-risk malignancies receiving haploidentical peripheral blood stem cell transplantation using ATG plus PTCy for GVHD prophylaxis. Only three patients developed grade 1-2 acute GVHD, limited to skin. No grade 3-4 acute GVHD and chronic GVHD were observed. Viral reactivations were frequently seen but manageable. Six patients relapsed, as the main cause of death in our series. None died from events related to GVHD. Our data suggest that ATG plus PTCy is an effective strategy for GVHD prevention in haploidentical peripheral blood stem cell transplantation and is feasible in children with high-risk malignancies.
Collapse
Affiliation(s)
- Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Pathology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
6
|
Natural Killer Cell Recognition and Control of Epithelial Cancers. Cancer J 2022; 28:263-269. [PMID: 35880935 PMCID: PMC9336556 DOI: 10.1097/ppo.0000000000000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells possess an innate ability to recognize cancer and are key mediators of cytotoxic efficacy for anticancer antibodies. Recent advances in the ability to generate, qualify, and safely infuse NK cells have led to a wide variety of clinical trials in oncology. Although their efficacy is best established for liquid cancers, their potential application in solid cancers has received increased attention. Here, we provide general background across a disparate group of exemplary solid tumors for which there is evidence for an NK cell role, discuss NK cell recognition motifs specific to each and murine and human studies of each that are supportive of NK cell adoptive immunotherapy, and end with special considerations relevant to the solid tumor microenvironment.
Collapse
|
7
|
Weng TF, Wu KH. Haploidentical peripheral blood stem cell transplantation with posttransplant cyclophosphamide in a child with neuroblastoma relapse after autologous peripheral blood stem cell transplantation. Pediatr Blood Cancer 2022; 69:e29439. [PMID: 34854555 DOI: 10.1002/pbc.29439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Bates PD, Rakhmilevich AL, Cho MM, Bouchlaka MN, Rao SL, Hales JM, Orentas RJ, Fry TJ, Gilles SD, Sondel PM, Capitini CM. Combining Immunocytokine and Ex Vivo Activated NK Cells as a Platform for Enhancing Graft-Versus-Tumor Effects Against GD2 + Murine Neuroblastoma. Front Immunol 2021; 12:668307. [PMID: 34489927 PMCID: PMC8417312 DOI: 10.3389/fimmu.2021.668307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Cytokines/pharmacology
- Female
- Gangliosides/antagonists & inhibitors
- Gangliosides/immunology
- Gangliosides/metabolism
- Graft vs Tumor Effect
- Hematopoietic Stem Cell Transplantation
- Immunotherapy, Adoptive
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Lymphocyte Activation/drug effects
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroblastoma/immunology
- Neuroblastoma/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/therapy
- Mice
Collapse
Affiliation(s)
- Paul D. Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Myriam N. Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Seema L. Rao
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Joanna M. Hales
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rimas J. Orentas
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Paul M. Sondel
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
9
|
Quamine AE, Olsen MR, Cho MM, Capitini CM. Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:2796. [PMID: 34199783 PMCID: PMC8200074 DOI: 10.3390/cancers13112796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Collapse
Affiliation(s)
- Aicha E. Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Mallery R. Olsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
10
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
11
|
Şahin U, Demirer T. Graft-versus-cancereffect and innovative approaches in thetreatment of refractory solid tumors. Turk J Med Sci 2020; 50:1697-1706. [PMID: 32178508 PMCID: PMC7672351 DOI: 10.3906/sag-1911-112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background/aim Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been used for the treatment of various refractory solid tumors during the last two decades. After the demonstration of graft-versus-leukemia (GvL) effect in a leukemic murine model following allo-HSCT from other strains of mice, graft-versus-tumor (GvT) effect in a solid tumor after allo-HSCT has also been reported in a murine model in 1984. Several trials have reported the presence of a GvT effect in patients with various refractory solid tumors, including renal, ovarian and colon cancers, as well as soft tissue sarcomas [1]. The growing data on haploidentical transplants also indicate GvT effect in some pediatric refractory solid tumors. Novel immunotherapy-based treatment modalities aim at inducing an allo-reactivity against the metastatic solid tumor via a GvT effect. Recipient derived immune effector cells (RDICs) in the antitumor reactivity following allo-HSCT have also been considered as an emerging therapy for advanced refractory solid tumors. Conclusion This review summarizes the background, rationale, and clinical results of immune-based strategies using GvT effect for the treatment of various metastatic and refractory solid tumors, as well as innovative approaches such as haploidentical HSCT, CAR-T cell therapies and tumor infiltrating lymphocytes (TIL).
Collapse
Affiliation(s)
- Uğur Şahin
- Hematology Unit, Yenimahalle Education and Research Hospital, Yıldırım Beyazıt University, Ankara, Turkey
| | - Taner Demirer
- Department of Hematology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Marayati R, Quinn CH, Beierle EA. Immunotherapy in Pediatric Solid Tumors-A Systematic Review. Cancers (Basel) 2019; 11:E2022. [PMID: 31847387 PMCID: PMC6966467 DOI: 10.3390/cancers11122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/07/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the treatment of many pediatric solid tumors, children with aggressive and high-risk disease continue to have a dismal prognosis. For those presenting with metastatic or recurrent disease, multiple rounds of intensified chemotherapy and radiation are the typical course of action, but more often than not, this fails to control the progression of the disease. Thus, new therapeutics are desperately needed to improve the outcomes for these children. Recent advances in our understanding of both the immune system's biology and its interaction with tumors have led to the development of novel immunotherapeutics as alternative treatment options for these aggressive malignancies. Immunotherapeutic approaches have shown promising results for pediatric solid tumors in early clinical trials, but challenges remain concerning safety and anti-tumor efficacy. In this review, we aim to discuss and summarize the main classes of immunotherapeutics used to treat pediatric solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.); (C.H.Q.)
| |
Collapse
|
13
|
Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, Frueh JT, Merker M, Rettinger E, Soerensen J, Klingebiel T, Bader P, Ullrich E, Cappel C. The Synergistic Use of IL-15 and IL-21 for the Generation of NK Cells From CD3/CD19-Depleted Grafts Improves Their ex vivo Expansion and Cytotoxic Potential Against Neuroblastoma: Perspective for Optimized Immunotherapy Post Haploidentical Stem Cell Transplantation. Front Immunol 2019; 10:2816. [PMID: 31849984 PMCID: PMC6901699 DOI: 10.3389/fimmu.2019.02816] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite therapeutic progress, prognosis in high-risk NB is poor and innovative therapies are urgently needed. Therefore, we addressed the potential cytotoxic capacity of interleukin (IL)-activated natural killer (NK) cells compared to cytokine-induced killer (CIK) cells for the treatment of NB. NK cells were isolated from peripheral blood mononuclear cells (PBMCs) by indirect CD56-enrichment or CD3/CD19-depletion and expanded with different cytokine combinations, such as IL-2, IL-15, and/or IL-21 under feeder-cell free conditions. CIK cells were generated from PBMCs by ex vivo stimulation with interferon-γ, IL-2, OKT-3, and IL-15. Comparative analysis of expansion rate, purity, phenotype and cytotoxicity was performed. CD56-enriched NK cells showed a median expansion rate of 4.3-fold with up to 99% NK cell content. The cell product after CD3/CD19-depletion consisted of a median 43.5% NK cells that expanded significantly faster reaching also 99% of NK cell purity. After 10–12 days of expansion, both NK cell preparations showed a significantly higher median cytotoxic capacity against NB cells relative to CIK cells. Remarkably, these NK cells were also capable of efficiently killing NB spheroidal 3D culture in long-term cytotoxicity assays. Further optimization using a novel NK cell culture medium and a prolonged culturing procedure after CD3/CD19-depletion for up to 15 days enhanced the expansion rate up to 24.4-fold by maintaining the cytotoxic potential. Addition of an IL-21 boost prior to harvesting significantly increased the cytotoxicity. The final cell product consisted for the major part of CD16−, NCR-expressing, poly-functional NK cells with regard to cytokine production, CD107a degranulation and antitumor capacity. In summary, our study revealed that NK cells have a significantly higher cytotoxic potential to combat NB than CIK cell products, especially following the synergistic use of IL-15 and IL-21 for NK cell activation. Therefore, the use of IL-15+IL-21 expanded NK cells generated from CD3/CD19-depleted apheresis products seems to be highly promising as an immunotherapy in combination with haploidentical stem cell transplantation (SCT) for high-risk NB patients.
Collapse
Affiliation(s)
- Annekathrin Heinze
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Beatrice Grebe
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Melanie Bremm
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tasleem Ah Munir
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lea Graafen
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jochen T Frueh
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan Soerensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Cappel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Merker M, Meister MT, Heinze A, Jarisch A, Sörensen J, Huenecke S, Bremm M, Cappel C, Klingebiel T, Bader P, Rettinger E. Adoptive cellular immunotherapy for refractory childhood cancers: a single center experience. Oncotarget 2019; 10:6138-6151. [PMID: 31692914 PMCID: PMC6817438 DOI: 10.18632/oncotarget.27242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Prognosis of refractory childhood cancers despite multimodal treatment strategies remains poor. Here, we report a single center experience encountered in 18 patients with refractory solid malignancies treated with adoptive cellular immunotherapy (ACI) from haploidentical or matched donors following hematopoietic stem cell transplantation. While seven patients were in partial and six in complete remission (CR), five patients suffered from relapsed diseases at the time of ACI. 1.5-year probabilities of overall survival (OS) and progression-free survival (PFS) were 19.5% and 16.1% for all patients. Patients in CR showed estimated 1.5-year OS and PFS of 50.1% and 42.7%, respectively. CR was induced or rather sustained in ten children, with two still being alive 9.6 and 9.3 years after ACI. Naïve, central and effector memory T-cells correlated with responses. However, the majority of patients relapsed. Cumulative incidence of relapse was 79.8% at 1.5 years. Acute graft versus host disease (aGVHD) occurred in nine of 18 patients (50%) with aGVHD grade I–II observed in six (33%) and aGVHD grade III seen in three (17%) patients, manageable in all cases. Altogether, study results indicate that donor-derived ACI at its current state offers palliation but no clear curative benefit for refractory childhood cancers and warrants further improvement.
Collapse
Affiliation(s)
- Michael Merker
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Michael Torsten Meister
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Annekathrin Heinze
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Andrea Jarisch
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Jan Sörensen
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Melanie Bremm
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Claudia Cappel
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescent Medicine, University Hospital Frankfurt, JW Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW We aim to review the most recent findings in the use of NK cells in childhood cancers. RECENT FINDINGS Natural killer cells are cytotoxic to tumor cells. In pediatric leukemias, adoptive transfer of NK cells can bridge children not in remission to transplant. Interleukins (IL2, IL15) can enhance NK cell function. NK cell-CAR therapy has advantages of shorter life span that lessens chronic toxicities, lower risk of graft versus host disease when using allogeneic cells, ability of NK cells to recognize tumor cells that have downregulated MHC to escape T cells, and possibly less likelihood of cytokine storm. Cytotoxicity to solid tumors (rhabdomyosarcoma, Ewing's sarcoma, neuroblastoma) is seen with graft versus tumor effect in transplant and in combination with antibodies. Challenges lie in the microenvironment which is suppressive for NK cells. NK cell immunotherapy in childhood cancers is promising and recent works aim to overcome challenges.
Collapse
|
16
|
αβ T-cell-depleted haploidentical hematopoietic cell transplantation and zoledronate/interleukin-2 therapy in children with relapsed, high-risk neuroblastoma. Bone Marrow Transplant 2018; 54:348-352. [PMID: 30116016 DOI: 10.1038/s41409-018-0305-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/04/2018] [Accepted: 07/14/2018] [Indexed: 11/09/2022]
|
17
|
Liu APY, Lee PPW, Kwok JSY, Leung RYY, Chiang AKS, Ha SY, Cheuk DKL, Chan GCF. Selective T cell-depleted haploidentical hematopoietic stem cell transplantation for relapsed/refractory neuroblastoma. Pediatr Transplant 2018; 22:e13240. [PMID: 29921011 DOI: 10.1111/petr.13240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Relapsed/refractory NB carries a bleak outcome, warranting novel treatment options. HaploHSCT induces a graft-versus-NB effect via natural killer cell alloreactivity. Review of patients with relapsed/refractory NB who underwent haploHSCT with ex vivo T-cell depletion in our unit from 2013 through 2018. Ten patients were identified (male=5; median age at haploHSCT=6.45 y, range: 3.49-11.02 y). Indications were relapsed in 7 and refractoriness in 3; disease status at haploHSCT was CR in 2, PR in 6, and PD in 2. All patients received peripheral blood stem cell grafts after ex vivo T-cell depletion (CD3/CD19-depletion=1; TCR-αβ/CD19-depletion=4; CD3/CD45RA-depletion=4; and TCR-αβ/CD45RA-depletion=1). Conditioning regimens were fludarabine-based. Neutrophils engrafted on median D + 10 (range: D + 9 to +13), and platelets engrafted (≥20 × 109 /L) on median D + 8 (range: D + 5 to D + 14). Early T- and NK-cell recovery were evident. Of the 10 patients, acute rejection developed in 1 (who died of PD despite rescue HSCT), and 1 died of sepsis before engraftment; 8 experienced full donor-chimerism post-HSCT. Among the 8, 6 experienced CR, 1 died of PD, and 1 died of pulmonary hypertensive crisis before evaluation. At publication, 4 were in remission (2.8, 7.4, 28.5, and 58.9 months). No significant GvHD occurred. HaploHSCT with selective ex vivo T-cell depletion may be a safe and useful salvage strategy for relapsed/refractory NB.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Pamela P W Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Janette S Y Kwok
- Division of Transplantation and Immunogenetics, Department of Pathology, Queen Mary Hospital, Hong Kong SAR, China
| | - Rock Y Y Leung
- Department of Pathology, Queen Mary Hospital, Hong Kong SAR, China
| | - Alan K S Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Shau-Yin Ha
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Daniel K L Cheuk
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
18
|
Illhardt T, Toporski J, Feuchtinger T, Turkiewicz D, Teltschik HM, Ebinger M, Schwarze CP, Holzer U, Lode HN, Albert MH, Gruhn B, Urban C, Dykes JH, Teuffel O, Schumm M, Handgretinger R, Lang P. Haploidentical Stem Cell Transplantation for Refractory/Relapsed Neuroblastoma. Biol Blood Marrow Transplant 2018; 24:1005-1012. [DOI: 10.1016/j.bbmt.2017.12.805] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/30/2017] [Indexed: 12/25/2022]
|
19
|
Schober SJ, von Luettichau I, Wawer A, Steinhauser M, Salat C, Schwinger W, Ussowicz M, Antunovic P, Castagna L, Kolb HJ, Burdach SEG, Thiel U. Donor lymphocyte infusions in adolescents and young adults for control of advanced pediatric sarcoma. Oncotarget 2018; 9:22741-22748. [PMID: 29854312 PMCID: PMC5978262 DOI: 10.18632/oncotarget.25228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023] Open
Abstract
Background Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusions (DLI) may induce a graft-versus-tumor effect in pediatric sarcoma patients. Here, we describe general feasibility, toxicity and efficacy of DLI after allo-SCT. Results 4 of 8 patients responded. ES#4 had stable disease (SD) for 9 months after DLI and RMS#4 partial response for 8 months with combined hyperthermia/chemotherapy. In ES#4, DLI led to SD for 6 months and reverted residual disease before allo-SCT into complete remission. After DLI, ES#4 and RMS#4 developed acute GvHD (°III-°IV), ES#4 also developed chronic GvHD. 5 patients including ES#4 lived longer than expected. Median survival after allo-SCT was 2.3 years, post-relapse survival (PRS) was 13 months. Off note, HLA-mismatched DLI were associated with a trend towards increased survival after allo-SCT and increased PRS compared to HLA-matched DLI (23 versus 3 months). Materials and Methods We studied eight adolescents and young adults (AYAs) with advanced Ewing sarcoma (ES#1-4) and rhabdomyosarcoma (RMS#1-4) who received DLI. Escalating doses ranged from 2.5 × 104 to 1 × 108 CD3+ cells/kg body weight. AYAs were evaluated for response to DLI, graft-versus-host disease (GvHD) and survival. Conclusions DLI after allo-SCT may control advanced pediatric sarcoma in AYAs with controllable toxicity.
Collapse
Affiliation(s)
- Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| | - Irene von Luettichau
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| | - Angela Wawer
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| | - Maximilian Steinhauser
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| | - Christoph Salat
- Medical Center for Hematology and Oncology Munich MVZ, 80639 Munich, Germany
| | - Wolfgang Schwinger
- Department of Pediatrics, Medical University of Graz, A-8036 Graz, Austria
| | - Marek Ussowicz
- Department of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Petar Antunovic
- Department of Hematology and Regional Tumor Registry, University Hospital Linköping, 581 85 Linköping, Sweden
| | - Luca Castagna
- Department of Oncology and Hematology, IRCCS Humanitas Cancer Center, Humanitas University, 20089, Milan, Italy
| | - Hans-Jochem Kolb
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| | - Stefan E G Burdach
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany.,CCC München-Comprehensive Cancer Center, DKTK German Cancer Consortium Munich, 80336 Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Kinderklinik München Schwabing, 80804 Munich, Germany
| |
Collapse
|
20
|
Merker M, Meister MT, Rettinger E, Jarisch A, Soerensen J, Willasch A, Huenecke S, Cappel C, Bremm M, Salzmann-Manrique E, Krenn T, Rossig C, Kremens B, Koscielniak E, Klingebiel T, Bader P. Haploidentical allogeneic hematopoietic stem cell transplantation in patients with high-risk soft tissue sarcomas: results of a single-center prospective trial. Bone Marrow Transplant 2018; 53:891-894. [PMID: 29367709 DOI: 10.1038/s41409-018-0088-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Merker
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Michael Torsten Meister
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Andrea Jarisch
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Jan Soerensen
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Andre Willasch
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Claudia Cappel
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Emilia Salzmann-Manrique
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Krenn
- Department of Pediatric Oncology and Hematology, Saarland University Hospital, Homburg/Saar, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - Bernhard Kremens
- Department of Pediatric Hematology and Oncology, Children's Hospital, University of Duisburg, Essen, Germany
| | - Ewa Koscielniak
- Department of Pediatric Hematology and Oncology, Olgahospital Children's Hospital, Stuttgart, Germany
| | - Thomas Klingebiel
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
21
|
Llosa NJ, Cooke KR, Chen AR, Gamper CJ, Klein OR, Zambidis ET, Luber B, Rosner G, Siegel N, Holuba MJ, Robey N, Hayashi M, Jones RJ, Fuchs E, Holdhoff M, Loeb DM, Symons HJ. Reduced-Intensity Haploidentical Bone Marrow Transplantation with Post-Transplant Cyclophosphamide for Solid Tumors in Pediatric and Young Adult Patients. Biol Blood Marrow Transplant 2017; 23:2127-2136. [PMID: 28807769 PMCID: PMC5986177 DOI: 10.1016/j.bbmt.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
Abstract
High-risk, recurrent, or refractory solid tumors in pediatric, adolescent, and young adult (AYA) patients have an extremely poor prognosis despite current intensive treatment regimens. We piloted an allogeneic bone marrow transplant platform using reduced-intensity conditioning (RIC) and partially HLA-mismatched (haploidentical) related donors for this population of pediatric and AYA solid tumor patients. Sixteen patients received fludarabine, cyclophosphamide, melphalan, and low-dose total body irradiation RIC haploidentical BMT (haploBMT) followed by post-transplantation cyclophosphamide (PTCy), mycophenolate mofetil, and sirolimus. All assessable patients were full donor chimeras on day 30 with a median neutrophil recovery of 19 days and platelet recovery of 21 days. One patient (7%) exhibited secondary graft failure associated with concomitant infection. The median follow-up time was 15 months. Overall survival was 88%, 56%, and 21% at 6, 12, and 24 months, respectively. Median survival from transplant date was 14 months with a median progression-free survival 7 months. We observed limited graft-versus-host disease in 3 patients and nonrelapse mortality in 1 patient. We demonstrated that RIC haploBMT with PTCy is feasible and has acceptable toxicities in patients with incurable pediatric and AYA solid tumors; thus, this approach serves as a platform for post-transplant strategies to prevent relapse and optimize progression-free survival.
Collapse
Affiliation(s)
- Nicolas J Llosa
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland.
| | - Kenneth R Cooke
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Allen R Chen
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Christopher J Gamper
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Orly R Klein
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Elias T Zambidis
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Brandon Luber
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Gary Rosner
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nicholas Siegel
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Mary Jo Holuba
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Nancy Robey
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Masanori Hayashi
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Richard J Jones
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Ephraim Fuchs
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Matthias Holdhoff
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - David M Loeb
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Heather J Symons
- Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
22
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
23
|
Johler SM, Fuchs J, Seitz G, Armeanu-Ebinger S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol Immunother 2016; 65:1465-1476. [PMID: 27629595 PMCID: PMC11029580 DOI: 10.1007/s00262-016-1896-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to be involved in oncogenic transformation, tumour progression, and immunosuppression and is overexpressed in many solid tumours, including paediatric rhabdomyosarcoma (RMS). We investigated the function of MIF in RMS during treatment with cytotoxic drugs. RMS cell lines were analysed by flow cytometry, immunofluorescence staining, and ELISA. We demonstrated the overexpression of MIF in RMS cells and the enhanced expression and secretion after treatment with cytotoxic agents. Migration assays of RMS cells revealed that inhibitors of MIF (ISO-1, Ant.III 4-IPP, Ant.V, sulforaphane (SF)) and blocking antibodies caused reduced migration, indicating a role for MIF in metastatic invasion. Additionally, we investigated the function of MIF in immune escape. The development of a population containing immunosuppressive myeloid-derived suppressor cells was promoted by incubation in conditioned medium of RMS cells comprising MIF and was reversed by MIF inhibitors but not by antibodies. Although most inhibitors may restore immune activity, Ant.III and 10 µM SF disturbed T cell proliferation in a CFSE assay, whereas T cell proliferation was not reduced by 3 µM SF, ISO-1 or antibodies. However, the inhibition of MIF by blocking antibodies did not increase the killing activity of allogenic PBMCs co-cultured with RMS cells. Our results reveal that MIF may be involved in an immune escape mechanism and demonstrate the involvement of MIF in immunogenic cell death during treatment with cytotoxic drugs. Targeting MIF may contribute to the restoration of immune sensitivity and the control of migration and metastatic invasion.
Collapse
Affiliation(s)
- Sarah Maria Johler
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
24
|
Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg H, Hartmann W, Wiendl H, Pankratz S, Meltzer J, Farwick N, Greune L, Fluegge M, Rossig C. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology 2016; 6:e1250050. [PMID: 28197367 DOI: 10.1080/2162402x.2016.1250050] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers.
Collapse
Affiliation(s)
- Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Christian Spurny
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Muenster , Muenster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University , Duesseldorf, Germany
| | - Katharina Roellecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University , Duesseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology, Head and Neck Surgery, Children's Hospital, Heinrich Heine University, Duesseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk Institute for Pathology, University of Muenster , Muenster, Germany
| | - Heinz Wiendl
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany; Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Susann Pankratz
- Department of Neurology, University Hospital Muenster , Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Maike Fluegge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster , Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| |
Collapse
|
25
|
Abstract
Ewing sarcoma is a rare cancer of bone and soft tissues defined by a specific chromosomal rearrangement. Preclinical development of immunological treatment strategies includes expansion of T cells with native or grafted T-cell receptor specificities for Ewing sarcoma-associated intracellular antigens, and T-cell engineering with chimeric antigen receptors targeting surface antigens. In vitro preactivated NK cells may also have activity in this cancer. Major challenges are the heterogeneity of antigen expression in individual Ewing sarcomas, and the coexpression of most candidate targets on normal cells. Moreover, homing of therapeutic effector cells to both primary and metastatic tumor sites and adequate function within the immunosuppressive tumor microenvironment will have to be ensured to allow for effective immune targeting of this cancer.
Collapse
Affiliation(s)
- Claudia Rossig
- University Children's Hospital Muenster, Pediatric Hematology & Oncology, Albert-Schweitzer Campus 1, Building A1, 48149 Muenster, Germany
| |
Collapse
|
26
|
Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A, Gijsbers R, Van Gool S, Waer M, Billiau AD. Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 2013; 62:1733-44. [PMID: 24081484 PMCID: PMC11028935 DOI: 10.1007/s00262-013-1479-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 01/05/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation and donor leukocyte infusion (DLI) may hold potential as a novel form of immunotherapy for high-risk neuroblastoma. DLI, however, carries the risk of graft-versus-host disease (GvHD). Recipient leukocyte infusion (RLI) induces graft-versus-leukemia responses without GvHD in mice and is currently being explored clinically. Here, we demonstrate that both DLI and RLI, when given to mixed C57BL/6→A/J radiation chimeras carrying subcutaneous Neuro2A neuroblastoma implants, can slow the local growth of such tumors. DLI provoked full donor chimerism and GvHD; RLI produced graft rejection but left mice healthy. Flow cytometric studies showed that the chimerism of intratumoral leukocytes paralleled the systemic chimerism. This was associated with increased CD8/CD4 ratios, CD8+ T-cell IFN-γ expression and NK-cell Granzyme B expression within the tumor, following both DLI and RLI. The clinically safe anti-tumor effect of RLI was further enhanced by adoptively transferred naïve recipient-type NK cells. In models of intravenous Neuro2A tumor challenge, allogeneic chimeras showed superior overall survival over syngeneic chimeras. Bioluminescence imaging in allogeneic chimeras challenged with luciferase-transduced Neuro2A cells showed both DLI and RLI to prolong metastasis-free survival. This is the first experimental evidence that RLI can safely produce a local and systemic anti-tumor effect against a solid tumor. Our data indicate that RLI may provide combined T-cell and NK-cell reactivity effectively targeting Neuro2A neuroblastoma.
Collapse
Affiliation(s)
- Leen Willems
- Laboratory of Experimental Transplantation, KU Leuven, Herestraat 49, box 811, 3000, Leuven, Belgium,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Allogeneic stem cell transplantation for patients with advanced rhabdomyosarcoma: a retrospective assessment. Br J Cancer 2013; 109:2523-32. [PMID: 24149176 PMCID: PMC3833217 DOI: 10.1038/bjc.2013.630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/28/2013] [Accepted: 09/17/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Allogeneic haematopoietic stem cell transplantation (allo-SCT) may provide donor cytotoxic T cell-/NK cell-mediated disease control in patients with rhabdomyosarcoma (RMS). However, little is known about the prevalence of graft-vs-RMS effects and only a few case experiences have been reported. METHODS We evaluated allo-SCT outcomes of 30 European Group for Blood and Marrow Transplantation (EBMT)-registered patients with advanced RMS regarding toxicity, progression-free survival (PFS) and overall survival (OS) after allo-SCT. Twenty patients were conditioned with reduced intensity and ten with high-dose chemotherapy. Twenty-three patients were transplanted with HLA-matched and seven with HLA-mismatched grafts. Three patients additionally received donor lymphocyte infusions (DLIs). Median follow-up was 9 months. RESULTS Three-year OS was 20% (s.e.±8%) with a median survival time of 12 months. Cumulative risk of progression was 67% (s.e.±10%) and 11% (s.e.±6%) for death of complications. Thirteen patients developed acute graft-vs-host disease (GvHD) and five developed chronic GvHD. Eighteen patients died of disease and four of complications. Eight patients survived in complete remission (CR) (median: 44 months). No patients with residual disease before allo-SCT were converted to CR. CONCLUSION The use of allo-SCT in patients with advanced RMS is currently experimental. In a subset of patients, it may constitute a valuable approach for consolidating CR, but this needs to be validated in prospective trials.
Collapse
|
28
|
Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 2013; 35:337-47. [PMID: 23703550 DOI: 10.1097/mph.0b013e318299d637] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of the patients with high-risk neuroblastoma (NB) will relapse despite intensive multimodal therapy, with an additional 10% to 20% refractory to induction chemotherapy. Management of these patients is challenging, given disease heterogeneity, resistance, and organ toxicity including poor hematological reserve. This review will discuss the current treatment options and consider novel therapies on the horizon. Cytotoxic chemotherapy regimens for relapse and refractory NB typically center on the use of the camptothecins, topotecan and irinotecan, in combination with agents such as cyclophosphamide and temozolomide, with objective responses but poor long-term survival. I-meta-iodobenzylguanidine therapy is also effective for relapsed patients with meta-iodobenzylguanidine-avid disease, with objective responses in a third of cases. Immunotherapy with anti-GD2 has recently been incorporated into upfront therapy, but its role in the relapse setting remains uncertain, especially for patients with bulky disease. Future cell-based immunotherapies and other approaches may be able to overcome this limitation. Finally, many novel molecularly targeted agents are in development, some of which show specific promise for NB. Successful incorporation of these agents will require combinations with conventional cytotoxic chemotherapies, as well as the development of predictive biomarkers, to ultimately personalize approaches to patients with "targetable" molecular abnormalities.
Collapse
|
29
|
Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma. Bone Marrow Transplant 2013; 48:1084-90. [PMID: 23435516 DOI: 10.1038/bmt.2013.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/08/2022]
Abstract
Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.
Collapse
|
30
|
Natural killer cells can exert a graft-vs-tumor effect in haploidentical stem cell transplantation for pediatric solid tumors. Exp Hematol 2012; 40:882-891.e1. [DOI: 10.1016/j.exphem.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022]
|
31
|
Kanold J, Paillard C, Tchirkov A, Lang P, Kelly A, Halle P, Isfan F, Merlin E, Marabelle A, Rochette E, Deméocq F. NK cell immunotherapy for high-risk neuroblastoma relapse after haploidentical HSCT. Pediatr Blood Cancer 2012; 59:739-42. [PMID: 22180305 DOI: 10.1002/pbc.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/09/2011] [Indexed: 11/07/2022]
Abstract
Little is known on strategies to prevent or to treat relapses occurring after haploidentical stem cell transplantation (haplo-HSCT) performed for the high-risk neuroblastoma (NB). We describe a 6-year-old male with refractory NB who relapsed 22 months after haplo-HSCT. A complete remission was obtained with a combination of immuno-chemotherapy based on donor NK cells transplants, IL2 infusions and temozolomide/topotecan. This case is an incentive to explore both the immediate therapeutic effect of haplo-graft provided via haplo-NK cells and the immunogenic platform that haplo-HSCT offers for future treatment. Our post-relapse strategy shows that chemo- and bio-treatment should be viewed as complementary therapeutic options.
Collapse
Affiliation(s)
- Justyna Kanold
- CHU Clermont Ferrand, Centre Régional de Cancérologie et Thérapie Cellulaire Pédiatrique, CHU Estaing, Clermont Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lieber J, Hauch H, Lang P, Handgretinger R, Blumenstock G, Seitz G, Warmann SW, Fuchs J. Surgical management of stem cell transplantation-related complications in children. Pediatr Transplant 2012; 16:471-9. [PMID: 22584038 DOI: 10.1111/j.1399-3046.2012.01708.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HSCT is an established treatment option for some children with life-threatening diseases, but complications remain a major cause of morbidity and mortality. This retrospective data analysis addresses the surgical issues of children with HSCT-related complications. Between 2002 and 2008, HSCT was performed in 240 children for leukemias/lymphomas (n=135), solid tumors (n=59), immunodeficiencies (n=20), lipid storage diseases (n=10), autoimmune diseases (n=9), and others (n=7). HSCT-related complications requiring surgery occurred in 24 cases (10%) and most often in the leukemias/lymphomas group (18/24 cases): HC (cystoscopic irrigation, n=7), pulmonary aspergilloses (resection, n=7), bone necroses (core decompression, n=3), GvHD bowel (colostomy/PEG, n=2), ICH (drainage, n=2), bilateral kidney abscess (nephrectomies/renal transplantation, n=1), aspergillosis of the maxillary sinus (decompression, n=1), and post-traumatic wound healing disorder (meshed skin transplantation, n=1). Survival was 50% in the group with surgery and 62% in the group without (p=0.275). Even though this difference was not statistically significant, surgical intervention should be encouraged in all cases to achieve favorable results.
Collapse
Affiliation(s)
- Justus Lieber
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Venkatramani R, Furman WL, Fuchs J, Warmann SW, Malogolowkin MH. Current and future management strategies for relapsed or progressive hepatoblastoma. Paediatr Drugs 2012; 14:221-32. [PMID: 22702740 DOI: 10.2165/11597740-000000000-00000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatoblastoma is the most common primary malignant neoplasm of the liver in children. Improvements in chemotherapy and surgical techniques have increased survival rates for those with localized disease. The prognosis for patients with progressive or relapsed disease continues to be dismal. Complete resection by surgery or liver transplantation is necessary for cure. Few conventional chemotherapy agents have demonstrated activity in progressive or relapsed hepatoblastoma. Irinotecan has shown activity in relapsed and progressive hepatoblastoma. The efficacy of high-dose chemotherapy in this setting is unknown. Newer targeted agents that 'selectively' interfere with pathway targets involved in tumor growth and progression such as insulin-like growth factor, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are currently under development. Because of the rarity of hepatoblastoma, only a small minority of these agents will ever be evaluated in children with this disorder. Gene-directed therapy and immunotherapy have shown promising results in the preclinical setting, and should be investigated as future treatment options for advanced hepatoblastoma.
Collapse
|
34
|
Paillard C, Halle P, Tchirkov A, Confland C, Veyrat-Masson R, Quainon F, Perreira B, Rochette E, Pfeiffer M, Lang P, Deméocq F, Kanold J. NK cytotoxicity and alloreactivity against neuroblastoma cell lines in vitro: Comparison of Europium fluorometry assay and quantification by RT-PCR. J Immunol Methods 2012; 380:56-64. [DOI: 10.1016/j.jim.2012.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
35
|
Sung KW. Treatment of high-risk neuroblastoma. KOREAN JOURNAL OF PEDIATRICS 2012; 55:115-20. [PMID: 22574071 PMCID: PMC3346833 DOI: 10.3345/kjp.2012.55.4.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/21/2012] [Indexed: 12/02/2022]
Abstract
Although high-dose chemotherapy and autologous stem cell transplantation (HDCT/autoSCT) have improved the prognosis for patients with high-risk neuroblastoma (NB), event-free survival rates remain in the range of 30 to 40%, which is unsatisfactory. To further improve outcomes, several clinical trials, including tandem HDCT/autoSCT, high-dose 131I-metaiodobenzylguanidine treatment, and immunotherapy with NB specific antibody, have been undertaken and pilot studies have reported encouraging results. Nonetheless, about half of high-risk NB patients still experience treatment failure and have no realistic chance for cure with conventional treatment options alone after relapse. Therefore, a new modality of treatment is warranted for these patients. In recent years, several groups of investigators have examined the feasibility and effectiveness of reduced-intensity allogeneic stem cell transplantation (RI alloSCT) for the treatment of relapsed/progressed NB. Although a graft-versus-tumor effect has not yet been convincingly demonstrated in the setting of relapsed NB, the strategy of employing RI alloSCT has provided hope that treatment-related mortality will be reduced and a therapeutic benefit will emerge. However, alloSCT for NB is still investigational and there remain many issues to be elucidated in many areas. At present, alloSCT is reserved for specific clinical trials testing the immunomodulatory effect against NB.
Collapse
Affiliation(s)
- Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Sung KW. Allogeneic stem cell transplantation for neuroblastoma. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:3-5. [PMID: 22479270 PMCID: PMC3317468 DOI: 10.5045/kjh.2012.47.1.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Sung KW, Park JE, Chueh HW, Lee SH, Yoo KH, Koo HH, Kim JY, Cho EJ. Reduced-intensity allogeneic stem cell transplantation for children with neuroblastoma who failed tandem autologous stem cell transplantation. Pediatr Blood Cancer 2011; 57:660-5. [PMID: 21681924 DOI: 10.1002/pbc.23035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/21/2010] [Indexed: 11/07/2022]
Abstract
BACKGROUND To date, no effective curative option is available for children with neuroblastoma (NB) who failed tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/autoSCT). The present study evaluated the feasibility and efficacy of reduced-intensity allogeneic stem cell transplantation (RI alloSCT) in six children with NB who failed tandem HDCT/autoSCT. PROCEDURE A cyclophosphamide/fludarabine regimen was used as a conditioning for HLA-matched SCT, and ATG was added for haploidentical SCT. Peripheral blood stem cells from four HLA-matched donors and two haploidentical donors were transplanted. Immune suppression was rapidly tapered if graft-versus-host disease (GVHD) was absent. RESULTS Regimen-related short-term toxicity was manageable, and complete donor chimerism was achieved in the early period after transplant. Grade I/II acute GVHD developed or was induced in all patients. Tumor response, attributed to a graft-versus-tumor (GVT) effect, was observed in two of six patients after induction of acute GVHD. The other four patients with significant tumor burden prior to transplant had tumor progression despite presence of GVHD. However, it was difficult to effectively reduce the tumor burden prior to transplant through the use of conventional treatment modalities. CONCLUSION Although regimen-related short-term toxicity was manageable in intensively pretreated patients with NB, GVT effect was not sufficiently strong to control tumor progression in patients who had a significant tumor burden at transplant. Therefore, new treatment modalities to effectively reduce tumor burden prior to transplant in concert with post-transplant adjuvant treatment to enhance the GVT effect are needed to improve the outcome after RI alloSCT.
Collapse
Affiliation(s)
- Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rosenthal J, Pawlowska AB. High-dose chemotherapy and stem cell rescue for high-risk Ewing's family of tumors. Expert Rev Anticancer Ther 2011; 11:251-62. [PMID: 21342043 DOI: 10.1586/era.10.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prognosis for high-risk Ewing's tumors has been improved by multimodal radiation and chemotherapy. Ewing's family of tumors requires risk-adapted treatment. Risk stratification is dependent on stage, tumor localization and volume, and the pattern of disease spread at the time of diagnosis and the time of relapse. The concepts for high-dose therapy followed by hematopoietic cell transplantation in Ewing's family of tumors are based on dose-response and dose-intensity relationships. This article will discuss the use of high-dose therapy followed by hematopoietic cell transplantation, focusing on recent progress with respect to agent combinations, dose and outcomes of therapy.
Collapse
Affiliation(s)
- Joseph Rosenthal
- Pediatrics and Pediatric Hematology/Hematopoietic Cell Transplantation, City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA
| | | |
Collapse
|
39
|
Wernicke CM, Grunewald TG, Hendrik J, Kuci S, Kuci Z, Koehl U, Mueller I, Doering M, Peters C, Lawitschka A, Kolb HJ, Bader P, Burdach S, von Luettichau I. Mesenchymal stromal cells for treatment of steroid-refractory GvHD: a review of the literature and two pediatric cases. Int Arch Med 2011; 4:27. [PMID: 21843360 PMCID: PMC3169455 DOI: 10.1186/1755-7682-4-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/15/2011] [Indexed: 12/11/2022] Open
Abstract
Severe acute graft versus host disease (GvHD) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation. Human mesenchymal stromal cells (MSCs) play an important role in endogenous tissue repair and possess strong immune-modulatory properties making them a promising tool for the treatment of steroid-refractory GvHD. To date, a few reports exist on the use of MSCs in treatment of GvHD in children indicating that children tend to respond better than adults, albeit with heterogeneous results. We here present a review of the literature and the clinical course of two instructive pediatric patients with acute steroid-refractory GvHD after haploidentical stem cell transplantation, which exemplify the beneficial effects of third-party transplanted MSCs in treatment of acute steroid-refractory GvHD. Moreover, we provide a meta-analysis of clinical studies addressing the outcome of patients with steroid-refractory GvHD and treatment with MSCs in adults and in children (n = 183; 122 adults, 61 children). Our meta-analysis demonstrates that the overall response-rate is high (73.8%) and confirms, for the first time, that children indeed respond better to treatment of GvHD with MSCs than adults (complete response 57.4% vs. 45.1%, respectively). These data emphasize the significance of this therapeutic approach especially in children and indicate that future prospective studies are needed to assess the reasons for the observed differential response-rates in pediatric and adult patients.
Collapse
Affiliation(s)
- Caroline M Wernicke
- Children's Cancer Research and Roman Herzog Comprehensive Cancer Center, Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 Munich, Germany
| | - Thomas Gp Grunewald
- Children's Cancer Research and Roman Herzog Comprehensive Cancer Center, Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 Munich, Germany.,Medical Life Science and Technology Center, TUM Graduate School, Technische Universität München, Boltzmannstrasse 17, 85748 Garching, Germany
| | - Juenger Hendrik
- Children's Cancer Research and Roman Herzog Comprehensive Cancer Center, Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 Munich, Germany
| | - Selim Kuci
- Division for Stem Cell Transplantation, Department of Hematology, Oncology and Hemostasis, Hospital for Children and Adolescents, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Zyrafete Kuci
- Division for Stem Cell Transplantation, Department of Hematology, Oncology and Hemostasis, Hospital for Children and Adolescents, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ulrike Koehl
- Division for Stem Cell Transplantation, Department of Hematology, Oncology and Hemostasis, Hospital for Children and Adolescents, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ingo Mueller
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Michaela Doering
- University Children's Hospital, Hoppe-Seyler-Strasse 1, 72076 Tuebingen, Germany
| | - Christina Peters
- St. Anna Children's Hospital, Kinderspitalgasse 6, 1090 Vienna, Austria
| | - Anita Lawitschka
- St. Anna Children's Hospital, Kinderspitalgasse 6, 1090 Vienna, Austria
| | - Hans-Jochem Kolb
- Division for Stem Cell Transplantation, Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Department of Hematology, Oncology and Hemostasis, Hospital for Children and Adolescents, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefan Burdach
- Children's Cancer Research and Roman Herzog Comprehensive Cancer Center, Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 Munich, Germany
| | - Irene von Luettichau
- Children's Cancer Research and Roman Herzog Comprehensive Cancer Center, Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Kölner Platz 1, 80804 Munich, Germany
| |
Collapse
|
40
|
Abstract
Better understanding of the antitumor effect of allogeneic transplant and the need to reduce the toxicity of the procedure, particularly in elderly patients have spurred the development of reduced-intensity conditioning regimens (RIC). These regimens allow fast engraftment with very low chemotherapy-induced toxicity. They are widely used in adults and there are numerous studies to demonstrate their feasibility and efficiency, but in pediatrics, the place of RIC remains to be determined. They can be proposed in two pediatric populations. First, solid tumors or hematological malignancies remaining unresponsive to the reference strategies according to best practices in pediatrics. Second, in children presenting malignancies for which allografting is the only recognized curative indication but is contraindicated with myeloablative conditioning regimens. More than 100 pediatrics cases have been reported in various pathologies, including blood diseases, acute leukemia, Hodgkin's lymphoma and solid tumors, and promising results published recently underline how RIC warrants further investigation in prospective comparative multicentric trials. The use of new post-graft treatment modalities is expected to pave the way to the development of RIC in pediatric patients.
Collapse
|
41
|
Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer 2011; 56:578-83. [PMID: 21298742 DOI: 10.1002/pbc.22693] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/17/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND The prognosis of high-risk neuroblastoma patients has improved over the last decades. However, many patients experience relapse after successful initial treatment. We retrospectively analyzed the long-term outcome of relapsed patients of three consecutive national neuroblastoma trials. METHODS Patients were included when they fulfilled all of the following criteria: Age at diagnosis being 1 year or older, first diagnosis between 1990 and 2007, stage 4 disease or stage 3 neuroblastoma with MYCN amplification, and relapse or progression after successful first-line autologous stem cell transplantation (ASCT). RESULTS A total of 451 high-risk neuroblastoma patients 1 year or older underwent ASCT during first-line treatment, 253 experienced recurrence of disease, 158 received salvage chemotherapy, and 23 of them finally underwent a second ASCT. These 23 patients had a better median survival (2.08 years) and 3-year survival rate from recurrence (43.5 ± 10.9%) compared to 74 patients who had no second chemotherapy (median survival 0.24 years, 3-year survival rate 4.0 ± 2.6%) and 135 patients who underwent second-line chemotherapy but did not undergo second ASCT (median survival of 0.89 years, 3-year survival rate 9.6 ± 2.8%, P < 0.001). By February 2010, 3/23 patients were in complete remission, 3/23 in very good partial remission, 1/23 in partial remission, 14/23 patients died of disease after successful second ASCT, and 2/23 died of complications due to second ASCT. CONCLUSION Intensive second-line therapy is feasible. A small subgroup of relapsed high-risk neuroblastoma patients may benefit from intensive relapse chemotherapy and second ASCT. The potential of long-term survival justifies clinical trials on intensive second-line treatment.
Collapse
Affiliation(s)
- Thorsten Simon
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Peinemann F, Smith LA, Kromp M, Bartel C, Kröger N, Kulig M. Autologous hematopoietic stem cell transplantation following high-dose chemotherapy for non-rhabdomyosarcoma soft tissue sarcomas. Cochrane Database Syst Rev 2011:CD008216. [PMID: 21328307 DOI: 10.1002/14651858.cd008216.pub3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Soft tissue sarcomas (STS) are a highly heterogeneous group of rare malignant solid tumors. Non-rhabdomyosarcoma soft tissue sarcomas (NRSTS) comprise all STS except rhabdomyosarcoma. In patients with advanced local or metastatic disease, autologous hematopoietic stem cell transplantation (HSCT) applied after high-dose chemotherapy (HDCT) is a planned rescue therapy for HDCT-related severe hematologic toxicity. OBJECTIVES To assess the effectiveness and safety of HDCT followed by autologous HSCT for all stages of soft tissue sarcomas in children and adults. SEARCH STRATEGY We searched the electronic databases CENTRAL (The Cochrane Library 2010, Issue 2), MEDLINE and EMBASE (February 2010). Online trial registers, congress abstracts and reference lists of reviews were searched and expert panels and authors were contacted. SELECTION CRITERIA Terms representing STS and autologous HSCT were required in the title, abstract or keywords. In studies with aggregated data, participants with NRSTS and autologous HSCT had to constitute at least 80% of the data. Comparative non-randomized studies were included because randomized controlled trials (RCTs) were not expected. Case series and case reports were considered for an additional descriptive analysis. DATA COLLECTION AND ANALYSIS Study data were recorded by two review authors independently. For studies with no comparator group, we synthesised results for studies reporting aggregate data and conducted a pooled analysis of individual participant data using the Kaplan-Meyer method. The primary outcomes were overall survival (OS) and treatment-related mortality (TRM). MAIN RESULTS We included 54 studies, from 467 full texts articles screened (11.5%), reporting on 177 participants that received HSCT and 69 participants that received standard care. Only one study reported comparative data. In the one comparative study, OS at two years after HSCT was estimated as statistically significantly higher (62.3%) compared with participants that received standard care (23.2%). In a single-arm study, the OS two years after HSCT was reported as 20%. In a pooled analysis of the individual data of 54 participants, OS at two years was estimated as 49% (95% CI 34% to 64%). Data on TRM, secondary neoplasia and severe toxicity grade 3 to 4 after transplantation were sparse. All 54 studies had a high risk of bias. AUTHORS' CONCLUSIONS Due to a lack of comparative studies, it is unclear whether participants with NRSTS have improved survival from autologous HSCT following HDCT. Owing to this current gap in knowledge, at present HDCT and autologous HSCT for NRSTS should only be used within controlled trials.
Collapse
Affiliation(s)
- Frank Peinemann
- Department of Non-Drug Interventions, Institute for Quality and Efficiency in Health Care (IQWiG), Dillenburger Str. 27, Cologne, Germany, 51105
| | | | | | | | | | | |
Collapse
|
43
|
Thiel U, Wawer A, Wolf P, Badoglio M, Santucci A, Klingebiel T, Basu O, Borkhardt A, Laws HJ, Kodera Y, Yoshimi A, Peters C, Ladenstein R, Pession A, Prete A, Urban EC, Schwinger W, Bordigoni P, Salmon A, Diaz MA, Afanasyev B, Lisukov I, Morozova E, Toren A, Bielorai B, Korsakas J, Fagioli F, Caselli D, Ehninger G, Gruhn B, Dirksen U, Abdel-Rahman F, Aglietta M, Mastrodicasa E, Torrent M, Corradini P, Demeocq F, Dini G, Dreger P, Eyrich M, Gozdzik J, Guilhot F, Holler E, Koscielniak E, Messina C, Nachbaur D, Sabbatini R, Oldani E, Ottinger H, Ozsahin H, Schots R, Siena S, Stein J, Sufliarska S, Unal A, Ussowicz M, Schneider P, Woessmann W, Jürgens H, Bregni M, Burdach S. No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients. Ann Oncol 2011; 22:1614-1621. [PMID: 21245159 DOI: 10.1093/annonc/mdq703] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Outcomes of Ewing tumor (ET) patients treated with allogeneic stem cell transplantation (allo-SCT) were compared regarding the use of reduced-intensity conditioning (RIC) and high-intensity conditioning (HIC) regimens as well as human leukocyte antigen (HLA)-matched and HLA-mismatched grafts. PATIENTS AND METHODS We retrospectively analyzed data of 87 ET patients from the European Group for Blood and Marrow Transplantation, Pediatric Registry for Stem Cell Transplantations, Asia Pacific Blood and Marrow Transplantation and MetaEICESS registries treated with allo-SCT. Fifty patients received RIC (group A) and 37 patients received HIC (group B). Twenty-four patients received HLA-mismatched grafts and 63 received HLA-matched grafts. RESULTS Median overall survival was 7.9 months [±1.24, 95% confidence interval (CI) 5.44-10.31] for group A and 4.4 months (±1.06, 95% CI 2.29-6.43) for group B patients (P = 1.3). Death of complications (DOC) occurred in 4 of 50 (0.08) and death of disease (DOD) in 33 of 50 (0.66) group A and in 16 of 37 (0.43) and 17 of 37 (0.46) group B patients, respectively. DOC incidence was decreased (P < 0.01) and DOD/relapse increased (P < 0.01) in group A compared with group B. HLA mismatch was not generally associated with graft-versus-Ewing tumor effect (GvETE). CONCLUSIONS There was no improvement of survival with RIC compared with HIC due to increased DOD/relapse incidence after RIC despite less DOC incidence. This implicates general absence of a clinically relevant GvETE with current protocols.
Collapse
Affiliation(s)
- U Thiel
- Department of Pediatrics and Wilhelm Sander Sarcoma Unit MRI, Pediatric Oncology Center, Technische Universität München
| | - A Wawer
- Department of Pediatrics and Wilhelm Sander Sarcoma Unit MRI, Pediatric Oncology Center, Technische Universität München
| | - P Wolf
- Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - M Badoglio
- EBMT Data & Study Office, Hopital Saint-Antoine, Assistance Publique des Hôpitaux de Paris and UPMC Univ Paris 06, Paris, France
| | - A Santucci
- Section of Pediatric Hematology & Oncology, University of Perugia, Perugia, Italy
| | - T Klingebiel
- Children's Hospital III, Department of Pediatrics, Johann Wolfgang Goethe University, Frankfurt
| | - O Basu
- Children's Hospital III, Department of Pediatrics, Johann Wolfgang Goethe University, Frankfurt
| | - A Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - H-J Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Y Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University, Aichi; APBMT Data Center, Nagoya University School of Medicine, Nagoya, Japan
| | - A Yoshimi
- APBMT Data Center, Nagoya University School of Medicine, Nagoya, Japan
| | - C Peters
- Department of Pediatrics, St. Anna Kinderspital, Vienna, Austria
| | - R Ladenstein
- Department of Pediatrics, St. Anna Kinderspital, Vienna, Austria
| | - A Pession
- Department of Scienze Pediatriche Mediche e Chirurgiche, Ospedale S Orsola Malpighi, Bologna, Italy
| | - A Prete
- Department of Scienze Pediatriche Mediche e Chirurgiche, Ospedale S Orsola Malpighi, Bologna, Italy
| | - E-C Urban
- Department of Pediatrics, Medical University of Graz, Graz, Austria
| | - W Schwinger
- Department of Pediatrics, Medical University of Graz, Graz, Austria
| | - P Bordigoni
- Service de Transplantation Medullaire, CHU de Nancy Brabois, Vandoeuvre-les-Nancy, France
| | - A Salmon
- Service de Transplantation Medullaire, CHU de Nancy Brabois, Vandoeuvre-les-Nancy, France
| | - M A Diaz
- Department of Pediatrics, Division of Pediatric Hematology-Oncology and Hematopoietic Stem Cell Transplantation and Cell Therapy Unit, Hospital Infantil Universitario Niño Jesus, Madrid, Spain
| | - B Afanasyev
- St. Petersburg State Medical Pavlov University, Ratsa Gorbacheva Memorial Children`s Institute, Department of Hematology and Transplantology, St. Petersburg, Russia
| | - I Lisukov
- St. Petersburg State Medical Pavlov University, Ratsa Gorbacheva Memorial Children`s Institute, Department of Hematology and Transplantology, St. Petersburg, Russia
| | - E Morozova
- St. Petersburg State Medical Pavlov University, Ratsa Gorbacheva Memorial Children`s Institute, Department of Hematology and Transplantology, St. Petersburg, Russia
| | - A Toren
- Pediatric Hemato-Oncology Unit, Sheba Medical Center (affiliated to the Sackler Faculty of Medicine), Tel Hashomer, Israel
| | - B Bielorai
- Pediatric Hemato-Oncology Unit, Sheba Medical Center (affiliated to the Sackler Faculty of Medicine), Tel Hashomer, Israel
| | - J Korsakas
- Department of Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - F Fagioli
- Stem Cell Transplantation and Cellular Therapy Unit, Pediatric Onco-Hematology Division, "Regina Margherita" Children's Hospital, Turin
| | - D Caselli
- Department of Oncoematologia Pediatrica, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy
| | - G Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden
| | - B Gruhn
- Department of Pediatrics, University of Jena, Jena
| | - U Dirksen
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - F Abdel-Rahman
- The Bone Marrow and Stem Cell Transplantation Program, King Hussein Cancer Center, Amman, Jordan
| | - M Aglietta
- Department of Istituto per la Ricerca e la Cura del Cancro, Turin, Italy
| | - E Mastrodicasa
- Section of Pediatric Hematology & Oncology, University of Perugia, Perugia, Italy
| | - M Torrent
- Hospital de la Santa Creu i Sant Pau, Department of Pediatrics, Barcelona, Spain
| | - P Corradini
- Department of Hematology - Bone Marrow Transplantation Unit, Istituto Nazionale dei Tumori, University of Milano, Milan, Italy
| | - F Demeocq
- Centre Hospitalier et Universitaire de Clermont-Ferrand, Service de Pédiatrie B et Unité Bioclinique de Thérapie Cellulaire, Clermont-Ferrand, France
| | - G Dini
- Department of UO Ematologia ed Oncologia Pediatrica, Istituto G Gaslini, Genova, Italy
| | - P Dreger
- Department of Internal Medicine V, University of Heidelberg, Heidelberg
| | - M Eyrich
- Children's Hospital, Department of Paediatric Stem Cell Transplantation, University of Würzburg, Würzburg, Germany
| | - J Gozdzik
- Transplantation Centre, University Children's Hospital, Cracow, Poland
| | - F Guilhot
- Department of Hematology, University Hospital, Poitiers, France
| | - E Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg
| | - E Koscielniak
- Department of Pediatrics 5 (Oncology, Hematology, Immunology), Olga Hospital, Klinikum Stuttgart, Stuttgart, Germany
| | - C Messina
- Hemo/Oncology, Department of Pediatrics, Hospital-University of Padova, Padova, Italy
| | - D Nachbaur
- University Hospital of Innsbruck, Internal Medicine V, Department of Hematology and Oncology, Innsbruck, Austria
| | - R Sabbatini
- Department of Oncology, Haematology, and Respiratory Diseases, Policlinico di Modena, Modena
| | - E Oldani
- Department of U.S.C. Ematologia, Ospedali Riuniti, Bergamo, Italy
| | - H Ottinger
- Department of Bone Marrow Transplantation, University Hospital of Essen, Essen, Germany
| | - H Ozsahin
- Paediatric Oncology Unit, University of Geneva Children's Hospital, Geneva, Switzerland
| | - R Schots
- Division of Clinical Hematology and BMT Unit, University Hospital Brussels, Brussels, Belgium
| | - S Siena
- Department of S. C. Divisione Oncologia Falck and S. C. Divisione Anatomia Patologica, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - J Stein
- Bone marrow Transplant Unit, Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - S Sufliarska
- Bone Marrow Transplantation Unit, Department of Pediatrics, Comenius University Medical School, Bratislava, Slovak Republic
| | - A Unal
- Institutions Erciyes Medical School, Department of Hematology and Oncology, Kapadokya BMT Center, Kayseri, Turkey
| | - M Ussowicz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - P Schneider
- Department of Pediatric Hematology and Oncology, Hôpital Charles Nicolle, Rouen, France
| | - W Woessmann
- Department of Pediatric Hematology and Oncology, University Hospital, Giessen, Germany
| | - H Jürgens
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - M Bregni
- Unit of Medical Oncology, Ospedale San Giuseppe, Milan, Italy
| | - S Burdach
- Department of Pediatrics and Wilhelm Sander Sarcoma Unit MRI, Pediatric Oncology Center, Technische Universität München.
| | | | | | | |
Collapse
|
44
|
Ash S, Stein J, Askenasy N, Yaniv I. Immunomodulation with dendritic cells and donor lymphocyte infusion converge to induce graft vs neuroblastoma reactions without GVHD after allogeneic bone marrow transplantation. Br J Cancer 2010; 103:1597-605. [PMID: 20978501 PMCID: PMC2990575 DOI: 10.1038/sj.bjc.6605924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mounting evidence points to the efficacy of donor lymphocyte infusion (DLI) and immunisation with tumour-pulsed dendritic cells (DC) in generating graft vs leukaemia reactions after allogeneic bone marrow transplantation (BMT). We assessed the efficacy of DLI and DC in generating potent graft vs neuroblastoma tumour (GVT) reactions following allogeneic BMT. METHODS Mice bearing congenic (H2K(a)) Neuro-2a tumours were grafted with allogeneic (H2K(b)) T-cell-depleted bone marrow cells. Tumour-pulsed donor DC (DC(Neuro2a)) were inoculated (on day +7) in conjunction with donor (H2K(b)) and haploidentical (H2K(a/b)) lymphocytes. RESULTS Murine Neuro-2a cells elicit immune reactions as efficient as B lymphoma in major histocompatibility complex antigen-disparate mice. Lymphopenia induced by conditioning facilitates GVT, and transition to adaptive immunity is enhanced by simultaneous infusion of and DC(Neuro2a) and lymphocytes devoid of graft vs host (GVH) activity (H2K(a/b)). In variance, the efficacy of DC-mediated immunomodulation was diminished by severe graft vs host disease (GVHD), showing mechanistic dissociation and antagonising potential to GVT. CONCLUSIONS The GVHD is not a prerequisite to induce GVT reactivity after allogeneic BMT, but is rather detrimental to induction of anti-tumour immunity by DC-mediated immunomodulation. Simultaneous inoculation of tumour-pulsed donor DC and DLI synergise in stimulation of potent GVT reactions to the extent of eradication of established NB tumours.
Collapse
Affiliation(s)
- S Ash
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - J Stein
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Pediatric Bone Marrow Transplant Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| | - N Askenasy
- Frankel Laboratory of Experimental Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, 14 Kaplan Street, Petach Tikva 49202, Israel
| | - I Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
- Zaizov Cancer Immunotherapy Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel
| |
Collapse
|
45
|
IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16- subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother 2010; 33:200-10. [PMID: 20145545 DOI: 10.1097/cji.0b013e3181bb46f7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To characterize natural killer (NK) cell subpopulations during activation, we analyzed the NK cell receptor repertoire and functionality of purified clinical scale CD56CD3 donor NK cells during stimulation with 1000 U/mL interleukin (IL)-2 for up to 14 days. In a phase I/II trial, we investigated the efficacy and feasibility of nonidentical NK cell infusion in patients with neuroblastoma after haploidentical stem cell transplantation. After IL-2 stimulation, large differences in the distribution of CD16 and CD16 subpopulations were found in 12 donors. Thereby, surface expression for all natural cytotoxicity receptors (NCRs) and NKG2D increased. In addition, killer cell immunoglobulin-like receptor (KIR) NK cells were overgrown by KIR proportion and the homing receptor CD62L was lost during stimulation. NK cell cytotoxicity against K562 and neuroblastoma cells increased and significantly higher cytokine secretion (eg, interferon-gamma, tumor necrosis factor-beta, macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta) was observed after IL-2 stimulation compared with freshly isolated NK cells. However, NK cells of donors showing an initially enhanced cytotoxicity combined with NCR and CD69 expression, seemed to be exhausted and did not favor a stimulation period over 9 days. When IL-2-stimulated NK cells were given to transplant recipients, they induced a decrease of peripheral blood NK, in particular of CD56-NK cells. Our data indicate that IL-2 stimulation increases the expression of activating receptors and emphasizes mechanisms beside KIR/human leukocyte antigen. Furthermore, the results suggest that the expansion period of purified NK cells has to be individualized to optimize NK cell immunotherapy.
Collapse
|
46
|
Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant group. Blood 2010; 115:3437-46. [PMID: 20040760 DOI: 10.1182/blood-2009-03-207001] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
T cell–depleted haploidentical hematopoietic stem cell transplantation (haploHSCT) is an option to treat children with very high-risk acute lymphoblastic leukemia (ALL) lacking an HLA-identical donor. We analyzed 127 children with ALL who underwent haploHSCT in first (n = 22), second (n = 48), or third (n = 32), complete remission or in relapse (n = 25). The 5-year leukemia-free survival (LFS) was 30%, 34%, 22%, and 0%, respectively. A risk-factor analysis was performed for patients who underwent transplantation in remission (n = 102). Five-year nonrelapse mortality (NRM), relapse incidence (RI), and LFS were 37%, 36%, and 27%, respectively. A trend of improved LFS rate and decreased RI was observed for children given a graft with higher number of CD34+ cells (adjusted P = .09 and P = .07, respectively). In a multivariate analysis, haploHSCT performed in larger centers (performing ≥ 231 allotransplantations in the studied period) was associated with improved LFS rate and decreased RI (adjusted P = .01 and P = .04, respectively), adjusting for different patient-, disease-, and transplant-related factors such as number of previous autotransplantations, cytomegalovirus serology status, type of T-cell depletion, and use of total body irradiation and antithymocyte globulin. In conclusion, higher CD34+ cell dose and better patient selection may improve outcomes of children with ALL who undergo a haploHSCT. Transplant centers initiating programs on haploHSCT for children may collaborate with more experienced centers.
Collapse
|
47
|
|
48
|
Lankester AC, Ball LM, Lang P, Handgretinger R. Immunotherapy in the context of hematopoietic stem cell transplantation: the emerging role of natural killer cells and mesenchymal stromal cells. Pediatr Clin North Am 2010; 57:97-121. [PMID: 20307714 DOI: 10.1016/j.pcl.2009.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunotherapy in the context of hematopoietic stem cell transplantation has been dominated for many years by T-cell- and dendritic-cell-based treatment modalities. During the last decade, insight into the biology of natural killer (NK) cells and mesenchymal stromal cells (MSC) has rapidly increased and resulted in NK- and MSC-based therapeutic strategies in clinical practice. This article reviews current knowledge of the biology and clinical aspects of NK cells and MSC.
Collapse
Affiliation(s)
- Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Abstract
Because severe forms of the graft-versus-host reaction directed against normal tissues (also termed graft-versus-host disease [GVHD]) also contribute to morbidity and mortality following allogeneic hematopoietic stem cell transplantation, major efforts have focused on strategies to separate GVHD from the potentially beneficial immune reactivity against tumor (also called the graft-versus-tumor [GVT] effect). This article focuses on the data supporting the contribution of the GVT effect to cure of malignancy, what is known about the biology of the GVT reaction, and, finally, strategies to manipulate the GVT effect to increase the potency of HSCT.
Collapse
Affiliation(s)
- Terry J Fry
- Division of Blood and Marrow Transplantation/Immunology, Center for Cancer and Blood Disorders, Children's National Medical Center, 1 West Wing, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | | | | |
Collapse
|
50
|
Toporski J, Garkavij M, Tennvall J, Ora I, Gleisner KS, Dykes JH, Lenhoff S, Juliusson G, Scheding S, Turkiewicz D, Békássy AN. High-dose iodine-131-metaiodobenzylguanidine with haploidentical stem cell transplantation and posttransplant immunotherapy in children with relapsed/refractory neuroblastoma. Biol Blood Marrow Transplant 2009; 15:1077-85. [PMID: 19660720 DOI: 10.1016/j.bbmt.2009.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
Abstract
We evaluated the feasibility and efficacy of using high-dose iodine-131-metaiodobenzylguanidine ((131)I-MIBG) followed by reduced-intensity conditioning (RIC) and transplantation of T cell-depleted haploidentical peripheral blood stem cells (designated haplo-SCT) to treat relapsing/refractory neuroblastoma (RRNB). Five RRNB patients were enrolled: 4 with relapse (3 after autologous SCT) and 1 with induction therapy failure. The preparative regimen included high-dose (131)I-MIBG on day -20, followed by fludarabine (Flu), thiotepa, and melphalan (Mel) from day -8 to -1. Granulocyte-colony stimulating factor (G-CSF)-mobilized, T cell-depleted haploidentical paternal stem cells were infused on day 0 together with cultured donor mesenchymal stem cells. A single dose of rituximab was given on day +1. After cessation of short immunosuppression (mycophenolate, OKT3), 4 children received donor lymphocyte infusion (DLI). (131)I-MIBG infusion and RIC were well tolerated. All patients engrafted. No primary acute graft-versus-host disease (aGVHD) was observed. Four children developed aGVHD after DLI and were successfully treated. Analysis of immunologic recovery showed fast reappearance of potentially immunocompetent natural killer (NK) and T cells, which might have acted as effector cells responsible for the graft-versus-tumor (GVT) effect. Two children are alive and well, with no evidence of disease 40 and 42 months after transplantation. One patient experienced late progression with new bone lesions (sternum) 38 months after haplo-SCT, and is being treated with local irradiation and reinstituted DLI. One patient rejected the graft, was rescued with autologous backup, and died of progressive disease 5 months after transplantation. Another child relapsed 7 months after transplantation and died 5 months later. High-dose (131)I-MIBG followed by RIC and haplo-SCT for RRNB is feasible and promising, because 2 of 5 children on that regimen achieved long-lasting remission. Further studies are needed to evaluate targeted therapy and immune-mediated tumor control in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Jacek Toporski
- Department of Pediatric Oncology, University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|