1
|
Maher S, Wynne K, Zhernovkov V, Halasz M. A temporal (phospho-)proteomic dataset of neurotrophic receptor tyrosine kinase signalling in neuroblastoma. Sci Data 2024; 11:1111. [PMID: 39389992 PMCID: PMC11467210 DOI: 10.1038/s41597-024-03965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (TrkA, TrkB, TrkC), despite their homology, contribute to the clinical heterogeneity of the childhood cancer neuroblastoma. TrkA expression is associated with low-stage disease and is often seen with spontaneous tumour regression. Conversely, TrkB is present in unfavourable neuroblastomas that often harbour amplification of the MYCN oncogene. The role of TrkC is less clearly defined, although some studies suggest its association with a favourable outcome. Understanding the differences in activity of Trk receptors that drive divergent clinical phenotypes as well as the influence of MYCN amplification on downstream Trk receptor signalling remains poorly understood. Here, we present a comprehensive label-free mass spectrometry-based total proteomics and phosphoproteomics dataset (432 raw files with FragPipe search outputs; available on PRIDE with accession number PXD054441) where we identified and quantified 4,907 proteins, 16,744 phosphosites and 5,084 phosphoproteins, derived from NGF/BDNF/NT-3 treated TrkA/B/C-overexpressing neuroblastoma cells with differential MYCN status. Analysing our dataset offers valuable insights into TrkA/B/C receptor signalling in neuroblastoma and its modulation by MYCN status; and holds potential for advancing therapeutic strategies in this challenging childhood cancer.
Collapse
Affiliation(s)
- Stephanie Maher
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Pomaville M, Chennakesavalu M, Wang P, Jiang Z, Sun HL, Ren P, Borchert R, Gupta V, Ye C, Ge R, Zhu Z, Brodnik M, Zhong Y, Moore K, Salwen H, George RE, Krajewska M, Chlenski A, Applebaum MA, He C, Cohn SL. Small-molecule inhibition of the METTL3/METTL14 complex suppresses neuroblastoma tumor growth and promotes differentiation. Cell Rep 2024; 43:114165. [PMID: 38691450 PMCID: PMC11181463 DOI: 10.1016/j.celrep.2024.114165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
The N6-methyladenosine (m6A) RNA modification is an important regulator of gene expression. m6A is deposited by a methyltransferase complex that includes methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). High levels of METTL3/METTL14 drive the growth of many types of adult cancer, and METTL3/METTL14 inhibitors are emerging as new anticancer agents. However, little is known about the m6A epitranscriptome or the role of the METTL3/METTL14 complex in neuroblastoma, a common pediatric cancer. Here, we show that METTL3 knockdown or pharmacologic inhibition with the small molecule STM2457 leads to reduced neuroblastoma cell proliferation and increased differentiation. These changes in neuroblastoma phenotype are associated with decreased m6A deposition on transcripts involved in nervous system development and neuronal differentiation, with increased stability of target mRNAs. In preclinical studies, STM2457 treatment suppresses the growth of neuroblastoma tumors in vivo. Together, these results support the potential of METTL3/METTL14 complex inhibition as a therapeutic strategy against neuroblastoma.
Collapse
Affiliation(s)
- Monica Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | | | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhiwei Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peizhe Ren
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Borchert
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Varsha Gupta
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zhu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mallory Brodnik
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Kelley Moore
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Helen Salwen
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Malgorzata Krajewska
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alexandre Chlenski
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Mark A Applebaum
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, Il 60637 USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Naito Y, Mishima S, Akagi K, Hayashi N, Hirasawa A, Hishiki T, Igarashi A, Ikeda M, Kadowaki S, Kajiyama H, Kato M, Kenmotsu H, Kodera Y, Komine K, Koyama T, Maeda O, Miyachi M, Nishihara H, Nishiyama H, Ohga S, Okamoto W, Oki E, Ono S, Sanada M, Sekine I, Takano T, Tao K, Terashima K, Tsuchihara K, Yatabe Y, Yoshino T, Baba E. Japanese Society of Medical Oncology/Japan Society of Clinical Oncology/Japanese Society of Pediatric Hematology/Oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors. Int J Clin Oncol 2023:10.1007/s10147-023-02345-7. [PMID: 37212982 DOI: 10.1007/s10147-023-02345-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Clinical trials have reported the efficacy of tropomyosin receptor kinase (TRK) inhibitors against neurotrophic receptor tyrosine kinase (NTRK) fusion gene-positive advanced solid tumors. The accumulated evidence of tumor-agnostic agent has made since TRK inhibitors were approved and used in clinical practice. Therefore, we have revised the 'Japan Society of Clinical Oncology (JSCO)/Japanese Society of Medical Oncology (JSMO)-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese Society of Pediatric Hematology/Oncology (JSPHO)'. METHODS Clinical questions regarding medical care were formulated for patients with NTRK fusion-positive advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by JSCO, JSMO, and JSPHO voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and JSPHO, and the public comments among all societies' members was done. RESULTS The current guideline describes 3 clinical questions and 14 recommendations for whom, when, and how NTRK fusion should be tested, and what is recommended for patients with NTRK fusion-positive advanced solid tumors. CONCLUSION The committee proposed 14 recommendations for performing NTRK testing properly to select patients who are likely to benefit from TRK inhibitors.
Collapse
Affiliation(s)
- Yoichi Naito
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Naomi Hayashi
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Ataru Igarashi
- Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eiji Oki
- Kyushu University, Fukuoka, Japan
| | | | - Masashi Sanada
- National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | | | | | - Kayoko Tao
- National Cancer Center Hospital, Tokyo, Japan
| | - Keita Terashima
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Parvin S, Akter J, Takenobu H, Katai Y, Satoh S, Okada R, Haruta M, Mukae K, Wada T, Ohira M, Ando K, Kamijo T. ATM depletion induces proteasomal degradation of FANCD2 and sensitizes neuroblastoma cells to PARP inhibitors. BMC Cancer 2023; 23:313. [PMID: 37020276 PMCID: PMC10077671 DOI: 10.1186/s12885-023-10772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/26/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Genomic alterations, including loss of function in chromosome band 11q22-23, are frequently observed in neuroblastoma, which is the most common extracranial childhood tumour. In neuroblastoma, ATM, a DNA damage response-associated gene located on 11q22-23, has been linked to tumorigenicity. Genetic changes in ATM are heterozygous in most tumours. However, it is unclear how ATM is associated with tumorigenesis and cancer aggressiveness. METHODS To elucidate its molecular mechanism of action, we established ATM-inactivated NGP and CHP-134 neuroblastoma cell lines using CRISPR/Cas9 genome editing. The knock out cells were rigorously characterized by analyzing proliferation, colony forming abilities and responses to PARP inhibitor (Olaparib). Western blot analyses were performed to detect different protein expression related to DNA repair pathway. ShRNA lentiviral vectors were used to knockdown ATM expression in SK-N-AS and SK-N-SH neuroblastoma cell lines. ATM knock out cells were stably transfected with FANCD2 expression plasmid to over-expressed the FANCD2. Moreover, knock out cells were treated with proteasome inhibitor MG132 to determine the protein stability of FANCD2. FANCD2, RAD51 and γH2AX protein expressions were determined by Immunofluorescence microscopy. RESULTS Haploinsufficient ATM resulted in increased proliferation (p < 0.01) and cell survival following PARP inhibitor (olaparib) treatment. However, complete ATM knockout decreased proliferation (p < 0.01) and promoted cell susceptibility to olaparib (p < 0.01). Complete loss of ATM suppressed the expression of DNA repair-associated molecules FANCD2 and RAD51 and induced DNA damage in neuroblastoma cells. A marked downregulation of FANCD2 expression was also observed in shRNA-mediated ATM-knockdown neuroblastoma cells. Inhibitor experiments demonstrated that the degradation of FANCD2 was regulated at the protein level through the ubiquitin-proteasome pathway. Reintroduction of FANCD2 expression is sufficient to reverse decreased proliferation mediated by ATM depletion. CONCLUSIONS Our study revealed the molecular mechanism underlying ATM heterozygosity in neuroblastomas and elucidated that ATM inactivation enhances the susceptibility of neuroblastoma cells to olaparib treatment. These findings might be useful in the treatment of high-risk NB patients showing ATM zygosity and aggressive cancer progression in future.
Collapse
Affiliation(s)
- Sultana Parvin
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Jesmin Akter
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Hisanori Takenobu
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Yutaka Katai
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Shunpei Satoh
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Ryu Okada
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Masayuki Haruta
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Kyosuke Mukae
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Tomoko Wada
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Miki Ohira
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan
| | - Takehiko Kamijo
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama, 362-0806, Japan.
- Laboratory of Tumor Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
The RUNX Family Defines Trk Phenotype and Aggressiveness of Human Neuroblastoma through Regulation of p53 and MYCN. Cells 2023; 12:cells12040544. [PMID: 36831211 PMCID: PMC9954111 DOI: 10.3390/cells12040544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Runt-related transcription factor (RUNX) family, which is essential for the differentiation of cells of neural crest origin, also plays a potential role in neuroblastoma tumorigenesis. Consecutive studies in various tumor types have demonstrated that the RUNX family can play either pro-tumorigenic or anti-tumorigenic roles in a context-dependent manner, including in response to chemotherapeutic agents. However, in primary neuroblastomas, RUNX3 acts as a tumor-suppressor, whereas RUNX1 bifunctionally regulates cell proliferation according to the characterized genetic and epigenetic backgrounds, including MYCN oncogenesis. In this review, we first highlight the current knowledge regarding the mechanism through which the RUNX family regulates the neurotrophin receptors known as the tropomyosin-related kinase (Trk) family, which are significantly associated with neuroblastoma aggressiveness. We then focus on the possible involvement of the RUNX family in functional alterations of the p53 family members that execute either tumor-suppressive or dominant-negative functions in neuroblastoma tumorigenesis. By examining the tripartite relationship between the RUNX, Trk, and p53 families, in addition to the oncogene MYCN, we endeavor to elucidate the possible contribution of the RUNX family to neuroblastoma tumorigenesis for a better understanding of potential future molecular-based therapies.
Collapse
|
6
|
Zeineldin M, Patel AG, Dyer MA. Neuroblastoma: When differentiation goes awry. Neuron 2022; 110:2916-2928. [PMID: 35985323 PMCID: PMC9509448 DOI: 10.1016/j.neuron.2022.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/21/2022] [Accepted: 07/13/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma is a leading cause of cancer-related death in children. Accumulated data suggest that differentiation arrest of the neural-crest-derived sympathoadrenal lineage contributes to neuroblastoma formation. The developmental arrest of these cell types explains many biological features of the disease, including its cellular heterogeneity, mutational spectrum, spontaneous regression, and response to drugs that induce tumor cell differentiation. In this review, we provide evidence that supports the notion that arrested neural-crest-derived progenitor cells give rise to neuroblastoma and discuss how this concept could be exploited for clinical management of the disease.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anand G Patel
- Departments of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, MS-323, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Abstract
Nervous system activity regulates development, homeostasis, and plasticity of the brain as well as other organs in the body. These mechanisms are subverted in cancer to propel malignant growth. In turn, cancers modulate neural structure and function to augment growth-promoting neural signaling in the tumor microenvironment. Approaching cancer biology from a neuroscience perspective will elucidate new therapeutic strategies for presently lethal forms of cancer. In this review, we highlight the neural signaling mechanisms recapitulated in primary brain tumors, brain metastases, and solid tumors throughout the body that regulate cancer progression. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michael B Keough
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| | - Michelle Monje
- Department of Neurology and Neurological Sciences and Howard Hughes Medical Institute, Stanford University, Stanford, California, USA;
| |
Collapse
|
8
|
Nunes-Xavier CE, Zaldumbide L, Mosteiro L, López-Almaraz R, García de Andoin N, Aguirre P, Emaldi M, Torices L, López JI, Pulido R. Protein Tyrosine Phosphatases in Neuroblastoma: Emerging Roles as Biomarkers and Therapeutic Targets. Front Cell Dev Biol 2021; 9:811297. [PMID: 34957126 PMCID: PMC8692838 DOI: 10.3389/fcell.2021.811297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a type of cancer intimately related with early development and differentiation of neuroendocrine cells, and constitutes one of the pediatric cancers with higher incidence and mortality. Protein tyrosine phosphatases (PTPs) are key regulators of cell growth and differentiation by their direct effect on tyrosine dephosphorylation of specific protein substrates, exerting major functions in the modulation of intracellular signaling during neuron development in response to external cues driving cell proliferation, survival, and differentiation. We review here the current knowledge on the role of PTPs in neuroblastoma cell growth, survival, and differentiation. The potential of PTPs as biomarkers and molecular targets for inhibition in neuroblastoma therapies is discussed.
Collapse
Affiliation(s)
- Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Pablo Aguirre
- Department of Pathology, Donostia University Hospital, San Sebastian, Spain
| | - Maite Emaldi
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Torices
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José I. López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- *Correspondence: Caroline E. Nunes-Xavier, ; Rafael Pulido,
| |
Collapse
|
9
|
Hassiepen C, Soni A, Rudolf I, Boron V, Oeck S, Iliakis G, Schramm A. NTRK1/TrkA Activation Overrides the G 2/M-Checkpoint upon Irradiation. Cancers (Basel) 2021; 13:cancers13236023. [PMID: 34885133 PMCID: PMC8657035 DOI: 10.3390/cancers13236023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
High expression of the receptor tyrosine kinase TrkA/NTRK1 is associated with a favorable outcome in several solid tumors of childhood including neuroblastoma. During development, TrkA/NTRK1 governs migration and differentiation of neuronal precursor cells, while it is associated with mitotic dysfunction and altered DNA damage response, among others, in neuroblastoma. Here, we used human neuroblastoma cell lines with inducible TrkA/NTRK1 expression to mechanistically explore the role of TrkA/NTRK1 signaling in checkpoint activation after DNA damage induced by ionizing radiation (IR). TrkA/NTRK1 activated cells showed increased short-term cell viability upon IR compared to vector control cells. This was accompanied by a deficient G2/M-checkpoint at both low (1 Gy) and high doses (4 Gy) of IR. In a tightly controlled setting, we confirmed that this effect was strictly dependent on activation of TrkA/NTRK1 by its ligand, nerve growth factor (NGF). TrkA/NTRK1-expressing cells displayed impaired ATM and CHK1 phosphorylation, resulting in stabilization of CDC25B. In line with these findings, ATM or ATR inhibition recapitulated the effects of TrkA/NTRK1 activation on the IR-induced G2/M-checkpoint. In conclusion, we here provide first evidence for a previously unrecognized function of NTRK signaling in checkpoint regulation and the response to IR.
Collapse
Affiliation(s)
- Christina Hassiepen
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University of Duisburg-Essen Medical School, 45122 Essen, Germany; (A.S.); (G.I.)
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Ines Rudolf
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Vivian Boron
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - Sebastian Oeck
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University of Duisburg-Essen Medical School, 45122 Essen, Germany; (A.S.); (G.I.)
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - Alexander Schramm
- West German Cancer Center, Department of Medical Oncology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.H.); (I.R.); (V.B.); (S.O.)
- Correspondence:
| |
Collapse
|
10
|
Takita J. Molecular Basis and Clinical Features of Neuroblastoma. JMA J 2021; 4:321-331. [PMID: 34796286 PMCID: PMC8580727 DOI: 10.31662/jmaj.2021-0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/02/2021] [Indexed: 12/05/2022] Open
Abstract
Neuroblastoma, a neoplasm of the sympathetic nervous system, originates from neuroblastoma stem cells during embryogenesis. It exhibits unique clinical features including a tendency for spontaneous regression of tumors in infants and a high frequency of metastatic disease at diagnosis in patients aged over 18 months. Genetic risk factors and epigenetic dysregulation also play a significant role in the development of neuroblastoma. Over the past decade, our understanding of this disease has advanced considerably. This has included the identification of chromosomal copy number aberrations specific to neuroblastoma development, risk groups, and disease stage. However, high-risk neuroblastoma remains a therapeutic challenge for pediatric oncologists. New therapeutic approaches have been developed, either as alternatives to conventional chemotherapy or in combination, to overcome the dismal prognosis. Particularly promising strategies are targeted therapies that directly affect cancer cells or cancer stem cells while exhibiting minimal effect on healthy cells. This review summarizes our understanding of neuroblastoma biology and prognostic features and focuses on novel therapeutic strategies for this intractable disease.
Collapse
Affiliation(s)
- Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Parmigiani E, Scalera M, Mori E, Tantillo E, Vannini E. Old Stars and New Players in the Brain Tumor Microenvironment. Front Cell Neurosci 2021; 15:709917. [PMID: 34690699 PMCID: PMC8527006 DOI: 10.3389/fncel.2021.709917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, the direct interaction between cancer cells and tumor microenvironment (TME) has emerged as a crucial regulator of tumor growth and a promising therapeutic target. The TME, including the surrounding peritumoral regions, is dynamically modified during tumor progression and in response to therapies. However, the mechanisms regulating the crosstalk between malignant and non-malignant cells are still poorly understood, especially in the case of glioma, an aggressive form of brain tumor. The presence of unique brain-resident cell types, namely neurons and glial cells, and an exceptionally immunosuppressive microenvironment pose additional important challenges to the development of effective treatments targeting the TME. In this review, we provide an overview on the direct and indirect interplay between glioma and neuronal and glial cells, introducing new players and mechanisms that still deserve further investigation. We will focus on the effects of neural activity and glial response in controlling glioma cell behavior and discuss the potential of exploiting these cellular interactions to develop new therapeutic approaches with the aim to preserve proper brain functionality.
Collapse
Affiliation(s)
- Elena Parmigiani
- Embryology and Stem Cell Biology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marta Scalera
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Elena Tantillo
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| |
Collapse
|
12
|
Shawraba F, Hammoud H, Mrad Y, Saker Z, Fares Y, Harati H, Bahmad HF, Nabha S. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr Treat Options Oncol 2021; 22:102. [PMID: 34580780 DOI: 10.1007/s11864-021-00898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
OPINION STATEMENT Neuroblastoma (NB) is a heterogeneous solid tumor of the pediatric population that originates from neural crest cells and affects the developing sympathetic nervous system. It is the most common neuroblastic tumor accounting for approximately 10% of all childhood cancers and 10-15% of pediatric tumor mortalities. The outcomes range from spontaneous tumor regression in low-risk groups to metastasis and death even after multimodal therapy in high-risk groups. Hence, the detection of NB at an early stage improves outcomes and provides a better prognosis for patients. Early detection and prognosis of NB depend on specific molecules termed biomarkers which can be tissue-specific or circulating. Certain biomarkers are employed in the classification of NB into different groups to improve the treatment and prognosis, and others can be used as therapeutic targets. Therefore, novel biomarker discovery is essential for the early detection of NB, predicting the course of the disease, and developing new targeted treatment strategies. In this review, we aim to summarize the literature pertinent to some important biomarkers of NB and discuss the prognostic role of these biomarkers as well as their potential role in targeted therapy.
Collapse
Affiliation(s)
- Fatima Shawraba
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hussein Hammoud
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Yara Mrad
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
13
|
Skowron MA, Oing C, Bremmer F, Ströbel P, Murray MJ, Coleman N, Amatruda JF, Honecker F, Bokemeyer C, Albers P, Nettersheim D. The developmental origin of cancers defines basic principles of cisplatin resistance. Cancer Lett 2021; 519:199-210. [PMID: 34320371 DOI: 10.1016/j.canlet.2021.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 02/09/2023]
Abstract
Cisplatin-based chemotherapy has been used for more than four decades as a standard therapeutic option in several tumor entities. However, being a multifaceted and heterogeneous phenomenon, inherent or acquired resistance to cisplatin remains a major obstacle during the treatment of several solid malignancies and inevitably results in disease progression. Hence, we felt there was an urgent need to evaluate common mechanisms between multifarious cancer entities to identify patient-specific therapeutic strategies. We found joint molecular and (epi)genetic resistance mechanisms and specific cisplatin-induced mutational signatures that depended on the developmental origin (endo-, meso-, ectoderm) of the tumor tissue. Based on the findings of thirteen tumor entities, we identified three resistance groups, where Group 1 (endodermal origin) prominently indicates NRF2-pathway activation, Group 2 (mesodermal origin, primordial germ cells) shares elevated DNA repair mechanisms and decreased apoptosis induction, and Group 3 (ectodermal and paraxial mesodermal origin) commonly presents deregulated apoptosis induction and alternating pathways as the main cisplatin-induced resistance mechanisms. This review further proposes potential and novel therapeutic strategies to improve the outcome of cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Christoph Oing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Mildred Scheel Cancer Career Center HaTriCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str.4, 37075 Gottingen, Germany.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Pediatric Hematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.
| | - James F Amatruda
- Departments of Pediatrics and Medicine, Keck School of Medicine, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California, 1975 Zonal Ave., Los Angeles, CA 90033, USA.
| | - Friedemann Honecker
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany; Tumor and Breast Center ZeTuP St. Gallen, Rorschacher Strasse 150, 9000 St. Gallen, Switzerland.
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Martinsstraße 52, 20246 Hamburg, Germany.
| | - Peter Albers
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Prill M, Karkucinska-Wieckowska A, Lebiedzinska-Arciszewska M, Morciano G, Charzynska A, Dabrowski M, Pronicki M, Pinton P, Grajkowska W, Wieckowski MR. Ras, TrkB, and ShcA Protein Expression Patterns in Pediatric Brain Tumors. J Clin Med 2021; 10:jcm10102219. [PMID: 34065573 PMCID: PMC8160917 DOI: 10.3390/jcm10102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins. The main aim of our study was to evaluate the potential correlation between the type of pediatric brain tumors, tumor malignancy grade, and the expression patterns of the investigated proteins.
Collapse
Affiliation(s)
- Monika Prill
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (M.P.); (M.L.-A.)
| | | | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (M.P.); (M.L.-A.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (G.M.); (P.P.)
| | - Agata Charzynska
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.C.); (M.D.)
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.C.); (M.D.)
| | - Maciej Pronicki
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (G.M.); (P.P.)
| | - Wieslawa Grajkowska
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (M.P.)
- Correspondence: (W.G.); (M.R.W.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (M.P.); (M.L.-A.)
- Correspondence: (W.G.); (M.R.W.)
| |
Collapse
|
15
|
Han JZR, Hastings JF, Phimmachanh M, Fey D, Kolch W, Croucher DR. Personalized Medicine for Neuroblastoma: Moving from Static Genotypes to Dynamic Simulations of Drug Response. J Pers Med 2021; 11:395. [PMID: 34064704 PMCID: PMC8151552 DOI: 10.3390/jpm11050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
High-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease. However, in this review we outline potential approaches for tailoring the use of chemotherapy agents to the specific molecular characteristics of individual tumours by performing patient-specific simulations of drug-induced apoptotic signalling. By incorporating multiple layers of information about tumour-specific aberrations, including expression as well as mutation data, these models have the potential to rationalize the selection of chemotherapeutics contained within multi-agent treatment regimens and ensure the optimum response is achieved for each individual patient.
Collapse
Affiliation(s)
- Jeremy Z. R. Han
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Jordan F. Hastings
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Monica Phimmachanh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R. Croucher
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
- St Vincent’s Hospital Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
17
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Artim SC, Kiyatkin A, Lemmon MA. Comparison of tyrosine kinase domain properties for the neurotrophin receptors TrkA and TrkB. Biochem J 2020; 477:4053-4070. [PMID: 33043964 PMCID: PMC7606831 DOI: 10.1042/bcj20200695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
The tropomyosin-related kinase (Trk) family consists of three receptor tyrosine kinases (RTKs) called TrkA, TrkB, and TrkC. These RTKs are regulated by the neurotrophins, a class of secreted growth factors responsible for the development and function of neurons. The Trks share a high degree of homology and utilize overlapping signaling pathways, yet their signaling is associated with starkly different outcomes in certain cancers. For example, in neuroblastoma, TrkA expression and signaling correlates with a favorable prognosis, whereas TrkB is associated with poor prognoses. To begin to understand how activation of the different Trks can lead to such distinct cellular outcomes, we investigated differences in kinase activity and duration of autophosphorylation for the TrkA and TrkB tyrosine kinase domains (TKDs). We find that the TrkA TKD has a catalytic efficiency that is ∼2-fold higher than that of TrkB, and becomes autophosphorylated in vitro more rapidly than the TrkB TKD. Studies with mutated TKD variants suggest that a crystallographic dimer seen in many TrkA (but not TrkB) TKD crystal structures, which involves the kinase-insert domain, may contribute to this enhanced TrkA autophosphorylation. Consistent with previous studies showing that cellular context determines whether TrkB signaling is sustained (promoting differentiation) or transient (promoting proliferation), we also find that TrkB signaling can be made more transient in PC12 cells by suppressing levels of p75NTR. Our findings shed new light on potential differences between TrkA and TrkB signaling, and suggest that subtle differences in signaling dynamics can lead to substantial shifts in the cellular outcome.
Collapse
Affiliation(s)
- Stephen C. Artim
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Present address: Merck Research Laboratories, Merck, South San Francisco, CA 94080, USA
| | - Anatoly Kiyatkin
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mark A. Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pharmacology and Cancer Biology Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
19
|
Suenaga Y, Nakatani K, Nakagawara A. De novo evolved gene product NCYM in the pathogenesis and clinical outcome of human neuroblastomas and other cancers. Jpn J Clin Oncol 2020; 50:839-846. [PMID: 32577751 DOI: 10.1093/jjco/hyaa097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
NCYM is an antisense transcript of MYCN oncogene and promotes tumor progression. NCYM encodes a de novo protein whose open reading frame evolved from noncoding genomic regions in the ancestor of Homininae. Because of its topology, NCYM is always co-amplified with MYCN oncogene, and the mutual regulations between NCYM and MYCN maintain their expressions at high levels in MYCN-amplified tumors. NCYM stabilizes MYCN by inhibiting GSK3β, whereas MYCN stimulates transcription of both NCYM and MYCN. NCYM mRNA and its noncoding transcript variants MYCNOS have been shown to stimulate MYCN expression via direct binding to MYCN promoter, indicating that both coding and noncoding transcripts of NCYM induce MYCN expression. In contrast to the noncoding functions of NCYM, NCYM protein also promotes calpain-mediated cleavage of c-MYC. The cleaved product called Myc-nick inhibits cell death and promotes cancer cell migration. Furthermore, NCYM-mediated inhibition of GSK3β results in the stabilization of β-catenin, which promotes aggressiveness of bladder cancers. These MYCN-independent functions of NCYM showed their clinical significance in MYCN-non-amplified tumors, including adult tumors. This year is the 30th anniversary of the identification of NCYM/MYCNOS gene. On this special occasion, we summarize the current understanding of molecular functions and the clinical significance of NCYM and discuss future directions to achieve therapeutic strategies targeting NCYM.
Collapse
|
20
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0109/dmdi-2020-0109.xml. [PMID: 32887179 DOI: 10.1515/dmdi-2020-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Objectives Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. Methods The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. Results We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. Conclusions The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
21
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
22
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 35:dmpt-2020-0109. [PMID: 34704697 DOI: 10.1515/dmpt-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. METHODS The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. RESULTS We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. CONCLUSIONS The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation.,Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
23
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
24
|
Hogarty MD, Hunger SP. The ASPHO 2020 distinguished career award goes to Dr Garrett M. Brodeur. Pediatr Blood Cancer 2020; 67 Suppl 2:e28191. [PMID: 32275099 DOI: 10.1002/pbc.28191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen P Hunger
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Ali S, Toews K, Schwiebert S, Klaus A, Winkler A, Grunewald L, Oevermann L, Deubzer HE, Tüns A, Jensen MC, Henssen AG, Eggert A, Schulte JH, Schwich E, Rebmann V, Schramm A, Künkele A. Tumor-Derived Extracellular Vesicles Impair CD171-Specific CD4 + CAR T Cell Efficacy. Front Immunol 2020; 11:531. [PMID: 32296437 PMCID: PMC7137471 DOI: 10.3389/fimmu.2020.00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell efficacy against solid tumors is currently limited by several immune escape mechanisms, which may include tumor-derived extracellular vesicles. Advanced neuroblastoma is an aggressive childhood tumor without curative treatment options for most relapsed patients today. We here evaluated the role of tumor-derived extracellular vesicles on the efficacy of CAR T cells targeting the neuroblastoma-specific antigen, CD171. For this purpose, CAR T cell activation, cytokine production, exhaustion, and tumor cell-directed cytotoxicity upon co-culture was evaluated. Tumor-derived extracellular vesicles isolated from SH-SY5Y neuroblastoma cells neither affected CAR T cell activation nor expression of inhibitory markers. Importantly, exposure of CD4+ CD171-specific CAR T cells to tumor-derived extracellular vesicles significantly impaired tumor cytotoxicity of CAR T cells. This effect was independent of neurotrophic receptor tyrosine kinases 1 or 2 (NTRK1, NTRK2) expression, which is known to impact immune responses against neuroblastoma. Our results demonstrate for the first time the impact of tumor-derived extracellular vesicles and non-cell-mediated tumor-suppressive effects on CD4+ CAR T cell efficacy in a preclinical setting. We conclude that these factors should be considered for any CAR T cell-based therapy to make CAR T cell therapy successful against solid tumors.
Collapse
Affiliation(s)
- Solin Ali
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karin Toews
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Oevermann
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alicia Tüns
- Department of Internal Medicine, University Duisburg-Essen, Essen, Germany
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,University of Washington, Department of Bioengineering, Seattle, WA, United States
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Esther Schwich
- Department of Transfusion Medicine, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Department of Transfusion Medicine, University Duisburg-Essen, Essen, Germany
| | - Alexander Schramm
- Department of Internal Medicine, University Duisburg-Essen, Essen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
26
|
Japan society of clinical oncology/Japanese society of medical oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese society of pediatric hematology/oncology. Int J Clin Oncol 2020; 25:403-417. [PMID: 31974683 PMCID: PMC7046581 DOI: 10.1007/s10147-019-01610-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
Background The development of novel antitumor agents and accompanying biomarkers has improved survival across several tumor types. Previously, we published provisional clinical opinion for the diagnosis and use of immunotherapy in patients with deficient DNA mismatch repair tumors. Recently, efficacy of tropomyosin receptor kinase inhibitors against neurotrophic receptor tyrosine kinase (NTRK) fusion gene-positive advanced solid tumors have been established as the second tumor-agnostic treatment, making it necessary to develop the guideline prioritized for these patients. Methods Clinical questions regarding medical care were formulated for patients with NTRK-positive advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by Japan Society of Clinical Oncology (JSCO) and Japanese Society of Medical Oncology (JSMO) voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and Japanese Society of Pediatric Hematology/Oncology, and the public comments among all Societies’ members was done. Results The current guideline describes 3 clinical questions and 15 recommendations for whom, when, and how NTRK fusion should be tested, and what is recommended for patients with NTRK fusion-positive advanced solid tumors. Conclusion In the NTRK guideline, the committee proposed 15 recommendations for performing NTRK testing properly to select patients who are likely to benefit from tropomyosin receptor kinase inhibitors. Electronic supplementary material The online version of this article (10.1007/s10147-019-01610-y) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Lebedev TD, Vagapova ER, Popenko VI, Leonova OG, Spirin PV, Prassolov VS. Two Receptors, Two Isoforms, Two Cancers: Comprehensive Analysis of KIT and TrkA Expression in Neuroblastoma and Acute Myeloid Leukemia. Front Oncol 2019; 9:1046. [PMID: 31681584 PMCID: PMC6813278 DOI: 10.3389/fonc.2019.01046] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
Pediatric cancers represent a wide variety of different tumors, though they have unique features that distinguish them from adult cancers. Receptor tyrosine kinases KIT and TrkA functions in AML and NB, respectively, are well-characterized. Though expression of these receptors is found in both tumors, little is known about KIT function in NB and TrkA in AML. By combining gene enrichment analysis with multidimensional scaling we showed that pediatric AMLs with t(8;21) or inv16 and high KIT expression levels stand out from other AML subtypes as they share prominent transcriptomic features exclusively with KIT-overexpressing NBs. We showed that AML cell lines had a predominant expression of an alternative TrkAIII isoform, which reportedly has oncogenic features, while NB cell lines had dominating TrkAI-II isoforms. NB cells, on the other hand, had an abnormal ratio of KIT isoforms as opposed to AML cells. Both SCF and NGF exerted protective action against doxorubicin and cytarabine for t(8;21) AML and NB cells. We identified several gene sets both unique and common for pediatric AML and NB, and this expression is associated with KIT or TrkA levels. NMU, DUSP4, RET, SUSD5, NOS1, and GABRA5 genes are differentially expressed in NBs with high KIT expression and are associated with poor survival in NB. We identified HOXA10, BAG3, and MARCKS genes that are connected with TrkA expression and are marker genes of poor outcome in AML. We also report that SLC18A2, PLXNC1, and MRPL33 gene expression is associated with TrkA or KIT expression levels in both AML and NB, and these genes have a prognostic value for both cancers. Thus, we have provided a comprehensive characterization of TrkA and KIT expression along with the oncogenic signatures of these genes across two pediatric tumors.
Collapse
Affiliation(s)
- Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Elmira R Vagapova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir I Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Olga G Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| |
Collapse
|
28
|
Seo E, Kim JS, Ma YE, Cho HW, Ju HY, Lee SH, Lee JW, Yoo KH, Sung KW, Koo HH. Differential Clinical Significance of Neurotrophin-3 Expression according to MYCN Amplification and TrkC Expression in Neuroblastoma. J Korean Med Sci 2019; 34:e254. [PMID: 31602824 PMCID: PMC6786962 DOI: 10.3346/jkms.2019.34.e254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Neurotrophin-3 (NT-3), a member of the NT family, has only been considered an ancillary compound that provides anti-apoptotic benefits by inactivating tropomyosin receptor kinase C (TrkC)-induced apoptotic signals. However, little is known about the clinical relevance of NT-3 expression itself in neuroblastoma. The purpose of this study was to assess NT-3 expression in patients with neuroblastoma and its relevance to clinicopathologic findings and treatment outcomes. METHODS In this study, expression of NT-3 and TrkC was analyzed using immunohistochemistry in 240 patients with newly diagnosed neuroblastoma. RESULTS The results of the study revealed that NT-3 expression was associated with older age at diagnosis, localized tumors, and more differentiated tumors but was not associated with early treatment response (degree of residual tumor volume after three cycles of chemotherapy) and progression-free survival (PFS). However, when analysis was confined to patients with MYCN amplified tumors, NT-3 expression was associated with better early treatment response with borderline significance (P = 0.092) and higher PFS (86.9% vs. 58.2%; P = 0.044). In multivariate analysis in patients with MYCN amplified tumors, NT-3 was independent prognostic factor (hazard ratio, 0.246; 95% confidence interval, 0.061-0.997; P = 0.050). In another subgroup analysis, the early treatment response was better if NT-3 was expressed in patients without TrkC expression (P = 0.053) while it was poorer in patients with TrkC expression (P = 0.023). CONCLUSION This study suggests that NT-3 expression in neuroblastoma has its own clinical significance independent of TrkC expression, and its prognostic significance differs depending on the status of MYCN amplification and/or TrkC expression.
Collapse
Affiliation(s)
- Eunseop Seo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Sun Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Samsung Advanced Institute for Health Sciences & Technology, Seoul, Korea
| | - Young Eun Ma
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Liu SY, Liu SZ, Li Y, Chen S. Mouse Nerve Growth Factor Facilitates the Growth of Interspinal Schwannoma Cells by Activating NGF Receptors. J Korean Neurosurg Soc 2019; 62:626-634. [PMID: 31527385 PMCID: PMC6835149 DOI: 10.3340/jkns.2019.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Objective Nerve growth factor (NGF) is a member of the neurotrophic factor family and plays a vital role in the physiological processes of organisms, especially in the nervous system. Many recent studies have reported that NGF is also involved in the regulation of tumourigenesis by either promoting or suppressing tumor growth, which depends on the location and type of tumor. However, little is known regarding the effect of NGF on interspinal schwannoma (IS). In the present study, we aimed to explored whether mouse nerve growth factor (mNGF), which is widely used in the clinic, can influence the growth of interspinal schwannoma cells (ISCs) isolated from IS in vitro. Methods ISCs were isolated, cultured and identified by S-100 with immunofluorescence analysis. S-100-positive cells were divided into five groups, and separately cultured with various concentrations of mNGF (0 [phosphate buffered saline, PBS], 40, 80, 160, and 320 ng/mL) for 24 hours. Western blot and quantantive real time polymerase chain reaction (PCR) were applied to detect tyrosine kinase A (TrkA) receptor and p75 neurotrophin receptor (p75NTR) in each group. Crystal violet staining was selected to assess the effect of mNGF (160 ng/mL) on ISCs growth.
Results ISCs growth was enhanced by mNGF in a dose-dependent manner. The result of crystal violet staining revealed that it was significantly strengthened the cells growth kinetics when cultured with 160 ng/mL mNGF compared to PBS group. Western blot and quantantive real time PCR discovered that TrkA receptor and mRNA expression were both up-regualated under the condition of mNGF, expecially in 160 ng/mL, while the exoression of p75NTR demonstrated no difference among groups.
Conclusion From these data, we conclude that exogenous mNGF can facilitate ISC growth by activating both TrkA receptor and p75NTR. In addition, patients who are suffering from IS should not be administered mNGF in the clinic.
Collapse
Affiliation(s)
- Shu Yi Liu
- School of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Sheng Ze Liu
- Department of Neurosurgery, Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, China
| | - Yu Li
- Department of Otolaryngology, Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Shi Chen
- Department of Neurosurgery, Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, China
| |
Collapse
|
30
|
Koshy A, Jain R, Srinivasan R, Bhatia P, Kakkar N, Rajwanshi A, Gupta N, Dey P, Trehan A, Bansal D. Cytopathological spectrum of peripheral neuroblastic tumours in fine needle aspiration cytology and categorisation as per International Neuroblastoma Pathology Classification. Cytopathology 2019; 30:634-643. [DOI: 10.1111/cyt.12747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/01/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Abin Koshy
- Department of Cytology and Gynecological PathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Richa Jain
- Hemato‐Oncology UnitDepartment of PediatricsPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Radhika Srinivasan
- Department of Cytology and Gynecological PathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Prateek Bhatia
- Hemato‐Oncology UnitDepartment of PediatricsPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Nandita Kakkar
- Department of HistopathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Arvind Rajwanshi
- Department of Cytology and Gynecological PathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Nalini Gupta
- Department of Cytology and Gynecological PathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Pranab Dey
- Department of Cytology and Gynecological PathologyPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Amita Trehan
- Hemato‐Oncology UnitDepartment of PediatricsPostgraduate Institute of Medical Education and Research Chandigarh India
| | - Deepak Bansal
- Hemato‐Oncology UnitDepartment of PediatricsPostgraduate Institute of Medical Education and Research Chandigarh India
| |
Collapse
|
31
|
MYC Expression and Metabolic Redox Changes in Cancer Cells: A Synergy Able to Induce Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7346492. [PMID: 31341534 PMCID: PMC6614970 DOI: 10.1155/2019/7346492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
Chemoresistance is due to multiple factors including the induction of a metabolic adaptation of tumor cells. In fact, in these cells, stress conditions induced by therapies stimulate a metabolic reprogramming which involves the strengthening of various pathways such as glycolysis, glutaminolysis and the pentose phosphate pathway. This metabolic reprogramming is the result of a complex network of mechanisms that, through the activation of oncogenes (i.e., MYC, HIF1, and PI3K) or the downregulation of tumor suppressors (i.e., TP53), induces an increased expression of glucose and/or glutamine transporters and of glycolytic enzymes. Therefore, in order to overcome chemoresistance, it is necessary to develop combined therapies which are able to selectively and simultaneously act on the multiple molecular targets responsible for this adaptation. This review is focused on highlighting the role of MYC in modulating the epigenetic redox changes which are crucial in the acquisition of therapy resistance.
Collapse
|
32
|
Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, D'Alessandro A, Culp-Hill R, d'Almeida A, Joshi SK, Rosenberg M, Tognon CE, Danilov AV, Druker BJ, Chang BH, McWeeney SK, Tyner JW. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discov 2019; 9:910-925. [PMID: 31048320 DOI: 10.1158/2159-8290.cd-19-0125] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
To study mechanisms underlying resistance to the BCL2 inhibitor venetoclax in acute myeloid leukemia (AML), we used a genome-wide CRISPR/Cas9 screen to identify gene knockouts resulting in drug resistance. We validated TP53, BAX, and PMAIP1 as genes whose inactivation results in venetoclax resistance in AML cell lines. Resistance to venetoclax resulted from an inability to execute apoptosis driven by BAX loss, decreased expression of BCL2, and/or reliance on alternative BCL2 family members such as BCL2L1. The resistance was accompanied by changes in mitochondrial homeostasis and cellular metabolism. Evaluation of TP53 knockout cells for sensitivities to a panel of small-molecule inhibitors revealed a gain of sensitivity to TRK inhibitors. We relate these observations to patient drug responses and gene expression in the Beat AML dataset. Our results implicate TP53, the apoptotic network, and mitochondrial functionality as drivers of venetoclax response in AML and suggest strategies to overcome resistance. SIGNIFICANCE: AML is challenging to treat due to its heterogeneity, and single-agent therapies have universally failed, prompting a need for innovative drug combinations. We used a genetic approach to identify genes whose inactivation contributes to drug resistance as a means of forming preferred drug combinations to improve AML treatment.See related commentary by Savona and Rathmell, p. 831.This article is highlighted in the In This Issue feature, p. 813.
Collapse
Affiliation(s)
- Tamilla Nechiporuk
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Stephen E Kurtz
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Olga Nikolova
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon
| | - Tingting Liu
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Courtney L Jones
- Division of Hematology, University of Colorado Denver, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Amanda d'Almeida
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sunil K Joshi
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Mara Rosenberg
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Cristina E Tognon
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon
| | - Alexey V Danilov
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. .,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.,Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
33
|
The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg Today 2019; 49:721-727. [PMID: 30848386 DOI: 10.1007/s00595-019-01790-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
Abstract
Neuroblastoma is one of the most frequent, yet distinctive and challenging childhood tumors. The uniqueness of this tumor depends on its biological markers, which classify neuroblastomas into favorable and unfavorable, with 5-year survival rates ranging from almost 100-30%. In this review, we focus on some biological factors that play major roles in neuroblastoma: MYCN, Trk, and ALK. The MYCN and Trk family genes have been studied for decades and are known to be crucial for the tumorigenesis and progression of neuroblastoma. ALK gene mutations have been recognized recently to be responsible for familial neuroblastomas. Each factor plays an important role in normal neural development, regulating cell proliferation or differentiation by activating several signaling pathways, and interacting with each other. These factors have been studied not only as prognostic factors, but also as targets of neuroblastoma therapy, and some clinical trials are ongoing. We review the basic aspects of MYCN, Trk, and ALK in both neural development and in neuroblastoma.
Collapse
|
34
|
Johnsen JI, Dyberg C, Wickström M. Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci 2019; 12:9. [PMID: 30760980 PMCID: PMC6361784 DOI: 10.3389/fnmol.2019.00009] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest derived malignancy of the peripheral nervous system and is the most common and deadliest tumor of infancy. It is characterized by clinical heterogeneity with a disease spectrum ranging from spontaneous regression without any medical intervention to treatment resistant tumors with metastatic spread and poor patient survival. The events that lead to the development of neuroblastoma from the neural crest have not been fully elucidated. Here we discuss factors and processes within the neural crest that when dysregulated have the potential to be initiators or drivers of neuroblastoma development. A more precise biological understanding of neuroblastoma causes and cell of origin is highly warranted. This will give valuable information for the development of medicines that specifically target molecules within neuroblastoma cells and also give hint about the mechanisms behind treatment resistance that is frequently seen in neuroblastoma.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet (KI), Stockholm, Sweden
| |
Collapse
|
35
|
Transcriptome profiling of caspase-2 deficient EμMyc and Th-MYCN mouse tumors identifies distinct putative roles for caspase-2 in neuronal differentiation and immune signaling. Cell Death Dis 2019; 10:56. [PMID: 30670683 PMCID: PMC6343006 DOI: 10.1038/s41419-018-1296-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023]
Abstract
Caspase-2 is a highly conserved cysteine protease with roles in apoptosis and tumor suppression. Our recent findings have also demonstrated that the tumor suppression function of caspase-2 is context specific. In particular, while caspase-2 deficiency augments lymphoma development in the EμMyc mouse model, it leads to delayed neuroblastoma development in Th-MYCN mice. However, it is unclear how caspase-2 mediates these differential outcomes. Here we utilized RNA sequencing to define the transcriptomic changes caused by caspase-2 (Casp2−/−) deficiency in tumors from EμMyc and Th-MYCN mice. We describe key changes in both lymphoma and neuroblastoma-associated genes and identified differential expression of the EGF-like domain-containing gene, Megf6, in the two tumor types that may contribute to tumor outcome following loss of Casp2. We identified a panel of genes with altered expression in Th-MYCN/Casp2−/− tumors that are strongly associated with neuroblastoma outcome, with roles in melanogenesis, Wnt and Hippo pathway signaling, that also contribute to neuronal differentiation. In contrast, we found that key changes in gene expression in the EμMyc/Casp2−/− tumors, are associated with increased immune signaling and T-cell infiltration previously associated with more aggressive lymphoma progression. In addition, Rap1 signaling pathway was uniquely enriched in Casp2 deficient EμMyc tumors. Our findings suggest that Casp2 deficiency augments immune signaling pathways that may be in turn, enhance lymphomagenesis. Overall, our study has identified new genes and pathways that contribute to the caspase-2 tumor suppressor function and highlight distinct roles for caspase-2 in different tissues.
Collapse
|
36
|
Meco D, Di Francesco AM, Melotti L, Ruggiero A, Riccardi R. Ectopic nerve growth factor prevents proliferation in glioma cells by senescence induction. J Cell Physiol 2018; 234:6820-6830. [PMID: 30417351 DOI: 10.1002/jcp.27430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The neurotrophin nerve growth factor (NGF) affects survival, regulation and differentiation of both central and peripheral nervous system neurons. NGF exerts its effects primarily through tropomyosin receptor kinase A (TrkA), inducing a cascade of tyrosine kinase-initiated responses. In spite of its importance, the general behavior of NGF looks contradictory: its effects can be both stimulatory and inhibitory. The present study aims to explore the molecular mechanisms induced by NGF in glioma cancer cells. METHODS The effects of NGF were investigated in high grade glioma and low grade pediatric glioma (PLGG) cell lines through comparative studies. In particular, we investigated TrkA-mediated cellular pathways, molecular signaling, proliferation, cell cycle and cellular senescence. RESULTS We found that exposure of PLGG cells to NGF produced stable growth arrest with the features of a senescence phenotype but without the expression of anti-poly(ADP-ribose) polymerase cleavage, a marker of apoptosis. Moreover, NGF treatment promoted the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), signal transducer and activator of transcription 3 (STAT3), and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling. In addition, K252a, a TrkA inhibitor, significantly reduced the phosphorylation of the aforementioned signaling pathways, suggesting that NGF-activated ERK1/2 and AKT signaling take place downstream of TrkA-neurotrophin interaction. CONCLUSIONS These findings provide the first evidence that NGF can induce senescence of PLGG cells in a receptor-mediated fashion, thus supporting the hypothesis that in the clinical setting NGF might be beneficial to pediatric glioma patients.
Collapse
Affiliation(s)
- Daniela Meco
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| | | | | | - Antonio Ruggiero
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Riccardi
- Oncologia Pediatrica, Fondazione Policlinico Universitario A. Gemelli, IRCSS, Rome, Italy
| |
Collapse
|
37
|
Pacenta HL, Macy ME. Entrectinib and other ALK/TRK inhibitors for the treatment of neuroblastoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3549-3561. [PMID: 30425456 PMCID: PMC6204873 DOI: 10.2147/dddt.s147384] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RTK plays important roles in many cellular signaling processes involved in cancer growth and development. ALK, TRKA, TRKB, TRKC, and ROS1 are RTKs involved in several canonical pathways related to oncogenesis. These proteins can be genetically altered in malignancies, leading to receptor activation and constitutive signaling through their respective downstream pathways. Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, and despite intensive therapy, there is a high mortality rate in cases with a high-risk disease. Alterations of ALK and differential expression of TRK proteins are reported in a proportion of NB. Several inhibitors of ALK or TRKA/B/C have been evaluated both preclinically and clinically in the treatment of NB. These agents have had variable success and are not routinely used in the treatment of NB. Entrectinib (RXDX-101) is a pan-ALK, TRKA, TRKB, TRKC, and ROS1 inhibitor with activity against tumors with ALK, NTRK1, NTRK2, NTRK3, and ROS1 alterations in Phase I clinical trials in adults. Entrectinib’s activity against both ALK and TRK proteins suggests a possible role in NB treatment, and it is currently under investigation in both pediatric and adult oncology patients.
Collapse
Affiliation(s)
- Holly L Pacenta
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA,
| |
Collapse
|
38
|
Molecularly Targeted Therapy for Neuroblastoma. CHILDREN-BASEL 2018; 5:children5100142. [PMID: 30326621 PMCID: PMC6210520 DOI: 10.3390/children5100142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor encountered in childhood and accounts for 15% of pediatric cancer-related deaths. Although there has been significant improvement in the outcomes for patients with high-risk disease, the therapy needed to achieve a cure is quite toxic and for those that do experience a disease recurrence, the prognosis is very dismal. Given this, there is a tremendous need for novel therapies for children with high-risk neuroblastoma and the molecular discoveries over recent years provide hope for developing new, less toxic, and potentially more efficacious treatments. Here I discuss many of the molecular aberrations identified thus far in neuroblastoma, as well as the agents in development to target these changes. The progress made in both the preclinical arena and in early phase drug development provide much promise for the future of precision medicine in neuroblastoma.
Collapse
|
39
|
Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proc Natl Acad Sci U S A 2018; 115:E7351-E7360. [PMID: 30021854 DOI: 10.1073/pnas.1800039115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a neural crest-derived childhood tumor of the peripheral nervous system in which MycN amplification is a hallmark of poor prognosis. Here we show that MycN is expressed together with phosphorylation-stabilizing factor CIP2A in regions of the neural plate destined to form the CNS, but MycN is excluded from the neighboring neural crest stem cell domain. Interestingly, ectopic expression of MycN or CIP2A in the neural crest domain biases cells toward CNS-like neural stem cells that express Sox2. Consistent with this, some forms of neuroblastoma have been shown to share transcriptional resemblance with CNS neural stem cells. As high MycN/CIP2A levels correlate with poor prognosis, we posit that a MycN/CIP2A-mediated cell-fate bias may reflect a possible mechanism underlying early priming of some aggressive forms of neuroblastoma. In contrast to MycN, its paralogue cMyc is normally expressed in the neural crest stem cell domain and typically is associated with better overall survival in clinical neuroblastoma, perhaps reflecting a more "normal" neural crest-like state. These data suggest that priming for some forms of aggressive neuroblastoma may occur before neural crest emigration from the CNS and well before sympathoadrenal specification.
Collapse
|
40
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
41
|
Abstract
Neuroblastomas are characterized by heterogeneous clinical behavior, from spontaneous regression or differentiation into a benign ganglioneuroma, to relentless progression despite aggressive, multimodality therapy. Indeed, neuroblastoma is unique among human cancers in terms of its propensity to undergo spontaneous regression. The strongest evidence for this comes from the mass screening studies conducted in Japan, North America and Europe and it is most evident in infants with stage 4S disease. This propensity is associated with a pattern of genomic change characterized by whole chromosome gains rather than segmental chromosome changes but the mechanism(s) underlying spontaneous regression are currently a matter of speculation. There is evidence to support several possible mechanisms of spontaneous regression in neuroblastomas: (1) neurotrophin deprivation, (2) loss of telomerase activity, (3) humoral or cellular immunity and (4) alterations in epigenetic regulation and possibly other mechanisms. It is likely that a better understanding of the mechanisms of spontaneous regression will help to identify targeted therapeutic approaches for these tumors. The most easily targeted mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A (TrkA) pathway. Pan-Trk inhibitors are currently in clinical trials and so Trk inhibition might be used as the first line of therapy in infants with biologically favorable tumors that require treatment. Alternative approaches consist of breaking immune tolerance to tumor antigens but approaches to telomere shortening or epigenetic regulation are not easily druggable. The different mechanisms of spontaneous neuroblastoma regression are reviewed here, along with possible therapeutic approaches.
Collapse
Affiliation(s)
- Garrett M Brodeur
- Division of Oncology, Department of Pediatrics, the Children's Hospital of Philadelphia, University of Pennsylvania/Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA.
| |
Collapse
|
42
|
Gomez DR, Byers LA, Nilsson M, Diao L, Wang J, Li L, Tong P, Hofstad M, Saigal B, Wistuba I, Kalhor N, Swisher S, Fan Y, Hong WK, Suraokar M, Behrens C, Moran C, Heymach JV. Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget 2018; 9:14268-14284. [PMID: 29581842 PMCID: PMC5865668 DOI: 10.18632/oncotarget.24361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
While several molecular targets have been identified for adenocarcinoma (ACA) of the lung, similar drivers with squamous cell carcinoma (SCC) are sparse. We compared signaling pathways and potential therapeutic targets in lung SCC and ACA tumors using reverse phase proteomic arrays (RPPA) from two independent cohorts of resected early stage NSCLC patients: a testing set using an MDACC cohort (N=140) and a validation set using the Cancer Genome Atlas (TCGA) cohorts. We identified multiple potentially targetable proteins upregulated in SCC, including NRF2, Keap1, PARP, TrkB, and Chk2. Of these potential targets, we found that TrkB also had significant increases in gene expression in SCC as compared to adenocarcinoma. Thus, we next validated the upregulation of TrkB both in vitro and in vivo and found that it was constitutively expressed at high levels in a subset of SCC cell lines. Furthermore, we found that TrkB inhibition suppressed tumor growth, invasiveness and sensitized SCC cells to tyrosine kinase EGFR inhibition in a cell-specific manner.
Collapse
Affiliation(s)
- Daniel Richard Gomez
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Babita Saigal
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youhong Fan
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Milind Suraokar
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Cesar Moran
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Victor Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications. Oncogene 2018; 37:2714-2727. [PMID: 29507419 PMCID: PMC5955864 DOI: 10.1038/s41388-018-0133-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022]
Abstract
The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan–Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also that EZH2-related NTRK1 transcriptional regulation may be the key pathway for NB cell differentiation.
Collapse
|
44
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
45
|
Hishiki T, Mise N, Harada K, Ihara F, Takami M, Saito T, Terui K, Nakata M, Komatsu S, Yoshida H, Motohashi S. Invariant natural killer T infiltration in neuroblastoma with favorable outcome. Pediatr Surg Int 2018; 34:195-201. [PMID: 29018959 DOI: 10.1007/s00383-017-4189-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor immunity has been suggested to play a key role in clinical and biological behavior of neuroblastomas. Given that CD1-restricted invariant natural killer T (iNKT) cells enhance both innate and acquired tumor immunity, we investigated the expression of the iNKT-cell-specific T-cell receptor Vα24-Jα18 in neuroblastoma tissues and its correlation with clinical and biological characteristics. METHODS Using real- time quantitative PCR, we quantified the expression of Vα24-Jα18 in untreated tumor samples from 107 neuroblastoma cases followed in our institution and analyzed the correlation between the presence of infiltrated iNKT cells and clinical characteristics or patients' outcome. RESULTS Vα24-Jα18 receptor was detected in 62 untreated cases (57.9%). The expression was significantly higher in stages 1, 2, 3, or 4S (P = 0.0099), in tumors with low or intermediate risk (P = 0.0050), with high TrkA expression (P = 0.0229), with favorable histology (P = 0.0026), with aneuploidy (P = 0.0348), and in younger patients (P = 0.0036). The overall survival rate was significantly higher in patients with iNKT-cell infiltration (log-rank; P = 0.0089). CONCLUSIONS Since tumor-infiltrating iNKT cells were predominantly observed in neuroblastomas undergoing spontaneous differentiation and/or regression, we suggest that iNKT cells might play a key role in these processes.
Collapse
Affiliation(s)
- Tomoro Hishiki
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Division of Pediatric Surgical Oncology, National Cancer Center Hospital, Tokyo, Japan.
| | - Naoko Mise
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuaki Harada
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Fumie Ihara
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mariko Takami
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takeshi Saito
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Keita Terui
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mitsuyuki Nakata
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shugo Komatsu
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideo Yoshida
- Department of Pediatric Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
46
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
47
|
Rodríguez-Hernández CJ, Mateo-Lozano S, García M, Casalà C, Briansó F, Castrejón N, Rodríguez E, Suñol M, Carcaboso AM, Lavarino C, Mora J, de Torres C. Cinacalcet inhibits neuroblastoma tumor growth and upregulates cancer-testis antigens. Oncotarget 2017; 7:16112-29. [PMID: 26893368 PMCID: PMC4941301 DOI: 10.18632/oncotarget.7448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022] Open
Abstract
The calcium–sensing receptor is a G protein-coupled receptor that exerts cell-type specific functions in numerous tissues and some cancers. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. We have now assessed cinacalcet, an allosteric activator of the CaSR approved for clinical use, as targeted therapy for this developmental tumor using neuroblastoma cell lines and patient-derived xenografts (PDX) with different MYCN and TP53 status. In vitro, acute exposure to cinacalcet induced endoplasmic reticulum stress coupled to apoptosis via ATF4-CHOP-TRB3 in CaSR-positive, MYCN-amplified cells. Both phenotypes were partially abrogated by phospholipase C inhibitor U73122. Prolonged in vitro treatment also promoted dose- and time-dependent apoptosis in CaSR-positive, MYCN-amplified cells and, irrespective of MYCN status, differentiation in surviving cells. Cinacalcet significantly inhibited tumor growth in MYCN-amplified xenografts and reduced that of MYCN-non amplified PDX. Morphology assessment showed fibrosis in MYCN-amplified xenografts exposed to the drug. Microarrays analyses revealed up-regulation of cancer-testis antigens (CTAs) in cinacalcet-treated MYCN-amplified tumors. These were predominantly CTAs encoded by genes mapping on chromosome X, which are the most immunogenic. Other modulated genes upon prolonged exposure to cinacalcet were involved in differentiation, cell cycle exit, microenvironment remodeling and calcium signaling pathways. CTAs were up-regulated in PDX and in vitro models as well. Moreover, progressive increase of CaSR expression upon cinacalcet treatment was seen both in vitro and in vivo. In summary, cinacalcet reduces neuroblastoma tumor growth and up-regulates CTAs. This effect represents a therapeutic opportunity and provides surrogate circulating markers of neuroblastoma response to this treatment.
Collapse
Affiliation(s)
- Carlos J Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carla Casalà
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Ferran Briansó
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Nerea Castrejón
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Eva Rodríguez
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
48
|
Surface marker profiling of SH-SY5Y cells enables small molecule screens identifying BMP4 as a modulator of neuroblastoma differentiation. Sci Rep 2017; 7:13612. [PMID: 29051534 PMCID: PMC5648761 DOI: 10.1038/s41598-017-13497-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children. Its broad spectrum of clinical outcomes reflects the underlying inherent cellular heterogeneity. As current treatments often do not lead to tumor eradication, there is a need to better define therapy-resistant neuroblastoma and to identify new modulatory molecules. To this end, we performed the first comprehensive flow cytometric characterization of surface molecule expression in neuroblastoma cell lines. Exploiting an established clustering algorithm (SPADE) for unbiased visualization of cellular subsets, we conducted a multiwell screen for small molecule modulators of neuroblastoma phenotype. In addition to SH-SY5Y cells, the SH-EP, BE(2)-M17 and Kelly lines were included in follow-up analysis as in vitro models of neuroblastoma. A combinatorial detection of glycoprotein epitopes (CD15, CD24, CD44, CD57, TrkA) and the chemokine receptor CXCR4 (CD184) enabled the quantitative identification of SPADE-defined clusters differentially responding to small molecules. Exposure to bone morphogenetic protein (BMP)-4 was found to enhance a TrkAhigh/CD15−/CD184− neuroblastoma cellular subset, accompanied by a reduction in doublecortin-positive neuroblasts and of NMYC protein expression in SH-SY5Y cells. Beyond yielding novel marker candidates for studying neuroblastoma pathology, our approach may provide tools for improved pharmacological screens towards developing novel avenues of neuroblastoma diagnosis and treatment.
Collapse
|
49
|
Abstract
Fell et al. deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. They discovered that KIF1Bβ is required for NGF-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. We recently identified pathogenic KIF1Bβ mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bβ is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bβ mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bβ-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bβ. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bβ independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bβ loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bβ mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.
Collapse
|
50
|
Persson CU, von Stedingk K, Bexell D, Merselius M, Braekeveldt N, Gisselsson D, Arsenian-Henriksson M, Påhlman S, Wigerup C. Neuroblastoma patient-derived xenograft cells cultured in stem-cell promoting medium retain tumorigenic and metastatic capacities but differentiate in serum. Sci Rep 2017; 7:10274. [PMID: 28860499 PMCID: PMC5579187 DOI: 10.1038/s41598-017-09662-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
Cultured cancer cells serve as important models for preclinical testing of anti-cancer compounds. However, the optimal conditions for retaining original tumor features during in vitro culturing of cancer cells have not been investigated in detail. Here we show that serum-free conditions are critical for maintaining an immature phenotype of neuroblastoma cells isolated from orthotopic patient-derived xenografts (PDXs). PDX cells could be grown either as spheres or adherent on laminin in serum-free conditions with retained patient-specific genomic aberrations as well as tumorigenic and metastatic capabilities. However, addition of serum led to morphological changes, neuronal differentiation and reduced cell proliferation. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were central for PDX cell proliferation and MYCN expression, and also hindered the serum-induced differentiation. Although serum induced a robust expression of neurotrophin receptors, stimulation with their cognate ligands did not induce further sympathetic differentiation, which likely reflects a block in PDX cell differentiation capacity coupled to their tumor genotype. Finally, PDX cells cultured as spheres or adherent on laminin responded similarly to various cytotoxic drugs, suggesting that both conditions are suitable in vitro screening models for neuroblastoma-targeting compounds.
Collapse
Affiliation(s)
- Camilla U Persson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | | | - Daniel Bexell
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - My Merselius
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Noémie Braekeveldt
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University, Department of Pathology, University and Regional Laboratories, Lund, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Caroline Wigerup
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|