Livingston GK, Ryan TL, Escalona MB, Foster AE, Balajee AS. Retrospective Evaluation of Cytogenetic Effects Induced by Internal Radioiodine Exposure: A 27-Year Follow-Up Study.
Cytogenet Genome Res 2023;
163:154-162. [PMID:
37573786 DOI:
10.1159/000533396]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer. A comprehensive cytogenetic follow-up study utilizing cytokinesis blocked micronucleus assay, dicentric chromosome assay, genome wide translocations and inversions was initiated on this patient since the first administration of radioiodine in 1992. Frequencies of micronuclei (0.006/cell) and dicentric chromosomes (0.008/cell) detected in the current study were grossly similar to that reported earlier in 2019. The mFISH analysis detected chromosome aberrations in 8.6% of the cells in the form of both unbalanced and balanced translocations. Additionally, a clonal translocation involving chromosomes 14p; 15q was observed in 2 of the 500 cells analyzed. Out of the 500 cells examined, one cell showed a complex translocation (involving chromosomes 9, 10, and 16) besides 5 other chromosome rearrangements. Collectively, our study indicates that the past radioiodine exposure results in long-lasting chromosome damage and that the persistence of translocations can be useful for both retrospective biodosimetry and for monitoring chromosome instability in the lymphocytes of radioiodine exposed individuals.
Collapse