1
|
du Plessis AJ, Volpe JJ. Prosencephalic Development. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:38-65.e5. [DOI: 10.1016/b978-0-443-10513-5.00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Cotton S, Ferreira D, Relvas-Santos M, Brandão A, Afonso LP, Miranda A, Ferreira E, Santos B, Gonçalves M, Lopes P, Santos LL, Silva AMN, Ferreira JA. E-selectin affinity glycoproteomics reveals neuroendocrine proteins and the secretin receptor as a poor-prognosis signature in colorectal cancer. Mol Oncol 2024. [PMID: 39508360 DOI: 10.1002/1878-0261.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 11/15/2024] Open
Abstract
Colorectal cancer (CRC) cells express sialylated Lewis antigens (sLe), crucial for metastasis via E-selectin binding. However, these glycoepitopes lack cancer specificity, and E-selectin-targeted glycoproteins remain largely unknown. Here, we established a framework for identifying metastasis-linked glycoproteoforms. More than 70% of CRC tumors exhibited overexpression of sLeA/X, yet without discernible associations with metastasis or survival. However, The Cancer Genome Atlas (TCGA) analysis unveiled differing expression patterns of sLeA/X-related glycogenes correlating with disease severity, indicating context-dependent regulation by distinct glycosyltransferases. Deeper exploration of metastatic tumor sialoglycoproteome identified nearly 600 glycoproteins, greatly expanding our understanding of the metastasis-related glycoproteome. These glycoproteins were linked to cell adhesion, oncogenic pathways, and neuroendocrine functions. Using an in-house algorithm, the secretin receptor (SCTR) emerged as a top-ranked targetable glycoprotein. Tumor screening confirmed SCTR's association with poor prognosis and metastasis, with N-glycosylation adding cancer specificity to this glycoprotein. Prognostic links were reinforced by TCGA-based investigations. In summary, SCTR, a relatively unknown CRC glycoprotein, holds potential as a biomarker of poor prognosis and as an E-selectin ligand, suggesting an unforeseen role in disease dissemination. Future investigations should focus on this glycoprotein's biological implications for clinical applications.
Collapse
Affiliation(s)
- Sofia Cotton
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Dylan Ferreira
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Marta Relvas-Santos
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Andreia Brandão
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
| | - Luís Pedro Afonso
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- Pathology Department, Portuguese Oncology Institute of Porto, Portugal
| | - Andreia Miranda
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Eduardo Ferreira
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
| | - Beatriz Santos
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Martina Gonçalves
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| | - Paula Lopes
- Pathology Department, Portuguese Oncology Institute of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Portugal
| | - André M N Silva
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - José Alexandre Ferreira
- Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Portugal
| |
Collapse
|
3
|
Sotiriou S, Samara AA, Anastasakis E, Zikopoulos A, Papoulidis I, Manolakos E, Pavlidou E, Skentou C. Prenatal Identification of a Missense Mutation of the L1CAM Gene Associated With Hydrocephalus Using Next-Generation Sequencing. Cureus 2024; 16:e55142. [PMID: 38558627 PMCID: PMC10979761 DOI: 10.7759/cureus.55142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
We present the case of a 35-year-old pregnant woman who visited our department for a routine ultrasonography screening scan for fetus anatomy during the 22nd week of gestation. Our report revealed a male fetus with marked hydrocephalus and severe intrauterine growth retardation. After extensive counseling, the couple decided to proceed with an invasive diagnosis via amniocentesis. The cytogenetic analysis showed findings related to clinical history and ultrasound findings related to the presence of a nucleotide change in c.578T>C with an amino acid change in p.Leu198Pro of the L1CAM gene. The result was reported as a hemizygote missense L1CAM gene variant of unknown significance. After extensive parental counseling, the couple decided on pregnancy termination. We report the present case of L1CAM mutation in p.Leu198Pro to add to the limited knowledge regarding the clinical presentation of mutations of the L1CAM gene with emphasis on prenatal diagnosis.
Collapse
Affiliation(s)
| | - Athina A Samara
- Department of Embryology, University of Thessaly, Larissa, GRC
| | | | | | | | | | - Efterpi Pavlidou
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, GRC
| | - Chara Skentou
- Department of Obstetrics and Gynecology, University of Thessaly, Larissa, GRC
| |
Collapse
|
4
|
Ahmed RR, Medhat AM, Hamdy GM, Effat LK, Abdel-Hamid MS, Abdel-Salam GM. X-Linked Hydrocephalus with New L1CAM Pathogenic Variants: Review of the Most Prevalent Molecular and Phenotypic Features. Mol Syndromol 2023; 14:283-292. [PMID: 37766829 PMCID: PMC10521243 DOI: 10.1159/000529545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The underlying molecular defects of congenital hydrocephalus are heterogeneous and many isolated forms of hydrocephalus remain unsolved at the molecular level. Congenital hydrocephalus in males associated with agenesis of the corpus callosum is a notable characteristic of L1CAM gene which is by far the most common genetic etiology of congenital hydrocephalus. Methods and Results Sequencing of the L1CAM gene on 25 male patients/fetuses who had been presented with hydrocephalus revealed 6 patients and two fetuses with different hemizygous pathogenic variants. Our study identified 4 novel variants and 4 previously reported. The detection rate was 32%, and all the variants were shown to be maternally inherited. Nonsense variants were detected in 3 patients, while missense variants were detected in 2 patients. Frameshift, silent, and splicing variant, each was detected in 1 patient. The clinical manifestations of the patients are in line with those frequently observed including communicating hydrocephalus and agenesis of the corpus callosum. Moreover, rippled ventricles with subdural collection and asymmetry of ventricles after shunt operation were seen in 1 patient and 2 patients, respectively. In addition, abnormal basal ganglia were found in 4 patients which seems to be an additional distinct new finding. We also describe a patient with novel nonsense variant with the rare association of Hirschsprung's disease. This patient displayed additionally multiple porencephalic cysts and encephalomalacia secondary to hemorrhage due to repeated infections after shunt operation. The patients with the missense variants showed long survival, while those with truncating variants showed poor prognosis. Conclusion This report adds knowledge of novel pathogenic variants to the L1CAM variant database. Furthermore, we evaluated the clinical and imaging data of these patients.
Collapse
Affiliation(s)
- Rania R. Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Amina M. Medhat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Germine M. Hamdy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Laila K.E. Effat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
6
|
Dutta S, Hornung S, Taha HB, Bitan G. Biomarkers for parkinsonian disorders in CNS-originating EVs: promise and challenges. Acta Neuropathol 2023; 145:515-540. [PMID: 37012443 PMCID: PMC10071251 DOI: 10.1007/s00401-023-02557-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and oncosomes, are nano-sized particles enclosed by a lipid bilayer. EVs are released by virtually all eukaryotic cells and have been shown to contribute to intercellular communication by transporting proteins, lipids, and nucleic acids. In the context of neurodegenerative diseases, EVs may carry toxic, misfolded forms of amyloidogenic proteins and facilitate their spread to recipient cells in the central nervous system (CNS). CNS-originating EVs can cross the blood-brain barrier into the bloodstream and may be found in other body fluids, including saliva, tears, and urine. EVs originating in the CNS represent an attractive source of biomarkers for neurodegenerative diseases, because they contain cell- and cell state-specific biological materials. In recent years, multiple papers have reported the use of this strategy for identification and quantitation of biomarkers for neurodegenerative diseases, including Parkinson's disease and atypical parkinsonian disorders. However, certain technical issues have yet to be standardized, such as the best surface markers for isolation of cell type-specific EVs and validating the cellular origin of the EVs. Here, we review recent research using CNS-originating EVs for biomarker studies, primarily in parkinsonian disorders, highlight technical challenges, and propose strategies for overcoming them.
Collapse
Affiliation(s)
- Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, India
| | - Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hash Brown Taha
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 635 Charles E. Young Drive South/Gordon 451, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
8
|
Gasparotto M, Lee YS, Palazzi A, Vacca M, Filippini F. Nuclear and Cytoplasmatic Players in Mitochondria-Related CNS Disorders: Chromatin Modifications and Subcellular Trafficking. Biomolecules 2022; 12:biom12050625. [PMID: 35625553 PMCID: PMC9138954 DOI: 10.3390/biom12050625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant mitochondrial phenotypes are common to many central nervous system (CNS) disorders, including neurodegenerative and neurodevelopmental diseases. Mitochondrial function and homeostasis depend on proper control of several biological processes such as chromatin remodeling and transcriptional control, post-transcriptional events, vesicle and organelle subcellular trafficking, fusion, and morphogenesis. Mutation or impaired regulation of major players that orchestrate such processes can disrupt cellular and mitochondrial dynamics, contributing to neurological disorders. The first part of this review provides an overview of a functional relationship between chromatin players and mitochondria. Specifically, we relied on specific monogenic CNS disorders which share features with mitochondrial diseases. On the other hand, subcellular trafficking is coordinated directly or indirectly through evolutionarily conserved domains and proteins that regulate the dynamics of membrane compartments and organelles, including mitochondria. Among these “building blocks”, longin domains and small GTPases are involved in autophagy and mitophagy, cell reshaping, and organelle fusion. Impairments in those processes significantly impact CNS as well and are discussed in the second part of the review. Hopefully, in filling the functional gap between the nucleus and cytoplasmic organelles new routes for therapy could be disclosed.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
| | - Yi-Shin Lee
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
- Pharmacology Division, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Faculty of Medicine and surgery, University of Naples Federico II, Via Pansini 5, Building 19 (Biological Tower), 80131 Naples, Italy
| | - Alessandra Palazzi
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
- Correspondence:
| |
Collapse
|
9
|
Gasparotto M, Hernandez Gomez YS, Peterle D, Grinzato A, Zen F, Pontarollo G, Acquasaliente L, Scapin G, Bergantino E, De Filippis V, Filippini F. NOG-Derived Peptides Can Restore Neuritogenesis on a CRASH Syndrome Cell Model. Biomedicines 2022; 10:biomedicines10010102. [PMID: 35052783 PMCID: PMC8773197 DOI: 10.3390/biomedicines10010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Homo- and heterophilic binding mediated by the immunoglobulin (Ig)-like repeats of cell adhesion molecules play a pivotal role in cell-cell and cell-extracellular matrix interactions. L1CAM is crucial to neuronal differentiation, in both mature and developing nervous systems, and several studies suggest that its functional interactions are mainly mediated by Ig2–Ig2 binding. X-linked mutations in the human L1CAM gene are summarized as L1 diseases, including the most diagnosed CRASH neurodevelopmental syndrome. In silico simulations provided a molecular rationale for CRASH phenotypes resulting from mutations I179S and R184Q in the homophilic binding region of Ig2. A synthetic peptide reproducing such region could both mimic the neuritogenic capacity of L1CAM and rescue neuritogenesis in a cellular model of the CRASH syndrome, where the full L1CAM ectodomain proved ineffective. Presented functional evidence opens the route to the use of L1CAM-derived peptides as biotechnological and therapeutic tools.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
| | - Yuriko Suemi Hernandez Gomez
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
| | - Daniele Peterle
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (D.P.); (G.P.); (L.A.)
| | - Alessandro Grinzato
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
| | - Federica Zen
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
| | - Giulia Pontarollo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (D.P.); (G.P.); (L.A.)
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (D.P.); (G.P.); (L.A.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (G.S.); (V.D.F.); (F.F.)
| | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (D.P.); (G.P.); (L.A.)
- Correspondence: (G.S.); (V.D.F.); (F.F.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, 35131 Padua, Italy; (M.G.); (Y.S.H.G.); (A.G.); (F.Z.); (E.B.)
- Correspondence: (G.S.); (V.D.F.); (F.F.)
| |
Collapse
|
10
|
Wang P, Liao H, Wang Q, Xie H, Wang H, Yang M, Liu S. L1 Syndrome Prenatal Diagnosis Supplemented by Functional Analysis of One L1CAM Gene Missense Variant. Reprod Sci 2021; 29:768-780. [PMID: 34914080 PMCID: PMC8863719 DOI: 10.1007/s43032-021-00828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
L1 syndrome, a complex X-linked neurological disorder, is caused by mutations in the L1 cell adhesion molecule (L1CAM) gene. L1CAM molecule is a member of immunoglobulin (Ig) superfamily of neural cell adhesion molecules (CAMs), which plays a pivotal role in the developing nervous system. In this study, a L1CAM gene exonic missense variant (c.1108G > A, p.G370R) was identified in two induced fetuses (abnormal fetuses), who presented corpus callosum agenesis accompanied with hydrocephalus. Clinical data, published literature, online database, and bioinformatic analysis suggest that the single-nucleotide variant of L1CAM gene is a likely pathogenic mutation. In vitro assays were performed to evaluate the effects of this variant. Based on NSC-34/COS-7 cells transfected with wild-type (L1-WT) and mutated (L1-G370R) plasmids, the L1CAM gene exonic missense variant (c.1108G > A, p.G370R) reduced cell surface expression, induced partial endoplasmic reticulum retention, affected posttranslational modification, and reduced protein’s homophilic adhesive ability, but did not induce endoplasmic reticulum stress, which might probably associate with L1 syndrome. Finally, 35 isolated fetuses were screened for L1CAM gene variants by Sanger sequencing. These cases all prenatally suspected of corpus callosum agenesis accompanied with hydrocephalus, which may relate to L1 syndrome. Consequently, one L1CAM gene single missense variant (c.550C > T, p.R184W) was detected in one fetus. Our results provided evidence that the L1CAM gene missense variant (c.1108G > A, p.G370R) may relate to L1 syndrome. The findings of this study suggest a potential possibility of L1CAM gene screening for prenatal diagnoses for fetuses presented corpus callosum agenesis accompanied with hydrocephalus.
Collapse
Affiliation(s)
- Ping Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong Liao
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Quyou Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Wang R, Chen H, Wang X, Huang S, Xie A, Wu X. Prenatal diagnosis of a nonsense mutation in the L1CAM gene resulting in congenital hydrocephalus: A case report and literature review. Exp Ther Med 2021; 22:1416. [PMID: 34676009 PMCID: PMC8524657 DOI: 10.3892/etm.2021.10807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Congenital hydrocephalus is frequently caused by mutations in the L1 cell adhesion molecule (L1CAM) gene. The purpose of the present study was to identify possible causes of fetal hydrocephalus in a Chinese family. The samples from the parents and the hydrocephalic fetus were collected. Whole-exome sequencing and in-depth mutation analysis were performed. The identified variant, c.1267C>T.(p.Q423X), is situated on exon 11 of L1CAM gene (chromosome X:153134975). The fetus was confirmed to be hemizygous for the nonsense mutation and the mother was a heterozygous carrier. The mutation turns a glutamine into a premature stop codon at amino acid position 423. In conclusion, in the present study, a nonsense mutation in the L1CAM gene was identified during the prenatal diagnosis of a congenital hydrocephalic fetus from a Chinese family. The diagnosis highlighted the necessity of genetic screening for prenatal diagnosis.
Collapse
Affiliation(s)
- Rongyue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiaona Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shiyuan Huang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ailan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xinmei Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
12
|
Aneskievich BJ, Shamilov R, Vinogradova O. Intrinsic disorder in integral membrane proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:101-134. [PMID: 34656327 DOI: 10.1016/bs.pmbts.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-defined roles and specific protein-protein interactions of many integral membrane proteins (IMPs), such as those functioning as receptors for extracellular matrix proteins and soluble growth factors, easily align with considering IMP structure as a classical "lock-and-key" concept. Nevertheless, continued advances in understanding protein conformation, such as those which established the widespread existence of intrinsically disordered proteins (IDPs) and especially intrinsically disordered regions (IDRs) in otherwise three-dimensionally organized proteins, call for ongoing reevaluation of transmembrane proteins. Here, we present basic traits of IDPs and IDRs, and, for some select single-span IMPs, consider the potential functional advantages intrinsic disorder might provide and the possible conformational impact of disease-associated mutations. For transmembrane proteins in general, we highlight several investigational approaches, such as biophysical and computational methods, stressing the importance of integrating them to produce a more-complete mechanistic model of disorder-containing IMPs. These procedures, when synergized with in-cell assessments, will likely be key in translating in silico and in vitro results to improved understanding of IMP conformational flexibility in normal cell physiology as well as disease, and will help to extend their potential as therapeutic targets.
Collapse
Affiliation(s)
- Brian J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Rambon Shamilov
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
13
|
The Life of a Trailing Spouse. J Neurosci 2021; 41:3-10. [PMID: 33408132 DOI: 10.1523/jneurosci.2874-20.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.
Collapse
|
14
|
Cerebrospinal fluid NCAM-1 concentration is associated with neurodevelopmental outcome in post-hemorrhagic hydrocephalus of prematurity. PLoS One 2021; 16:e0247749. [PMID: 33690655 PMCID: PMC7946285 DOI: 10.1371/journal.pone.0247749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Efforts directed at mitigating neurological disability in preterm infants with intraventricular hemorrhage (IVH) and post hemorrhagic hydrocephalus (PHH) are limited by a dearth of quantifiable metrics capable of predicting long-term outcome. The objective of this study was to examine the relationships between candidate cerebrospinal fluid (CSF) biomarkers of PHH and neurodevelopmental outcomes in infants undergoing neurosurgical treatment for PHH. STUDY DESIGN Preterm infants with PHH were enrolled across the Hydrocephalus Clinical Research Network. CSF samples were collected at the time of temporizing neurosurgical procedure (n = 98). Amyloid precursor protein (APP), L1CAM, NCAM-1, and total protein (TP) were compared in PHH versus control CSF. Fifty-four of these PHH subjects underwent Bayley Scales of Infant Development-III (Bayley-III) testing at 15-30 months corrected age. Controlling for false discovery rate (FDR) and adjusting for post-menstrual age (PMA) and IVH grade, Pearson's partial correlation coefficients were used to examine relationships between CSF proteins and Bayley-III composite cognitive, language, and motor scores. RESULTS CSF APP, L1CAM, NCAM-1, and TP were elevated in PHH over control at temporizing surgery. CSF NCAM-1 was associated with Bayley-III motor score (R = -0.422, p = 0.007, FDR Q = 0.089), with modest relationships noted with cognition (R = -0.335, p = 0.030, FDR Q = 0.182) and language (R = -0.314, p = 0.048, FDR Q = 0.194) scores. No relationships were observed between CSF APP, L1CAM, or TP and Bayley-III scores. FOHR at the time of temporization did not correlate with Bayley-III scores, though trends were observed with Bayley-III motor (p = 0.0647 and R = -0.2912) and cognitive scores (p = 0.0506 and R = -0.2966). CONCLUSION CSF NCAM-1 was associated with neurodevelopment in this multi-institutional PHH cohort. This is the first report relating a specific CSF protein, NCAM-1, to neurodevelopment in PHH. Future work will further investigate a possible role for NCAM-1 as a biomarker of PHH-associated neurological disability.
Collapse
|
15
|
Li YT, Chen JS, Jian W, He YD, Li N, Xie YN, Wang J, Zhang VW, Huang WR, Jiang FM, Ye XQ, Chen DJ, Chen M. L1CAM mutations in three fetuses diagnosed by medical exome sequencing. Taiwan J Obstet Gynecol 2021; 59:451-455. [PMID: 32416898 DOI: 10.1016/j.tjog.2020.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE The L1 cell adhesion molecule (L1CAM) gene, encodes the L1 cell adhesion molecule, is involved in the central nervous system development. Its mutations result in L1 syndrome which is associated with brain malformation and nervous developmental delay. CASE REPORT We presented three fetuses with hydrocephalus and agenesis of the corpus callosum detected by ultrasound, followed by medical exome sequencing (MES) test with L1CAM mutations: two known missense mutation c.551G > A (p. R184Q) and c.1354G > A (p. G452R), and a novel frameshift mutation c.1322delG which causes the early termination of translation (p. G441Afs∗72). By utilizing multiple computational analysis, all the variants were scored to be likely pathogenic. CONCLUSION Combined use of ultrasound and MES to identify the molecular etiology of fetal anomalies may contribute to expanding our knowledge of the clinical phenotype of L1 syndrome observed in the south Chinese population.
Collapse
Affiliation(s)
- Ying-Ting Li
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Jing-Si Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Wei Jian
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Yi-Duo He
- AmCare Genomics Lab, Guangzhou, 510300, China
| | - Nan Li
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Yi-Nong Xie
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Jing Wang
- AmCare Genomics Lab, Guangzhou, 510300, China
| | - Victor Wei Zhang
- AmCare Genomics Lab, Guangzhou, 510300, China; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei-Ran Huang
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Fu-Man Jiang
- Guangzhou Jingke Medical Laboratory, Guangzhou, 510320, China
| | - Xiao-Qing Ye
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Dun-Jin Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China
| | - Min Chen
- Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China; Obstetrics & Gynecology Institute of Guangzhou, Guangzhou, 510150, China; The Medical Centre for Critical Pregnant Women in Guangzhou, Guangzhou, 510150, China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, 510150, China.
| |
Collapse
|
16
|
Duncan BW, Murphy KE, Maness PF. Molecular Mechanisms of L1 and NCAM Adhesion Molecules in Synaptic Pruning, Plasticity, and Stabilization. Front Cell Dev Biol 2021; 9:625340. [PMID: 33585481 PMCID: PMC7876315 DOI: 10.3389/fcell.2021.625340] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.
Collapse
Affiliation(s)
- Bryce W Duncan
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Kelsey E Murphy
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, Neuroscience Research Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Srinivasamurthy M, Kakanahalli N, Benakanal SV. A truncation mutation in the <i>L1CAM</i> gene in a child with hydrocephalus. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Hydrocephalus is a neurodevelopmental, X-linked recessive disorder caused by mutations in the <italic>L1CAM</italic> gene. The <italic>L1CAM</italic> gene encodes for L1CAM protein which is essential for the nervous system development including adhesion between neurons, Myelination, Synaptogenesis etc. Herein, the present study has reported mutations in L1 syndrome patient with Hydrocephalus and Adducted thumb. Genomic DNA was extracted from patients whole blood (n = 18). The 11 exons of the <italic>L1CAM</italic> gene were amplified using specific PCR primers. The sequenced data was analysed and the pathogenicity of the mutation was predicted using the various bioinformatics programs: PROVEAN, PolyPhen2, and MUpro. The results revealed that the proband described here had nonsense mutation G1120→T at position 1120 in exon 9 which is in extracellular immunoglobulin domain (Ig4) of the <italic>L1CAM</italic> gene. This nonsense mutation is found to be truncated with a deleterious effect on developing brain of the child, and this is the first report of this novel mutation in patient with X-linked Hydrocephalus in India.</p>
</abstract>
Collapse
|
18
|
Deschepper FM, Zoppi R, Pirro M, Hensbergen PJ, Dall’Olio F, Kotsias M, Gardner RA, Spencer DI, Videira PA. L1CAM as an E-selectin Ligand in Colon Cancer. Int J Mol Sci 2020; 21:ijms21218286. [PMID: 33167483 PMCID: PMC7672641 DOI: 10.3390/ijms21218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.
Collapse
Affiliation(s)
- Fanny M. Deschepper
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Roberta Zoppi
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Fabio Dall’Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy;
| | - Maximillianos Kotsias
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Daniel I.R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Paula A. Videira
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
19
|
Linneberg C, Toft CLF, Kjaer-Sorensen K, Laursen LS. L1cam-mediated developmental processes of the nervous system are differentially regulated by proteolytic processing. Sci Rep 2019; 9:3716. [PMID: 30842511 PMCID: PMC6403279 DOI: 10.1038/s41598-019-39884-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Normal brain development depends on tight temporal and spatial regulation of connections between cells. Mutations in L1cam, a member of the immunoglobulin (Ig) superfamily that mediate cell-cell contacts through homo- and heterophilic interactions, are associated with several developmental abnormalities of the nervous system, including mental retardation, limb spasticity, hydrocephalus, and corpus callosum aplasia. L1cam has been reported to be shed from the cell surface, but the significance of this during different phases of brain development is unknown. We here show that ADAM10-mediated shedding of L1cam is regulated by its fibronectin type III (FNIII) domains. Specifically, the third FNIII domain is important for maintaining a conformation where access to a membrane proximal cleavage site is restricted. To define the role of ADAM10/17/BACE1-mediated shedding of L1cam during brain development, we used a zebrafish model system. Knockdown of the zebrafish, l1camb, caused hydrocephalus, defects in axonal outgrowth, and myelination abnormalities. Rescue experiments with proteinase-resistant and soluble L1cam variants showed that proteolytic cleavage is not required for normal axonal outgrowth and development of the ventricular system. In contrast, metalloproteinase-mediated shedding is required for efficient myelination, and only specific fragments are able to mediate this stimulatory function of the shedded L1cam.
Collapse
Affiliation(s)
- Cecilie Linneberg
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Christian Liebst Frisk Toft
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000, Aarhus C, Denmark.
| |
Collapse
|
20
|
Heaphy-Henault KJ, Guimaraes CV, Mehollin-Ray AR, Cassady CI, Zhang W, Desai NK, Paldino MJ. Congenital Aqueductal Stenosis: Findings at Fetal MRI That Accurately Predict a Postnatal Diagnosis. AJNR Am J Neuroradiol 2018. [PMID: 29519789 DOI: 10.3174/ajnr.a5590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Congenital aqueductal stenosis is a common cause of prenatal ventriculomegaly. An accurate diagnosis provides prognostic information and may guide obstetric management. The purpose of this study was to identify specific anatomic findings on prenatal MR imaging that can be used as predictors of congenital aqueductal stenosis. MATERIALS AND METHODS Prenatal and postnatal MRIs of fetuses referred to our institution for ventriculomegaly between June 2008 and August 2015 were reviewed. Imaging findings in postnatally confirmed congenital aqueductal stenosis (disease group) were compared with those of ventriculomegaly cases from other causes (control group). Univariate analysis was performed using the Fisher exact test and the Wilcoxon rank test, and multivariate analysis, via the random forest method. RESULTS Forty-three cases of ventriculomegaly had a confirmed postnatal diagnosis of congenital aqueductal stenosis. Thirty-two ventriculomegaly cases negative for congenital aqueductal stenosis were included in the control group. Dominant findings associated with an accurate prenatal diagnosis of congenital aqueductal stenosis on multivariate analysis included the following: enlarged inferior third ventricular recesses, enlargement of the lateral ventricles and third ventricle, and an abnormal corpus callosum. Findings that significantly increase the probability of congenital aqueductal stenosis (high positive predictive value) included the following: enlarged third ventricular recesses, aqueduct funneling, hemorrhage in the cerebral aqueduct, ventricular diverticulum, rhombencephalosynapsis, and dystroglycanopathy-related cerebellar dysplasia. CONCLUSIONS Our study identified specific characteristics on fetal MR imaging that can be used as predictors of the diagnosis of congenital aqueductal stenosis. Most of these findings are secondary to the obstructive nature of the resulting hydrocephalus. Common associated malformations such as rhombencephalosynapsis and dystroglycanopathies should also increase the suspicion of congenital aqueductal stenosis when present with ventriculomegaly.
Collapse
Affiliation(s)
- K J Heaphy-Henault
- From the Department of Radiology (K.J.H.-H.), Hartford Hospital, Hartford, Connecticut
| | - C V Guimaraes
- Department of Radiology (C.V.G., A.R.M.-R., C.I.C., N.K.D., M.J.P.) .,Department of Radiology (C.V.G.), Stanford University School of Medicine, Lucile Packard Children's Hospital, Stanford, California
| | - A R Mehollin-Ray
- Department of Radiology (C.V.G., A.R.M.-R., C.I.C., N.K.D., M.J.P.)
| | - C I Cassady
- Department of Radiology (C.V.G., A.R.M.-R., C.I.C., N.K.D., M.J.P.)
| | - W Zhang
- Outcomes and Impact Service (W.Z.), Texas Children's Hospital, Houston, Texas
| | - N K Desai
- Department of Radiology (C.V.G., A.R.M.-R., C.I.C., N.K.D., M.J.P.)
| | - M J Paldino
- Department of Radiology (C.V.G., A.R.M.-R., C.I.C., N.K.D., M.J.P.)
| |
Collapse
|
21
|
Dou X, Menkari C, Mitsuyama R, Foroud T, Wetherill L, Hammond P, Suttie M, Chen X, Chen SY, Charness ME. L1 coupling to ankyrin and the spectrin-actin cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol teratogenesis. FASEB J 2018; 32:1364-1374. [PMID: 29109170 DOI: 10.1096/fj.201700970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ethanol causes fetal alcohol spectrum disorders (FASDs) partly by inhibiting cell adhesion mediated by the L1 neural cell adhesion molecule. Ethanol interacts with an alcohol binding pocket in the L1 extracellular domain (ECD), and dephosphorylation of S1248 in the L1 cytoplasmic domain (CD) renders L1 adhesion insensitive to inhibition by ethanol (L1 insensitive). The mechanism underlying this inside-out signaling is unknown. Here we show that phosphorylation of the human L1-CD at S1152, Y1176, S1181, and S1248 renders L1 sensitive to ethanol by promoting L1 coupling with ankyrin-G and the spectrin-actin cytoskeleton. Knockdown of ankyrin-G or L1 mutations that uncouple L1 from ankyrin reduce L1 sensitivity to ethanol, but not methanol, consistent with a small conformational change in the extracellular alcohol binding pocket. Phosphorylation of Y1176 and ankyrin-G coupling with L1 are higher in NIH/3T3 clonal cell lines in which ethanol inhibits L1 adhesion than in ethanol-resistant NIH/3T3 clonal cell lines. Similarly, phosphorylation of Y1176 is higher in C57BL/6J mice that are sensitive to ethanol teratogenesis than in ethanol resistant C57BL/6N mice. Finally, polymorphisms in genes that encode ankyrin-G and p90rsk, a kinase that phosphorylates S1152, are linked to facial dysmorphology in children with heavy prenatal ethanol exposure. These findings indicate that genes that regulate L1 coupling to ankyrin may influence susceptibility to FASD.-Dou, X., Menkari, C., Mitsuyama, R., Foroud, T., Wetherill, L., Hammond, P., Suttie, M., Chen, X., Chen, S.-Y., Charness, M. E., Collaborative Initiative on Fetal Alcohol Spectrum Disorders. L1 coupling to ankyrin and the spectrin-actin cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol teratogenesis.
Collapse
Affiliation(s)
- Xiaowei Dou
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Carrie Menkari
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Rei Mitsuyama
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Michael Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Xiaopan Chen
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; and
| | - Michael E Charness
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
22
|
|
23
|
Kudumala SR, Penserga T, Börner J, Slipchuk O, Kakad P, Lee LH, Qureshi A, Pielage J, Godenschwege TA. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system. PLoS One 2017; 12:e0183605. [PMID: 28837701 PMCID: PMC5570280 DOI: 10.1371/journal.pone.0183605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.
Collapse
Affiliation(s)
- Sirisha R. Kudumala
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Tyrone Penserga
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jana Börner
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Olesya Slipchuk
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Priyanka Kakad
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - LaTasha H. Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Aater Qureshi
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jan Pielage
- Department of Biology, Division of Zoology/Neurobiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Tanja A. Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Vinci M, Falco M, Castiglia L, Grillo L, Spalletta A, Sturnio M, Galesi O, Salemi M, Gloria A, Amata S, Piccione M, Antona V, Vitello GA, Fichera M. Identification of novel mutations in L1CAM gene by a DHPLC-based assay. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Frei JA, Stoeckli ET. SynCAMs - From axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2016; 81:41-48. [PMID: 27594578 DOI: 10.1016/j.mcn.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.
Collapse
Affiliation(s)
- Jeannine A Frei
- Hussman Institute for Autism, 801 W Baltimore Street, Baltimore, MD 20201, United States
| | - Esther T Stoeckli
- Dept of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Ferese R, Zampatti S, Griguoli AMP, Fornai F, Giardina E, Barrano G, Albano V, Campopiano R, Scala S, Novelli G, Gambardella S. A New Splicing Mutation in the L1CAM Gene Responsible for X-Linked Hydrocephalus (HSAS). J Mol Neurosci 2016; 59:376-81. [DOI: 10.1007/s12031-016-0754-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
|
27
|
Abstract
ABSTRACT
In the history of 3D/4D ultrasound technology, the great achievement was high definition (HD) live technology. This technology is a novel ultrasound technique that improves the 3D/4D images. HDlive ultrasound has resulted in remarkable progress in visualization of early embryos and fetuses and in the development of sonoembryology. HDlive uses an adjustable light source and software that calculates the propagation of light through surface structures in relation to the light direction. The virtual light source produces selective illumination, and the respective shadows are created by the structures where the light is reflected. This combination of light and shadows increases depth perception and produces remarkable images that are more natural than those obtained with classic three-dimensional (3D) ultrasound. The virtual light can be placed in the front, back, or lateral sides, where viewing is desired until the best image is achieved. A great advantage is that the soft can be applied to all images stored in the machine's memory. With HDlive ultrasound, both structural and functional developments can be assessed from early pregnancy more objectively and reliably and, indeed, the new technology has moved embryology from postmortem studies to the in vivo environment. Practically, in obstetrical ultrasound, HDlive could be used during all three trimesters of pregnancy.
How to cite this article
Pooh RK, Kurjak A. Three-dimensional Ultrasound in Detection of Fetal Anomalies. Donald School J Ultrasound Obstet Gynecol 2016;10(3):214-234.
Collapse
|
28
|
Raybaud C. MR assessment of pediatric hydrocephalus: a road map. Childs Nerv Syst 2016; 32:19-41. [PMID: 26337698 DOI: 10.1007/s00381-015-2888-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE This study was conducted to design a rational approach to the MR diagnosis of hydrocephalus based on a pathophysiologic reevaluation of its possible mechanisms and to apply it to the different etiological contexts. METHOD A review of the literature reports describing new physiologic models of production and absorption and of the hydrodynamics of the CSF was made. RESULTS Besides the secretion of CSF by the choroid plexuses, and its passive, pressure-dependent transdural absorption (arachnoid villi, dural clefts, cranial, and spinal nerve sheaths), water transporters, aquaporins, allow water (if not ions and organic molecules) to exchange freely between the brain parenchyma and the CSF spaces across the ependymal and the pial interfaces (including the Virchow-Robin spaces). Consequently, the CSF bulk flow is not necessarily global, and situations of balanced absorption-secretion may occur separately in different CSF compartments such as the ventricular, intracranial, or intraspinal CSF spaces. This means that rather than from a hypothetical pressure gradient from the plexuses to the dural sinuses, the dynamics of the CSF depend on the force provided in those different compartments by the arterial systolic pulsation of the pericerebral (mostly), intracerebral, and intraventricular (choroid plexuses) vascular beds. CONCLUSION Using MR imaging, diverse varieties of hydrocephalus may tentatively be explained by applying those concepts to the correspondingly diverse causal diseases. Hopefully, this may have an impact on the choice of the treatment strategies also.
Collapse
Affiliation(s)
- Charles Raybaud
- Division of Neuroradiology, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
29
|
Marín R, Ley-Martos M, Gutiérrez G, Rodríguez-Sánchez F, Arroyo D, Mora-López F. Three cases with L1 syndrome and two novel mutations in the L1CAM gene. Eur J Pediatr 2015; 174:1541-4. [PMID: 25948108 DOI: 10.1007/s00431-015-2560-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. CONCLUSION L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.
Collapse
Affiliation(s)
- Rosario Marín
- Clinical Genetics Unit, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - Miriam Ley-Martos
- Department of Paediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| | - Gema Gutiérrez
- Department of Paediatrics, Hospital Universitario de Jerez, Jerez, Spain.
| | | | - Diego Arroyo
- Progenie molecular S. L. Laboratory, Valencia, Spain.
| | - Francisco Mora-López
- Molecular Diagnosis Laboratory, Immunology Department, Hospital Universitario Puerta del Mar, Cádiz, Spain.
| |
Collapse
|
30
|
Ochando I, Vidal V, Gascón J, Acién M, Urbano A, Rueda J. Prenatal diagnosis of X-linked hydrocephalus in a family with a novel mutation in L1CAM gene. J OBSTET GYNAECOL 2015; 36:403-5. [PMID: 26471711 DOI: 10.3109/01443615.2015.1086982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- I Ochando
- a Unidad de Genética, Hospital Clínica Vistahermosa , Alicante , Spain
| | - V Vidal
- b Servicio de Ginecología y Obstetricia, Hospital Universitario de Sant Joan , Alicante , Spain
| | - J Gascón
- b Servicio de Ginecología y Obstetricia, Hospital Universitario de Sant Joan , Alicante , Spain
| | - M Acién
- b Servicio de Ginecología y Obstetricia, Hospital Universitario de Sant Joan , Alicante , Spain.,c División de Ginecología, Universidad Miguel Hernández , Alicante , Spain
| | - A Urbano
- a Unidad de Genética, Hospital Clínica Vistahermosa , Alicante , Spain
| | - J Rueda
- a Unidad de Genética, Hospital Clínica Vistahermosa , Alicante , Spain.,d Departamento de Histología y Anatomía, Universidad Miguel Hernández , Alicante , Spain
| |
Collapse
|
31
|
Yamasaki M, Kanemura Y. Molecular Biology of Pediatric Hydrocephalus and Hydrocephalus-related Diseases. Neurol Med Chir (Tokyo) 2015; 55:640-6. [PMID: 26227058 PMCID: PMC4628154 DOI: 10.2176/nmc.ra.2015-0075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We are beginning to understand the molecular biology of hydrocephalus and its related diseases. X-linked hydrocephalus (XLH), holoprosencephaly (HPE), Dandy–Walker malformation (DWM), and neural tube defect (NTD) can all be discussed with respect to their available molecular genetics knowledge base and its clinical applications. XLH is single gene disorder caused by mutations in the neural cell adhesion molecule-encoding L1CAM (L1) gene. Our knowledge of the molecular basis of XLH is already being applied clinically in disease diagnosis, disease classification, and prenatal diagnosis. However, the molecular mechanism underlying XLH-related hydrocephalus still needs to be clarified. Sixteen causative genes for HPE have been identified, of which mutations are most often found in SHH, ZIC2, SIX3, and TGIF. Genetic interactions, gene complexity, and the wide variety of HPE phenotypes and genotypes are topics for future study. For DWM, two important loci, 3q24, which includes the FOXC1 gene, and 6q25.3, which includes the ZIC1 and ZIC4 genes, were recently identified as causative areas. The planar cell polarity (PCP) genes CELSR1, CELSR2, VANGL1, and VANGL2 have been implicated in NTD; these genes have roles in neural tube closure and ependymal ciliary movement.
Collapse
Affiliation(s)
- Mami Yamasaki
- Department of Pediatric Neurosurgery, Takatsuki General Hospital
| | | |
Collapse
|
32
|
Siegenthaler D, Enneking EM, Moreno E, Pielage J. L1CAM/Neuroglian controls the axon-axon interactions establishing layered and lobular mushroom body architecture. ACTA ACUST UNITED AC 2015; 208:1003-18. [PMID: 25825519 PMCID: PMC4384726 DOI: 10.1083/jcb.201407131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits.
Collapse
Affiliation(s)
- Dominique Siegenthaler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland University of Basel, 4003 Basel, Switzerland
| | - Eva-Maria Enneking
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland University of Basel, 4003 Basel, Switzerland
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
33
|
Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int 2015; 65:58-66. [DOI: 10.1111/pin.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
34
|
McMichael G, Bainbridge MN, Haan E, Corbett M, Gardner A, Thompson S, van Bon BWM, van Eyk CL, Broadbent J, Reynolds C, O'Callaghan ME, Nguyen LS, Adelson DL, Russo R, Jhangiani S, Doddapaneni H, Muzny DM, Gibbs RA, Gecz J, MacLennan AH. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015; 20:176-82. [PMID: 25666757 DOI: 10.1038/mp.2014.189] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
Cerebral palsy (CP) is a common, clinically heterogeneous group of disorders affecting movement and posture. Its prevalence has changed little in 50 years and the causes remain largely unknown. The genetic contribution to CP causation has been predicted to be ~2%. We performed whole-exome sequencing of 183 cases with CP including both parents (98 cases) or one parent (67 cases) and 18 singleton cases (no parental DNA). We identified and validated 61 de novo protein-altering variants in 43 out of 98 (44%) case-parent trios. Initial prioritization of variants for causality was by mutation type, whether they were known or predicted to be deleterious and whether they occurred in known disease genes whose clinical spectrum overlaps CP. Further, prioritization used two multidimensional frameworks-the Residual Variation Intolerance Score and the Combined Annotation-dependent Depletion score. Ten de novo mutations in three previously identified disease genes (TUBA1A (n=2), SCN8A (n=1) and KDM5C (n=1)) and in six novel candidate CP genes (AGAP1, JHDM1D, MAST1, NAA35, RFX2 and WIPI2) were predicted to be potentially pathogenic for CP. In addition, we identified four predicted pathogenic, hemizygous variants on chromosome X in two known disease genes, L1CAM and PAK3, and in two novel candidate CP genes, CD99L2 and TENM1. In total, 14% of CP cases, by strict criteria, had a potentially disease-causing gene variant. Half were in novel genes. The genetic heterogeneity highlights the complexity of the genetic contribution to CP. Function and pathway studies are required to establish the causative role of these putative pathogenic CP genes.
Collapse
Affiliation(s)
- G McMichael
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M N Bainbridge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Haan
- 1] South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - M Corbett
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - A Gardner
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - S Thompson
- 1] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia [2] Department of Pediatric Neurology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - B W M van Bon
- 1] South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), North Adelaide, SA, Australia [2] Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - J Broadbent
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - C Reynolds
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M E O'Callaghan
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - L S Nguyen
- School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - D L Adelson
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - R Russo
- Department of Pediatric Rehabilitation, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - S Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - H Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - J Gecz
- 1] Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia [2] School of Pediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - A H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
|
36
|
Chidsey BA, Baldwin EE, Toydemir R, Ahles L, Hanson H, Stevenson DA. L1CAM whole gene deletion in a child with L1 syndrome. Am J Med Genet A 2014; 164A:1555-8. [PMID: 24668863 DOI: 10.1002/ajmg.a.36474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/31/2013] [Indexed: 11/08/2022]
Abstract
L1 syndrome is a group of overlapping, X-linked disorders caused by mutations in L1CAM. Clinical phenotypes within L1 syndrome include X-linked hydrocephalus with stenosis of the aqueduct of sylvius (HSAS); mental retardation, adducted thumbs, shuffling gait, and aphasia (MASA) syndrome; spastic paraplegia type 1; and agenesis of the corpus callosum. Over 200 mutations in L1CAM have been reported; however, only a few large gene deletions have been observed. We report on a 4-month-old male with a de novo whole gene deletion of L1CAM presenting with congenital hydrocephalus, aqueductal stenosis, and adducted thumbs. Initial failure of L1CAM gene sequencing suggested the possibility of a whole gene deletion of L1CAM. Further investigation through chromosome microarray analysis showed a 62Kb deletion encompassing the first exon of the PDZD4 gene and the entire L1CAM gene. Investigations into genotype-phenotype correlations have suggested that mutations leading to truncated or absent L1 protein cause more severe forms of L1 syndrome. Based on the presentation of the proband and other reported patients with whole gene deletions, we provide further evidence that L1CAM whole gene deletions result in L1 syndrome with a severe phenotype, deletions of PDZD4 do not cause additional manifestations, and that X-linked nephrogenic diabetes insipidus reported in a subset of patients with large L1CAM deletions results from the loss of AVPR2.
Collapse
Affiliation(s)
- Brandalyn A Chidsey
- Integrated Oncology and Genetic Services, ARUP Laboratories, Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
37
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
|
39
|
Kishimoto T, Itoh K, Umekage M, Tonosaki M, Yaoi T, Fukui K, Lemmon VP, Fushiki S. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex. J Neurosci Res 2012; 91:42-50. [PMID: 23073969 PMCID: PMC3533181 DOI: 10.1002/jnr.23141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/15/2012] [Accepted: 08/21/2012] [Indexed: 01/12/2023]
Abstract
L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomokazu Kishimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Takenouchi T, Nakazawa M, Kanemura Y, Shimozato S, Yamasaki M, Takahashi T, Kosaki K. Hydrocephalus with Hirschsprung disease: Severe end of X-linked hydrocephalus spectrum. Am J Med Genet A 2012; 158A:812-5. [DOI: 10.1002/ajmg.a.35245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/26/2011] [Indexed: 01/14/2023]
|
41
|
Morales DM, Townsend RR, Malone JP, Ewersmann CA, Macy EM, Inder TE, Limbrick DD. Alterations in protein regulators of neurodevelopment in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus of prematurity. Mol Cell Proteomics 2011; 11:M111.011973. [PMID: 22186713 DOI: 10.1074/mcp.m111.011973] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurological outcomes of preterm infants with posthemorrhagic hydrocephalus are among the worst in newborn medicine. There remains no consensus regarding the diagnosis or treatment of posthemorrhagic hydrocephalus, and the pathological pathways leading to the adverse neurological sequelae are poorly understood. In the current study, we developed an innovative approach to simultaneously identify potential diagnostic markers of posthemorrhagic hydrocephalus and investigate novel pathways of posthemorrhagic hydrocephalus-related neurological disability. Tandem multi-affinity fractionation for specific removal of plasma proteins from the hemorrhagic cerebrospinal fluid samples was combined with high resolution label-free quantitative proteomics. Analysis of cerebrospinal fluid obtained from infants with posthemorrhagic hydrocephalus demonstrated marked differences in the levels of 438 proteins when compared with cerebrospinal fluid from age-matched control infants. Amyloid precursor protein, neural cell adhesion molecule-L1, neural cell adhesion molecule-1, brevican and other proteins with important roles in neurodevelopment showed profound elevations in posthemorrhagic hydrocephalus cerebrospinal fluid compared with control. Initiation of neurosurgical treatment of posthemorrhagic hydrocephalus resulted in resolution of these elevations. The results from this foundational study demonstrate the significant promise of tandem multi-affinity fractionation-proteomics in the identification and quantitation of protein mediators of neurodevelopment and neurological injury. More specifically, our results suggest that cerebrospinal fluid levels of proteins such as amyloid precursor protein or neural cell adhesion molecule-L1 should be investigated as potential diagnostic markers of posthemorrhagic hydrocephalus. Notably, dysregulation of the levels these and other proteins may directly affect ongoing neurodevelopmental processes in these preterm infants, providing an entirely new hypothesis for the developmental disability associated with posthemorrhagic hydrocephalus.
Collapse
Affiliation(s)
- Diego M Morales
- Department of Neurological Surgery, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Itoh K, Fujisaki K, Watanabe M. Human L1CAM carrying the missense mutations of the fibronectin-like type III domains is localized in the endoplasmic reticulum and degraded by polyubiquitylation. J Neurosci Res 2011; 89:1637-45. [PMID: 21688291 DOI: 10.1002/jnr.22695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 11/09/2022]
Abstract
Any mutations in the human neural cell adhesion molecule L1 (hL1CAM) gene might cause various types of serious neurological syndromes in humans, characterized by increased mortality, mental retardation, and various malformations of the nervous system. Such missense mutations often cause severe abnormalities or even fatalities, and the reason for this may be a disruption of the adhesive function of L1CAM resulting from a misdirection of the degradative pathway. Transfection studies using neuroblastoma N2a cells demonstrated that hL1CAM carrying the missense mutations in the fibronectin-like type III (FnIII) domains most likely is located within the endoplasmic reticulum (ER), but it is less well expressed on the cell surface. One mutant, L935P, in the fourth FnIII domain, was chosen from six mutants (K655 and G698 at Fn1, L935P and P941 at Fn4, W1036 and Y1070 at Fn5) in the FnIII domains to study in detail the functions of hL1CAM(200 kDa) , such as the intracellular traffic and degradation, because only a single band at 200 kDa was detected in the hL1CAM(L935P) -transfected cells. hL1CAM(200 kDa) is expressed predominantly in the ER but not on the cell surface. In addition, this missense mutated hL1CAM(200 kDa) is polyubiquitylated at some sites in the extracellular domain and thus becomes degraded by proteasomes via the ER-associated degradation pathway. These observations demonstrate that the missense mutations of hL1CAM in the FnIII domain may cause the resultant pathogenesis because of a loss of expression on the cell surface resulting from misrouting to the degradative pathway.
Collapse
Affiliation(s)
- Kouichi Itoh
- Laboratory of Molecular and Cellular Neurosciences, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki-city, Kagawa, Japan.
| | | | | |
Collapse
|
43
|
Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, Galileo DS. L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol 2011; 105:27-44. [PMID: 21373966 DOI: 10.1007/s11060-011-0557-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/21/2011] [Indexed: 11/25/2022]
Abstract
The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass upregulate ADAM10 to proteolyze surface L1 and the resultant ectodomain increases human glioma cell migration and invasion by binding to integrin receptors, activating FAK, and increasing turnover of focal complexes.
Collapse
Affiliation(s)
- Muhua Yang
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Balasenthil S, Chen N, Lott ST, Chen J, Carter J, Grizzle WE, Frazier ML, Sen S, Killary AM. A migration signature and plasma biomarker panel for pancreatic adenocarcinoma. Cancer Prev Res (Phila) 2010; 4:137-49. [PMID: 21071578 DOI: 10.1158/1940-6207.capr-10-0025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma is a disease of extremely poor prognosis for which there are no reliable markers of asymptomatic disease. To identify pancreatic cancer biomarkers, we focused on a genomic interval proximal to the most common fragile site in the human genome, chromosome 3p12, which undergoes smoking-related breakage, loss of heterozygosity, and homozygous deletion as an early event in many epithelial tumors, including pancreatic cancers. Using a functional genomic approach, we identified a seven-gene panel (TNC, TFPI, TGFBI, SEL-1L, L1CAM, WWTR1, and CDC42BPA) that was differentially expressed across three different expression platforms, including pancreatic tumor/normal samples. In addition, Ingenuity Pathways Analysis (IPA) and literature searches indicated that this seven-gene panel functions in one network associated with cellular movement/morphology/development, indicative of a "migration signature" of the 3p pathway. We tested whether two secreted proteins from this panel, tenascin C (TNC) and tissue factor pathway inhibitor (TFPI), could serve as plasma biomarkers. Plasma ELISA assays for TFPI/TNC resulted in a combined area under the curve (AUC) of 0.88 and, with addition of CA19-9, a combined AUC for the three-gene panel (TNC/TFPI/CA19-9), of 0.99 with 100% specificity at 90% sensitivity and 97.22% sensitivity at 90% specificity. Validation studies using TFPI only in a blinded sample set increased the performance of CA19-9 from an AUC of 0.84 to 0.94 with the two-gene panel. Results identify a novel 3p pathway-associated migration signature and plasma biomarker panel that has utility for discrimination of pancreatic cancer from normal controls and promise for clinical application.
Collapse
Affiliation(s)
- Seetharaman Balasenthil
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders.
Collapse
|
46
|
Arvanitis LD, Sgantzos MN, Kotrotsios A, Vassiou KG. Congenital fusion of the thalami (atresia of the third ventricle) associated with parietooccipital meningocele. Pediatr Dev Pathol 2010; 13:419-22. [PMID: 20158397 DOI: 10.2350/09-08-0690-cr.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article we present a case of a male newborn with a CNS malformation that is characterized mainly by complete fusion of the thalami resulting in atresia of the 3rd ventricle accompanied by fusion of the anterior peduncles of the fornix, the presence of a single occult interventricular foramen lying at the midline, absence of the septum pellucidum, hypoplasia of the corpus callosum, disorganization of the head of the left caudate nucleus, and greatly dilated lateral ventricles (hydrocephalus). The patient underwent surgical correction of the meningocele on his 4th postnatal day. On his 13th postnatal day he had projectile vomiting due to a left parietooccipital hygroma that was drained via a shunt. On his 31st postnatal day he developed seizures and marked dilatation of the lateral ventricles, for which he underwent a ventriculoperitoneal shunt (Brown). On the 14th postoperative day the patient developed aspiration pneumonia and died.
Collapse
|
47
|
Schäfer MKE, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 2010; 67:2425-37. [PMID: 20237819 PMCID: PMC11115577 DOI: 10.1007/s00018-010-0339-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/30/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
Abstract
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.
Collapse
Affiliation(s)
- Michael K E Schäfer
- Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
48
|
Bertolin C, Boaretto F, Barbon G, Salviati L, Lapi E, Divizia MT, Garavelli L, Occhi G, Vazza G, Mostacciuolo ML. Novel mutations in the L1CAM gene support the complexity of L1 syndrome. J Neurol Sci 2010; 294:124-6. [DOI: 10.1016/j.jns.2010.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
49
|
Nakamura Y, Lee S, Haddox CL, Weaver EJ, Lemmon VP. Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 2010; 518:1113-32. [PMID: 20127821 DOI: 10.1002/cne.22267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations in the human L1CAM gene cause X-linked hydrocephalus and MASA (Mental retardation, Aphasia, Shuffling gait, Adducted thumbs) syndrome. In vitro studies have shown that the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knockout (L1(KO)) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts, and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1(KO) mice, yet it is required for continued L1 protein expression and motor function in the adult.
Collapse
Affiliation(s)
- Yukiko Nakamura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
50
|
The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 2010; 52:447-77. [PMID: 20422408 DOI: 10.1007/s00234-010-0696-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 12/13/2022]
Abstract
There are three telencephalic commissures which are paleocortical (the anterior commissure), archicortical (the hippocampal commissure), and neocortical. In non-placental mammals, the neocortical commissural fibers cross the midline together with the anterior and possibly the hippocampal commissure, across the lamina reuniens (joining plate) in the upper part of the lamina terminalis. In placental mammals, a phylogenetically new feature emerged, which is the corpus callosum: it results from an interhemispheric fusion line with specialized groups of mildline glial cells channeling the commissural axons through the interhemispheric meninges toward the contralateral hemispheres. This concerns the frontal lobe mainly however: commissural fibers from the temporo-occipital neocortex still use the anterior commissure to cross, and the posterior occipito-parietal fibers use the hippocampal commissure, forming the splenium in the process. The anterior callosum and the splenium fuse secondarily to form the complete commissural plate. Given the complexity of the processes involved, commissural ageneses are many and usually associated with other diverse defects. They may be due to a failure of the white matter to develop or to the commissural neurons to form or to migrate, to a global failure of the midline crossing processes or to a selective failure of commissuration affecting specific commissural sites (anterior or hippocampal commissures, anterior callosum), or specific sets of commissural axons (paleocortical, hippocampal, neocortical commissural axons). Severe hemispheric dysplasia may prevent the axons from reaching the midline on one or both sides. Besides the intrinsically neural defects, midline meningeal factors may prevent the commissuration as well (interhemispheric cysts or lipoma). As a consequence, commissural agenesis is a malformative feature, not a malformation by itself. Good knowledge of the modern embryological data may allow for a good understanding of a specific pattern in a given individual patient, paving the way for better clinical correlation and genetic counseling.
Collapse
|