1
|
Yoo JY, Jeong JW, Fazleabas AT, Tayade C, Young SL, Lessey BA. Protein Inhibitor of Activated STAT3 (PIAS3) Is Down-Regulated in Eutopic Endometrium of Women with Endometriosis. Biol Reprod 2016; 95:11. [PMID: 27226311 PMCID: PMC5029430 DOI: 10.1095/biolreprod.115.137158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Endometriosis is a major cause of chronic pelvic pain and infertility. Activation of STAT3 appears central to the inflammatory phenotype of eutopic endometrium in women with endometriosis. However, the molecular mechanism by which this occurs remains unknown. Our objective is to determine how STAT3 activity is regulated in endometriosis. Protein inhibitor of activated STAT3 (PIAS3) is a negative regulator of STAT3 activity. We examined the levels of PIAS3 in endometrium from women with and without endometriosis using Western blot analysis and immunohistochemistry. Levels of PIAS3 are significantly lower, in contrast with phosphorylation of STAT3, in women with endometriosis compared to women without endometriosis. Furthermore, induction of endometriosis in the baboon showed a significant reduction of PIAS3 expression during the progression of the disease. Interferon-γ (INFγ) reduces PIAS3 protein levels and increases phospho-STAT3 levels through CXCL10 in endometrial cells, Ishikawa, and 12Z cells. These results suggest that attenuation of PIAS3 causes aberrant activation of STAT3 in endometriosis, leading to inflammatory changes that may impair fertility or cause pain.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, Michigan
| | - Chandrakant Tayade
- Department of Obstetrics and Gynecology, Queens University, Kingston, Canada
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville Health System, Greenville, South Carolina
| |
Collapse
|
2
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, Ku BJ, Jeong JW. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet 2015; 11:e1005537. [PMID: 26378916 PMCID: PMC4574948 DOI: 10.1371/journal.pgen.1005537] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shikha Khatri
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Health System, Greenville, South Carolina, United States of America
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- * E-mail: (BJK); (JWJ)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
- * E-mail: (BJK); (JWJ)
| |
Collapse
|
3
|
Plosker GL, Brogden RN. Leuprorelin. A review of its pharmacology and therapeutic use in prostatic cancer, endometriosis and other sex hormone-related disorders. Drugs 1994; 48:930-67. [PMID: 7533699 DOI: 10.2165/00003495-199448060-00008] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Leuprorelin (leuprolide acetate) is a gonadotrophin-releasing hormone (GnRH) analogue used to treat a wide range of sex hormone-related disorders including advanced prostatic cancer, endometriosis and precocious puberty. It acts primarily on the anterior pituitary, inducing a transient early rise in gonadotrophin release. With continued use, leuprorelin causes pituitary desensitisation and/or down-regulation, leading to suppressed circulating levels of gonadotrophins and sex hormones. Clinical trials in men with advanced prostatic cancer demonstrate that leuprorelin (usually monthly depot injections of 3.75 or 7.5 mg) is less likely to cause serious adverse cardiovascular effects than diethylstilbestrol, and has comparable efficacy to bilateral orchiectomy or other GnRH analogues. Therefore, the choice between leuprorelin and orchiectomy may be made on the basis of the patient's treatment preference, along with specific patient characteristics and cost implications. Monthly intramuscular or subcutaneous administration of depot leuprorelin 3.75 mg was superior to placebo, and comparable to oral danazol 800 mg/day or intranasal buserelin 900 micrograms/day, in achieving objective and subjective responses in women with endometriosis. Thus, leuprorelin is an effective alternative to other treatments for women with endometriosis, but the recommended duration of its use in this clinical setting is limited to 6 months because it reduces bone mineral density. In children with central precocious puberty, leuprorelin (usually monthly intramuscular or subcutaneous injections of depot leuprorelin 3.75 to 15mg) decreases mean growth velocity and signs of sexual maturation and increases predicted adult height compared with baseline measurements. Although effects on final adult height are predicted from available data and require confirmation in long term follow-up studies, the absence of effective alternatives to GnRH analogues makes leuprorelin a first-line therapy for children with this rare disease. In women with uterine leiomyomata, monthly intramuscular administration of depot leuprorelin 3.75 mg for 6 months markedly reduces uterine volume and fibroid-related symptoms, but, as with other GnRH analogues, these effects dissipate following discontinuation of the drug. As adjuvant therapy in women undergoing in vitro fertilisation or gamete intrafallopian transfer, leuprorelin (usually 0.5 to 1 mg/day subcutaneously) reduces the risk of cancelled cycles for oocyte retrieval by preventing premature luteinisation. While some studies demonstrate an improvement in intermediate end-points such as increased number of mature oocytes retrieved and embryos available for transfer, a significant effect has not been demonstrated on the rate of live births per stimulated cycle.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G L Plosker
- Adis International Limited, Auckland, New Zealand
| | | |
Collapse
|