1
|
Ganatra H, Tan JK, Simmons A, Bigogno CM, Khurana V, Ghose A, Ghosh A, Mahajan I, Boussios S, Maniam A, Ayodele O. Applying whole-genome and whole-exome sequencing in breast cancer: a review of the landscape. Breast Cancer 2024; 31:999-1009. [PMID: 39190283 PMCID: PMC11489287 DOI: 10.1007/s12282-024-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Whole-genome sequencing (WGS) and whole-exome sequencing (WES) are crucial within the context of breast cancer (BC) research. They play a role in the detection of predisposed genes, risk stratification, and identification of rare single nucleotide polymorphisms (SNPs). These technologies aid in the discovery of associations between various syndromes and BC, understanding the tumour microenvironment (TME), and even identifying unknown mutations that could be useful in future for personalised treatments. Genetic analysis can find the associated risk of BC and can be used in early screening, diagnosis, specific treatment plans, and prevention in patients who are at high risk of tumour formation. This article focuses on the application of WES and WGS, and how uncovering novel candidate genes associated with BC can aid in treating and preventing BC.
Collapse
Affiliation(s)
- Hetvi Ganatra
- Barts Cancer Institute, Cancer Research UK City of London, Queen Mary University of London, London, UK
| | - Joecelyn Kirani Tan
- School of Medicine, University of St. Andrews, Fife, Scotland, UK
- Andrews Oncology Society, Scotland, UK
| | - Ana Simmons
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Carola Maria Bigogno
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- British Oncology Network for Undergraduate Societies (BONUS), London, UK
| | - Vatsala Khurana
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK
- Department of Medical Oncology, Mount Vernon Cancer Centre, Mount Vernon and Watford NHS Trust, Watford, UK
| | - Adheesh Ghosh
- UCL Cancer Institute, University College London, London, UK
| | - Ishika Mahajan
- Department of Oncology, Lincoln Oncology Centre, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Kent and Medway Medical School, University of Kent, Canterbury, Kent, UK.
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury, UK.
- AELIA Organization, 9th Km Thessaloniki-hermi, 57001, Thessaloniki, Greece.
| | - Akash Maniam
- Department of Medical Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- Faculty of Science and Health, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Caribbean Cancer Research Institute, Port of Spain, Trinidad and Tobago
| | - Olubukola Ayodele
- Department of Medical Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Linders DGJ, Bijlstra OD, Walker E, March TL, Pool M, Valentijn ARPM, Dijkhuis TH, Woltering JN, Pijl FR, Noordam G, van den Burg D, van der Sijp JRM, Guicherit OR, Marinelli AWKS, Burggraaf J, Rissmann R, Bogyo M, Hilling DE, Kuppen PJK, Straight B, Straver ME, Hazelbag HM, Basilion JP, Vahrmeijer AL. Ex vivo fluorescence-guided resection margin assessment in breast cancer surgery using a topically applied, cathepsin-activatable imaging agent. Pharmacol Res 2024; 209:107464. [PMID: 39401538 DOI: 10.1016/j.phrs.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Up to 40 % of breast cancer patients have a tumor-positive resection margin (TPRM) - defined as cancer cells at the surface of the resected specimen - after breast-conserving surgery (BCS), necessitating re-resection or boost radiation. To prevent these additional treatments, intraoperative near-infrared (NIR) fluorescence imaging with the topically applied, cathepsin-activatable imaging agent AKRO-6qcICG might be used to detect TPRMs and guide additional resection. Here, to validate its performance, the agent is topically applied to all surfaces of freshly resected breast cancer specimens (n = 11 patients) and to 3-5 mm thick tissue slices of the specimens (n = 26 patients). NIR fluorescence images of the resection surfaces and tissue slices are acquired and correlated to final histopathology. AKRO-6qcICG detects TPRMs with a sensitivity, specificity, PVV, and NPV of 100 %, 67 %, 10 %, and 100 %, respectively. On the tissue slices, the fluorescence signal has a median tumor-to-background ratio of 1.8. These findings indicate that topically applied AKRO-6qcICG can visualize TPRMs ex vivo with a high sensitivity and NPV, with sufficient contrast to adjacent healthy breast tissue.
Collapse
Affiliation(s)
- Daan G J Linders
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Taryn L March
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - A Rob P M Valentijn
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Tom H Dijkhuis
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jikke N Woltering
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Floor R Pijl
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Gilbert Noordam
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - Davey van den Burg
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | | | - Onno R Guicherit
- Department of Surgery, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden 2333 CL, The Netherlands; Leiden Academic Center for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden 2333 CL, The Netherlands; Leiden Academic Center for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Matthew Bogyo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands; Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Marieke E Straver
- Department of Surgery, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - Hans Marten Hazelbag
- Department of Pathology, Haaglanden Medical Center, The Hague 2512 VA, The Netherlands
| | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Akrotome Imaging Inc., Cleveland, OH 44106, USA; Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
3
|
Linders DGJ, Bijlstra OD, Fallert LC, Dekker-Ensink NG, March TL, Pool M, Walker E, Straight B, Basilion JP, Bogyo M, Burggraaf J, Hilling DE, Vahrmeijer AL, Kuppen PJK, Crobach ASLP. Immunohistochemical Evaluation of Cathepsin B, L, and S Expression in Breast Cancer Patients. Mol Imaging Biol 2024:10.1007/s11307-024-01955-5. [PMID: 39331316 DOI: 10.1007/s11307-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Cysteine cathepsins are proteases that play a role in normal cellular physiology and neoplastic transformation. Elevated expression and enzymatic activity of cathepsins in breast cancer (BCa) indicates their potential as a target for tumor imaging. In particular cathepsin B (CTSB), L (CTSL), and S (CTSS) are used as targets for near-infrared (NIR) fluorescence imaging (FI), a technique that allows real-time intraoperative tumor visualization and resection margin assessment. Therefore, this immunohistochemical study explores CTSB, CTSL, and CTSS expression levels in a large breast cancer patient cohort, to investigate in which BCa patients the use of cathepsin-targeted NIR FI may have added value. PROCEDURES Protein expression was analyzed in tumor tissue microarrays (TMA) of BCa patients using immunohistochemistry and quantified as a total immunostaining score (TIS), ranging from 0-12. In total, the tissues of 557 BCa patients were included in the TMA. RESULTS CTSB, CTSL, and CTSS were successfully scored in respectively 340, 373 and 252 tumors. All tumors showed CTSB, CTSL, and/or CTSS expression to some extent (TIS > 0). CTSB, CTSL, and CTSS expression was scored as high (TIS > 6) in respectively 28%, 80%, and 18% of tumors. In 89% of the tumors scored for all three cathepsins, the expression level of one or more of these proteases was scored as high (TIS > 6). Tumors showed significantly higher cathepsin expression levels with advancing Bloom-Richardson grade (p < 0.05). Cathepsin expression was highest in estrogen receptor (ER)-negative, human epidermal growth factor receptor 2(HER2)-positive and triple-negative (TN) tumors. There was no significant difference in cathepsin expression between tumors that were treated with neoadjuvant systemic therapy and tumors that were not. CONCLUSIONS The expression of at least one of the cysteine cathepsins B, L and S in all breast tumor tissues tested suggests that cathepsin-activatable imaging agents with broad reactivity for these three proteases will likely be effective in the vast majority of breast cancer patients, regardless of molecular subtype and treatment status. Patients with high grade ER-negative, HER2-positive, or TN tumors might show higher imaging signals.
Collapse
Affiliation(s)
- Daan G J Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - Okker D Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Laura C Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - N Geeske Dekker-Ensink
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Taryn L March
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - James P Basilion
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Akrotome Imaging Inc, Charlotte, NC, 28205, USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 AL, Leiden, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - A Stijn L P Crobach
- Department of Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
4
|
Cox KE, Turner MA, Lwin TM, Amirfakhri S, Kelly KJ, Hosseini M, Ghosh P, Obonyo M, Hoffman RM, Yazaki PJ, Bouvet M. Targeting Patient-Derived Orthotopic Gastric Cancers with a Fluorescent Humanized Anti-CEA Antibody. Ann Surg Oncol 2024; 31:6291-6299. [PMID: 38888861 PMCID: PMC11300635 DOI: 10.1245/s10434-024-15570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Gastric cancer poses a major diagnostic and therapeutic challenge as surgical resection provides the only opportunity for a cure. Specific labeling of gastric cancer could distinguish resectable and nonresectable disease and facilitate an R0 resection, which could improve survival. METHODS Two patient-derived gastric cancer lines, KG8 and KG10, were established from surgical specimens of two patients who underwent gastrectomy for gastric adenocarcinoma. Harvested tumor fragments were implanted into the greater curvature of the stomach to establish patient-derived orthotopic xenograft (PDOX) models. M5A (humanized anti-CEA antibody) or IgG control antibodies were conjugated with the near-infrared dye IRDye800CW. Mice received 50 µg of M5A-IR800 or 50 µg of IgG-IR800 intravenously and were imaged after 72 hr. Fluorescence imaging was performed by using the LI-COR Pearl Imaging System. A tumor-to-background ratio (TBR) was calculated by dividing the mean fluorescence intensity of the tumor versus adjacent stomach tissue. RESULTS M5A-IR800 administration resulted in bright labeling of both KG8 and K10 tumors. In the KG8 PDOX models, the TBR for M5A-IR800 was 5.85 (SE ± 1.64) compared with IgG-IR800 at 0.70 (SE ± 0.17). The K10 PDOX models had a TBR of 3.71 (SE ± 0.73) for M5A-IR800 compared with 0.66 (SE ± 0.12) for IgG-IR800. CONCLUSIONS Humanized anti-CEA (M5A) antibodies conjugated to fluorescent dyes provide bright and specific labeling of gastric cancer PDOX models. This tumor-specific fluorescent antibody is a promising potential clinical tool to detect the extent of disease for the determination of resectability as well as to visualize tumor margins during gastric cancer resection.
Collapse
Affiliation(s)
- Kristin E Cox
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Michael A Turner
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Thinzar M Lwin
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Siamak Amirfakhri
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Kaitlyn J Kelly
- Department of Surgical Oncology, University of Wisconsin, Madison, WI, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marygorret Obonyo
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert M Hoffman
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- AntiCancer Inc, San Diego, CA, USA
| | - Paul J Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Khan AEMA, Arutla V, Srivenugopal KS. Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging. Cells 2024; 13:1272. [PMID: 39120303 PMCID: PMC11311714 DOI: 10.3390/cells13151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.
Collapse
Affiliation(s)
| | | | - Kalkunte S. Srivenugopal
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Amarillo Research Bldg., Rm. 1102, Amarillo, TX 79106, USA; (A.E.M.A.K.); (V.A.)
| |
Collapse
|
6
|
Wagner P, Levine EA, Kim AC, Shen P, Fleming ND, Westin SN, Berry LK, Karakousis GC, Tanyi JL, Olson MT, Madajewski B, Ostrander B, Krishnan K, Balch CM, Bartlett DL. Detection of Residual Peritoneal Metastases Following Cytoreductive Surgery Using Pegsitacianine, a pH-Sensitive Imaging Agent: Final Results from a Phase II Study. Ann Surg Oncol 2024; 31:4726-4734. [PMID: 38622456 DOI: 10.1245/s10434-024-15165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND For patients with peritoneal carcinomatosis, extent of disease and completeness of cytoreductive surgery (CRS) are major prognostic factors for long-term survival. Assessment of these factors could be improved using imaging agents. Pegsitacianine is a pH-sensitive polymeric micelle conjugated to the fluorophore indocyanine green. The micelle disassembles in acidic microenvironments, such as tumors, resulting in localized fluorescence unmasking. We assessed the utility of pegsitacianine in detecting residual disease following CRS. PATIENTS AND METHODS NCT04950166 was a phase II, non-randomized, open-label, multicenter US study. Patients eligible for CRS were administered an intravenous dose of pegsitacianine at 1 mg/kg 24-72 h before surgery. Following CRS, the peritoneal cavity was reexamined under near-infrared (NIR) illumination to evaluate for fluorescent tissue. Fluorescent tissue identified was excised and evaluated by histopathology. The primary outcome was the rate of clinically significant events (CSE), defined as detection of histologically confirmed residual disease excised with pegsitacianine or a revision in the assessment of completeness of CRS. Secondary outcomes included acceptable safety and pegsitacianine performance. RESULTS A total of 53 patients were screened, 50 enrolled, and 40 were evaluable for CSE across six primary tumor types. Residual disease was detected with pegsitacianine in 20 of 40 (50%) patients. Pegsitacianine showed high sensitivity and was well tolerated with no serious adverse events (SAEs). Transient treatment-related, non-anaphylactic infusion reactions occurred in 28% of patients. CONCLUSIONS Pegsitacianine was well tolerated and facilitated the recognition of occult residual disease following CRS. The high rate of residual disease detected suggests that the use of pegsitacianine augmented surgeon assessment and performance during CRS.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA
| | - Edward A Levine
- Department of Surgical Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Alex C Kim
- Division of Surgical Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Perry Shen
- Department of Surgical Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Nicole D Fleming
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Laurel K Berry
- Department of Gynecologic Oncology, Atrium Health Wake Forest Baptist, Wake Forest University, Winston-Salem, NC, USA
| | - Giorgos C Karakousis
- Division of Endocrine and Oncologic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Charles M Balch
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - David L Bartlett
- Department of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Rauf SA, Ahmed R, Hussain T, Saad M, Shah HH, Jamalvi SA, Yogeeta F, Devi M, Subash A, Gul M, Ahmed S, Haque MA. Fluorescence in neurosurgery: its therapeutic and diagnostic significance - a comprehensive review. Ann Med Surg (Lond) 2024; 86:4255-4261. [PMID: 38989178 PMCID: PMC11230751 DOI: 10.1097/ms9.0000000000002218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
This review provides a comprehensive overview of the therapeutic and diagnostic implications of fluorescence imaging in neurosurgery. Fluorescence imaging has become a valuable intraoperative visualization and guidance tool, facilitating precise surgical interventions. The therapeutic role of fluorescence is examined, including its application in photodynamic therapy and tumor-targeted therapy. It also explores its diagnostic capabilities in tumor detection, margin assessment, and blood-brain barrier evaluation. Drawing from clinical and preclinical studies, the review underscores the growing evidence supporting the efficacy of fluorescence imaging in neurosurgical practice. Furthermore, it discusses current limitations and future directions, emphasizing the potential for emerging technologies to enhance the utility and accessibility of fluorescence imaging, ultimately improving patient outcomes in neurosurgery.
Collapse
Affiliation(s)
| | | | - Tooba Hussain
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | | | | | | | - Arun Subash
- Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Gul
- Dow University of Health Sciences, Karachi, Pakistan
| | - Shaheer Ahmed
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopaedic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
8
|
Kopicky L, Fan B, Valente SA. Intraoperative evaluation of surgical margins in breast cancer. Semin Diagn Pathol 2024:S0740-2570(24)00065-0. [PMID: 38965021 DOI: 10.1053/j.semdp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Achieving clear resection margins at the time of lumpectomy is essential for optimal patient outcomes. Margin status is traditionally determined by pathologic evaluation of the specimen and often is difficult or impossible for the surgeon to definitively know at the time of surgery, resulting in the need for re-operation to obtain clear surgical margins. Numerous techniques have been investigated to enhance the accuracy of intraoperative margin and are reviewed in this manuscript.
Collapse
Affiliation(s)
- Lauren Kopicky
- Division of Breast Surgical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Betty Fan
- Department of Breast Surgery, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
9
|
Guergan S, Boeer B, Fugunt R, Helms G, Roehm C, Solomianik A, Neugebauer A, Nuessle D, Schuermann M, Brunecker K, Jurjut O, Boehme KA, Dammeier S, Enderle MD, Bettio S, Gonzalez-Menendez I, Staebler A, Brucker SY, Kraemer B, Wallwiener D, Fend F, Hahn M. Optical Emission Spectroscopy for the Real-Time Identification of Malignant Breast Tissue. Diagnostics (Basel) 2024; 14:338. [PMID: 38337854 PMCID: PMC10855719 DOI: 10.3390/diagnostics14030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Breast conserving resection with free margins is the gold standard treatment for early breast cancer recommended by guidelines worldwide. Therefore, reliable discrimination between normal and malignant tissue at the resection margins is essential. In this study, normal and abnormal tissue samples from breast cancer patients were characterized ex vivo by optical emission spectroscopy (OES) based on ionized atoms and molecules generated during electrosurgical treatment. The aim of the study was to determine spectroscopic features which are typical for healthy and neoplastic breast tissue allowing for future real-time tissue differentiation and margin assessment during breast cancer surgery. A total of 972 spectra generated by electrosurgical sparking on normal and abnormal tissue were used for support vector classifier (SVC) training. Specific spectroscopic features were selected for the classification of tissues in the included breast cancer patients. The average classification accuracy for all patients was 96.9%. Normal and abnormal breast tissue could be differentiated with a mean sensitivity of 94.8%, a specificity of 99.0%, a positive predictive value (PPV) of 99.1% and a negative predictive value (NPV) of 96.1%. For 66.6% patients all classifications reached 100%. Based on this convincing data, a future clinical application of OES-based tissue differentiation in breast cancer surgery seems to be feasible.
Collapse
Affiliation(s)
- Selin Guergan
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Bettina Boeer
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Regina Fugunt
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Gisela Helms
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Carmen Roehm
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Anna Solomianik
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Alexander Neugebauer
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Daniela Nuessle
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Mirjam Schuermann
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Kristin Brunecker
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Ovidiu Jurjut
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Karen A. Boehme
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Sascha Dammeier
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Markus D. Enderle
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Sabrina Bettio
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Sara Y. Brucker
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Bernhard Kraemer
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Diethelm Wallwiener
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Markus Hahn
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| |
Collapse
|
10
|
Hermanns S, Dammeier S, Neugebauer A, Enderle MD. [Methods, applications, and future perspectives of intraoperative tissue identification]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:183-187. [PMID: 37966557 DOI: 10.1007/s00292-023-01257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Over the last century, there has been a steady development of new technologies for intraoperative tissue identification and differentiation. The applications are varied, with the core purpose being to identify target structures while preserving adjacent tissue and thereby follow a general paradigm of minimally invasive medicine. Particularly in oncology, a further asset of these technologies is the identification or classification of neoplastic tissue to support and improve therapy, for example, in breast cancer surgery.Many technologies under consideration make use of the different physical characteristics of treated tissues, such as induced fluorescence, optical coherence, and electrical impedance.Recent developments are focusing on moving from ex vivo to in situ and from asynchronous to real-time assistance of the clinicians, for example, by means of optical emission spectroscopy. Refinements of existing and the creation of new methods will include AI tools to make them more powerful while reducing the inter-operator variability in operative interventions. This talk addresses several aspects of the usage and suitability of these technologies for intraoperative, therapy-supporting application.
Collapse
Affiliation(s)
- Sanja Hermanns
- Erbe Elektromedizin GmbH, Waldhörnlestr. 17, 72072, Tübingen, Deutschland
| | - Sascha Dammeier
- Erbe Elektromedizin GmbH, Waldhörnlestr. 17, 72072, Tübingen, Deutschland
| | | | - Markus D Enderle
- Erbe Elektromedizin GmbH, Waldhörnlestr. 17, 72072, Tübingen, Deutschland.
| |
Collapse
|
11
|
Turza LC, Shriver CD. Something to Dye For: Toward Better Breast Lumpectomy Margins. NEJM EVIDENCE 2023; 2:EVIDe2300114. [PMID: 38320169 DOI: 10.1056/evide2300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The development of fluorescence imaging in oncology led to the possibility of using intraoperative devices to improve the precision of surgical techniques.1 In this issue of NEJM Evidence, Smith et al.2 report results from a prospective multicenter trial evaluating the ability of intravenous pegulicianine with an optical head device and software to intraoperatively identify lumpectomy margins with residual cancer and excise them immediately. Identifying these margins intraoperatively avoids the need for a second surgery, which is required when margins are positive on the final pathology.
Collapse
Affiliation(s)
| | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|