1
|
Goll N, Moszka N, Kantartzis K, Preissl H, Gruber T, Fritsche L, Jumpertz-von Schwarzenberg R, García-Cáceres C, Fritsche A, Hallschmid M. Oxytocin does not acutely improve glucose tolerance in men with type 2 diabetes. Diabetes Obes Metab 2024; 26:4562-4570. [PMID: 39118203 DOI: 10.1111/dom.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
AIM To assess oxytocin's acute glucoregulatory impact in men with type 2 diabetes in the context of our previous findings that oxytocin improves β-cell responsivity in healthy men. METHODS In a double-blind, crossover comparison, intranasal oxytocin (24 IU) and placebo, respectively, were administered to 25 fasted men with non-insulin-treated type 2 diabetes (age ± standard error of the mean, 63.40 ± 1.36 years; body mass index, 27.77 ± 0.66 kg/m2; HbA1c, 6.86% ± 0.08%; Homeostatic Model Assessment of Insulin Resistance (HOMA-IR, 3.44 ± 0.39) 60 minutes before an oral glucose tolerance test (oGTT). Key outcomes were compared with previous results in men with normal weight or obesity. RESULTS Oxytocin compared with placebo increased plasma oxytocin concentrations and reduced the heart rate, but did not alter glucose metabolism in the 3 hours after oGTT onset (area under the curve, glucose, 2240 ± 80.5 vs. 2190 ± 69.5 mmol/L × min; insulin, 45 663 ± 4538 vs. 44 343 ± 4269 pmol/L × min; C-peptide, 235 ± 5.1 vs. 231 ± 15.9 nmol/L × min). CONCLUSIONS This outcome contrasts with the oxytocin-induced attenuation of early postprandial glucose excursions in normal-weight individuals, but is in line with the absence of respective effects in men with obesity. We conclude that insulin resistance in type 2 diabetes is associated with decreased sensitivity to the acute glucoregulatory effect of oxytocin in male individuals.
Collapse
Affiliation(s)
- Nina Goll
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Nina Moszka
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Periodontics, Preventive and Restorative Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| | - Tim Gruber
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Van Andel Institute, Grand Rapids, Michigan, USA
| | - Louise Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Reiner Jumpertz-von Schwarzenberg
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
2
|
Lawson EA. Understanding oxytocin in human physiology and pathophysiology: A path towards therapeutics. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100242. [PMID: 38974962 PMCID: PMC11225698 DOI: 10.1016/j.cpnec.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
•Oxytocin is a multifaceted hypothalamic-pituitary hormone involved in energy homeostasis, mental health, and bone metabolism.•Oxytocin deficiency in energy deficit states and in hypopituitarism is associated with worse mental health and bone health.•Oxytocin modulates appetitive neurocircuitry, improves impulse control, and reduces food intake in humans.•Defining the oxytocin system in human physiology and pathophysiology could lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, 50 Staniford Street, Suite 750B, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
4
|
Rea JJ, Liu CM, Hayes AMR, Bashaw AG, Schwartz GM, Ohan R, Décarie-Spain L, Kao AE, Klug ME, Phung KJ, Waldow AI, Wood RI, Kanoski SE. Hippocampus Oxytocin Signaling Promotes Prosocial Eating in Rats. Biol Psychiatry 2024:S0006-3223(24)01462-8. [PMID: 39038641 DOI: 10.1016/j.biopsych.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Oxytocin (OT) is a hypothalamic neuropeptide involved in diverse physiological and behavioral functions, including social-based behavior and food intake control. The extent to which OT's role in regulating these 2 fundamental behaviors is interconnected is unknown, which is a critical gap in knowledge given that social factors have a strong influence on eating behavior in mammals. Here, we focus on OT signaling in the dorsal hippocampus (HPCd), a brain region recently linked to eating and social memory, as a candidate system where these functions overlap. METHODS HPCd OT signaling gain- and loss-of-function strategies were used in male Sprague Dawley rats that were trained in a novel social eating procedure to consume their first nocturnal meal under conditions that varied with regard to conspecific presence and familiarity. The endogenous role of HPCd OT signaling was also evaluated for olfactory-based social transmission of food preference learning, sociality, and social recognition memory. RESULTS HPCd OT administration had no effect on food intake under isolated conditions but significantly increased consumption in the presence of a familiar but not an unfamiliar conspecific. Supporting these results, chronic knockdown of HPCd OT receptor expression eliminated the food intake-promoting effects of a familiar conspecific. HPCd OT receptor knockdown also blocked social transmission of food preference learning and impaired social recognition memory without affecting sociality. CONCLUSIONS Collectively, the results of the current study identify endogenous HPCd OT signaling as a novel substrate in which OT synergistically influences eating and social behaviors, including the social facilitation of eating and the social transmission of food preference.
Collapse
Affiliation(s)
- Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Grace M Schwartz
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Rita Ohan
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Kenneth J Phung
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Alice I Waldow
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Ruth I Wood
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California; Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California.
| |
Collapse
|