1
|
Li Y, Liu YB, Li XB, Cui XN, Meng DH, Yuan CC, Ye ZX. Deep learning model combined with computed tomography features to preoperatively predicting the risk stratification of gastrointestinal stromal tumors. World J Gastrointest Oncol 2024; 16:4663-4674. [DOI: 10.4251/wjgo.v16.i12.4663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GIST) are prevalent neoplasm originating from the gastrointestinal mesenchyme. Approximately 50% of GIST patients experience tumor recurrence within 5 years. Thus, there is a pressing need to accurately evaluate risk stratification preoperatively.
AIM To assess the application of a deep learning model (DLM) combined with computed tomography features for predicting risk stratification of GISTs.
METHODS Preoperative contrast-enhanced computed tomography (CECT) images of 551 GIST patients were retrospectively analyzed. All image features were independently analyzed by two radiologists. Quantitative parameters were statistically analyzed to identify significant predictors of high-risk malignancy. Patients were randomly assigned to the training (n = 386) and validation cohorts (n = 165). A DLM and a combined DLM were established for predicting the GIST risk stratification using convolutional neural network and subsequently evaluated in the validation cohort.
RESULTS Among the analyzed CECT image features, tumor size, ulceration, and enlarged feeding vessels were identified as significant risk predictors (P < 0.05). In DLM, the overall area under the receiver operating characteristic curve (AUROC) was 0.88, with the accuracy (ACC) and AUROCs for each stratification being 87% and 0.96 for low-risk, 79% and 0.74 for intermediate-risk, and 84% and 0.90 for high-risk, respectively. The overall ACC and AUROC were 84% and 0.94 in the combined model. The ACC and AUROCs for each risk stratification were 92% and 0.97 for low-risk, 87% and 0.83 for intermediate-risk, and 90% and 0.96 for high-risk, respectively. Differences in AUROCs for each risk stratification between the two models were significant (P < 0.05).
CONCLUSION A combined DLM with satisfactory performance for preoperatively predicting GIST stratifications was developed using routine computed tomography data, demonstrating superiority compared to DLM.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Yan-Bei Liu
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xu-Bin Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Xiao-Nan Cui
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Dong-Hua Meng
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Cong-Cong Yuan
- Department of Radiology, Tianjin First Central Hospital, Tianjin 300190, China
| | - Zhao-Xiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
2
|
Dong WC, Song MY, Zheng TL, Zhang ZQ, Jiang Y, Guo JL, Zhang YZ. Development of an hollow fiber solid phase microextraction method for the analysis of unbound fraction of imatinib and N-desmethyl imatinib in human plasma. J Pharm Biomed Anal 2024; 250:116405. [PMID: 39151298 DOI: 10.1016/j.jpba.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Therapeutic drug monitoring (TDM) of imatinib (IM) in cancer therapy offers the potential to improve treatment efficacy while minimizing toxicity. There was a significant correlation between unbound concentration and clinical response and toxicity, compared with total plasma concentrations, and the quantification of unbound IM and its metabolite, N-desmethyl imatinib (NDI) are of interest for TDM. However, traditional unbound drug separation methods have shortcomings, especially are susceptible to non-specific binding (NSB) of drugs to the polymer-constructed components of filter membranes, which are difficult to avoid at present. Hence it is necessary to developed a reliable separation method for the analysis of the unbound fraction of IM and NDI in TDM. We developed and validated an hollow fiber solid phase microextraction (HF-SPME) method coupled with high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) that to measure unbound IM and NDI concentration in human plasma. It used the NSB phenomenon and solve the NSB problem. The preparation procedure only involves a common vortex and ultrasonication without dilution of samples and modification of membrane. A total of 50 chronic myeloid leukemia (CML) patients were enrolled in our study. The relationship between the unbound and total concentrations for IM and NDI, as well as the concentration ratios of NDI to IM in 50 clinical plasma samples were investigated. The extraction recovery is high to 95.5-106 % with validation parameters for the methodological results were all excellent. There were both a poor linear relationship between the unbound and total concentrations for IM (r2=0.504) and NDI (r2=0.201) in 50 clinical plasma samples. The unbound concentration ratios of NDI to IM varied widely in CML patients. The determination of unbound IM and NDI concentration is meaningful and necessary. The developed HF-SPME method is simple, accurate and precise that could be used to measure unbound IM and NDI concentration in clinical TDM.
Collapse
Affiliation(s)
- Wei-Chong Dong
- The School of Medicine, Nankai University, Tianjin 300071, China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050051, China
| | - Mei-Yu Song
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China
| | - Tian-Lun Zheng
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050051, China
| | - Zhi-Qing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050051, China
| | - Ye Jiang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province 050017, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei Province 050017, China.
| | - Jia-Liang Guo
- Department of Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei Province 050000, China.
| | - Ying-Ze Zhang
- The School of Medicine, Nankai University, Tianjin 300071, China; Department of Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, Hebei Province 050000, China.
| |
Collapse
|
3
|
Arellano NS, Elf SE. Predicting drug resistance. eLife 2024; 13:e103775. [PMID: 39503728 PMCID: PMC11540300 DOI: 10.7554/elife.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
A new approach helps examine the proportion of cancerous and healthy stem cells in patients with chronic myeloid leukemia and how this influences treatment outcomes.
Collapse
Affiliation(s)
- Nicole S Arellano
- Department of Internal Medicine and the Division of Hematology and Hematologic Malignancies, University of UtahSalt Lake CityUnited States
| | - Shannon E Elf
- Department of Internal Medicine and the Division of Hematology and Hematologic Malignancies, University of UtahSalt Lake CityUnited States
| |
Collapse
|
4
|
Bhamidipati D, Schram AM. Emerging Tumor-Agnostic Molecular Targets. Mol Cancer Ther 2024; 23:1544-1554. [PMID: 39279103 DOI: 10.1158/1535-7163.mct-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Advances in tumor molecular profiling have uncovered shared genomic and proteomic alterations across tumor types that can be exploited therapeutically. A biomarker-driven, disease-agnostic approach to oncology drug development can maximize the reach of novel therapeutics. To date, eight drug-biomarker pairs have been approved for the treatment of patients with advanced solid tumors with specific molecular profiles. Emerging biomarkers with the potential for clinical actionability across tumor types include gene fusions involving NRG1, FGFR1/2/3, BRAF, and ALK and mutations in TP53 Y220C, KRAS G12C, FGFR2/3, and BRAF non-V600 (class II). We explore the growing evidence for clinical actionability of these biomarkers in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Alison M Schram
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
5
|
Zheng Z, Tang H, Zhang X, Zheng L, Yin Z, Zhou J, Zhu Y. Treatment-free remission after discontinuation of tyrosine kinase inhibitors in patients with chronic myeloid leukemia in the chronic phase: a systematic review and meta-analysis. Discov Oncol 2024; 15:586. [PMID: 39441428 PMCID: PMC11499512 DOI: 10.1007/s12672-024-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Treatment-free remission (TFR) is a new long-term goal for treating selected patients with chronic myeloid leukemia in the chronic phase (CML-CP). Still, the appropriate group in which TFR can be attempted and the factors influencing it have not yet been identified. This meta-analysis aimed to explore TFR in CML-CP patients who achieved a deep molecular response (DMR) before Tyrosine kinase inhibitors (TKIs) discontinuation and to explore possible factors influencing TFR and the safety of discontinuation. METHODS We performed a systematic review and single-arm meta-analysis with a systematic search of published literature up to September 2023 in PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The assessment was performed using the MINORS scale. Random-effects models were used to calculate outcome metrics, including overall mean TFR rates at 12 and 24 months and subgroup differences. Data synthesis and analysis were done by Stata17.0 software. RESULTS A total of 19 single-arm trials involving 2336 patients were included in this meta-analysis, with an overall mean TFR rate of 59% [95CI:0.56-0.63] at 12 months and 55% [95CI:0.52-0.59] at 24 months, and no CML-related deteriorations or deaths reported during the TFR period. Our subgroup analysis showed that better TFR was associated with prior interferon therapy (P = 0.003), and molecular response depth MR5.0 (P = 0.020). CONCLUSION Our study demonstrated that prior interferon therapy and attainment of a molecular response depth of MR5.0 or greater were associated with higher TFR rates, with patients who attained MR5.0 or greater achieving a TFR rate of up to 62% in the second year after TKI discontinuation. Considering the high heterogeneity of the included trials, the above influences still require further validation and more detailed subgroup analysis in future discontinuation trials. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/ (Registration No. CRD42023471334).
Collapse
Affiliation(s)
| | - Hao Tang
- Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xinxia Zhang
- Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liling Zheng
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, Guangdong, China.
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, Guangdong, China.
| | - Jie Zhou
- Deyang People's Hospital, Deyang, 618199, Sichuan, China.
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, 510317, Guangdong, China.
| |
Collapse
|
6
|
Nehmeh B, Rebehmed J, Nehmeh R, Taleb R, Akoury E. Unlocking therapeutic frontiers: harnessing artificial intelligence in drug discovery for neurodegenerative diseases. Drug Discov Today 2024; 29:104216. [PMID: 39428082 DOI: 10.1016/j.drudis.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Neurodegenerative diseases (NDs) pose serious healthcare challenges with limited therapeutic treatments and high social burdens. The integration of artificial intelligence (AI) into drug discovery has emerged as a promising approach to address these challenges. This review explores the application of AI techniques to unravel therapeutic frontiers for NDs. We examine the current landscape of AI-driven drug discovery and discuss the potentials of AI in accelerating the identification of novel therapeutic targets on ND research and drug development, optimization of drug candidates, and expediating personalized medicine approaches. Finally, we outline future directions and challenges in harnessing AI for the advancement of therapeutics in this critical area by emphasizing the importance of interdisciplinary collaboration and ethical considerations.
Collapse
Affiliation(s)
- Bilal Nehmeh
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Joseph Rebehmed
- Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Riham Nehmeh
- INSA Rennes, Institut d'électronique et de Télécommunications de Rennes IETR, UMR 6164, 35708 Rennes, France
| | - Robin Taleb
- Department of Physical Sciences, Lebanese American University, Byblos Campus, Blat, 4M8F+6QF, Lebanon
| | - Elias Akoury
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon.
| |
Collapse
|
7
|
Yan RE, Greenfield JP. Emergence of Precision Medicine Within Neurological Surgery: Promise and Opportunity. World Neurosurg 2024; 190:564-572. [PMID: 39425298 DOI: 10.1016/j.wneu.2024.06.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Within neurosurgery, it has always been important to individualize patient care. In recent years, however, technological advances have brought a new dimension to personalized care as developing methods, including next-generation sequencing, have enabled us to molecularly profile pathologies with increasing scale and resolution. In this review, the authors discuss the history and advances in precision medicine and neurosurgery, focusing both on neuro-oncology, as well as its extension to other neurosurgical subspecialties. They highlight the important roles of neurosurgeons in past work and future work, with the extension of tissue collection and precision medicine principles to additional sample types and disease indications.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Yadav R, Panchal H, Patel A, Parikh S, Shah K. Outcomes of Dose Escalation of Imatinib in Chronic Myeloid Leukemia Patients: A Retrospective Analysis From an Indian University Teaching Hospital. Cureus 2024; 16:e70622. [PMID: 39483567 PMCID: PMC11526771 DOI: 10.7759/cureus.70622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) treatment in low- and middle-income countries faces significant financial and logistical constraints. In scenarios where second-line tyrosine kinase inhibitors (TKIs) are unavailable or unaffordable, dose escalation of imatinib provides an alternative. This study evaluates the efficacy, safety, and progression-free survival (PFS) outcomes of dose escalation of imatinib in CML patients who experienced suboptimal response or progression on standard doses. METHODS A retrospective analysis of 123 CML patients treated at an Indian university teaching hospital from 2013 to 2016 was conducted. Patients who showed progression on a 400 mg dose of imatinib were escalated to 600 mg, and further to 800 mg if required. Demographic data, progression, and toxicity were analyzed. RESULTS Out of 123 patients, 78 (63.4%) showed a complete hematologic response after dose escalation. The median PFS was 48 months, with a three-year PFS rate of 67%. Notable toxicities included Grade 3/4 neutropenia in 15% and gastrointestinal disturbances in 12%. Comparatively, studies suggest that switching to a second-line TKI in similar settings results in a higher PFS; however, our findings underscore that dose escalation of imatinib remains a viable alternative when financial constraints limit access to second-line therapies. CONCLUSION In resource-constrained settings, dose escalation of imatinib can be an effective strategy for managing CML patients who progress on standard doses.
Collapse
Affiliation(s)
- Rajan Yadav
- Medical Oncology, Gujarat Cancer & Research Institute (GCRI) and B J Medical College (BJMC), Ahmedabad, IND
| | - Harsha Panchal
- Medical Oncology, Gujarat Cancer & Research Institute (GCRI) and B J Medical College (BJMC), Ahmedabad, IND
| | - Apurva Patel
- Medical Oncology, Gujarat Cancer & Research Institute (GCRI) and B J Medical College (BJMC), Ahmedabad, IND
| | - Sonia Parikh
- Medical Oncology, Gujarat Cancer & Research Institute (GCRI) and B J Medical College (BJMC), Ahmedabad, IND
| | - Kajal Shah
- Medical Oncology, Gujarat Cancer & Research Institute (GCRI) and B J Medical College (BJMC), Ahmedabad, IND
| |
Collapse
|
9
|
Lee YJ, Lee SY, Kim S, Kim SH, Lee SH, Park S, Kim JJ, Kim DW, Kim H. REXO5 promotes genomic integrity through regulating R-loop using its exonuclease activity. Leukemia 2024; 38:2150-2161. [PMID: 39080354 PMCID: PMC11436357 DOI: 10.1038/s41375-024-02362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Chronic myeloid leukemia (CML), caused by BCR::ABL1 fusion gene, is known to regulate disease progression by altering the expression of genes. However, the molecular mechanisms underlying these changes are largely unknown. In this study, we identified RNA Exonuclease 5 (REXO5/LOC81691) as a novel gene with elevated mRNA expression levels in chronic myeloid leukemia (CML) patients. Additionally, using the REXO5 knockout (KO) K562 cell lines, we revealed a novel role for REXO5 in the DNA damage response (DDR). Compared to wild-type (WT) cells, REXO5 KO cells showed an accumulation of R-loops and increased DNA damage. We demonstrated that REXO5 translocates to sites of DNA damage through its RNA recognition motif (RRM) and selectively binds to R loops. Interestingly, we identified that REXO5 regulates R-loop levels by degrading mRNA within R-loop using its exonuclease domain. REXO5 KO showed ATR-CHK1 activation. Collectively, we demonstrated that REXO5 plays a key role in the physiological control of R-loops using its exonuclease domain. These findings may provide novel insights into how REXO5 expression changes contribute to CML pathogenesis.
Collapse
Affiliation(s)
- Ye Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Soomi Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Soo-Hyun Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Sungho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea.
| | - Dong-Wook Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea.
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
10
|
Duffin K, Mitchell RT, Brougham MFH, Hamer G, van Pelt AMM, Mulder CL. Impacts of cancer therapy on male fertility: Past and present. Mol Aspects Med 2024; 100:101308. [PMID: 39265489 DOI: 10.1016/j.mam.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
Over the past two decades, advances in cancer therapy have significantly improved survival rates, particularly in childhood cancers. Still, many treatments pose a substantial risk for diminishing future fertility potential due to the gonadotoxic nature of many cancer regimens, justifying fertility preservation programs for both childhood and adult cancer patients. To assure a balance between offering fertility preservation and actual chance of infertility post-treatment, guidelines are in place. However, assessing the actual risk of infertility after treatment remains challenging, given the multi-faceted approach of many cancer treatment plans, which are continuously evolving. This review discusses the evolution of cancer therapy over the past 20 years and attempts to assess their impact on fertility after treatment. Overall, cancer regimens have shifted from broadly killing fast dividing cells to more targeting therapies, reducing collateral damage in general. Although progress has been made to reduce overall toxicity, unfortunately this does not automatically translate to reduced gonadotoxicity. Therefore, current fertility preservation programs continue to be an important part of cancer care.
Collapse
Affiliation(s)
- Kathleen Duffin
- Department of Biomedical Sciences, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK; Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rod T Mitchell
- Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK; Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Mark F H Brougham
- Royal Hospital for Children and Young People, 50 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| | - Callista L Mulder
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands; Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Li X, Li W, Zhang Y, Xu L, Song Y. Exploiting the potential of the ubiquitin-proteasome system in overcoming tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Genes Dis 2024; 11:101150. [PMID: 38947742 PMCID: PMC11214299 DOI: 10.1016/j.gendis.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 07/02/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Linping Xu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
12
|
Stempel JM, Shallis RM, Wong R, Podoltsev NA. Challenges in management of older patients with chronic myeloid leukemia. Leuk Lymphoma 2024; 65:1219-1232. [PMID: 38652861 DOI: 10.1080/10428194.2024.2342559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) have significantly improved the survival of patients with chronic myeloid leukemia (CML), however, older patients are often underrepresented in pivotal trials. Approximately 20% of older adults never start treatment and face significant barriers to accomplish favorable outcomes. The treatment goal is to improve survival, prevent progression, and preserve quality of life. This is achieved through optimizing TKI doses and employing discontinuation strategies to attain treatment-free remission (TFR), a goal increasingly pursued by older patients. Imatinib may be favored as the front-line option for older individuals due to its side effect profile and cost. Bosutinib's favorable cardiovascular tolerability makes it a suitable second-line agent, but lower-dose dasatinib may likewise be an attractive option. The prevalence of comorbidities can preclude the use of second generation TKIs in some older patients. Optimal care for older patients with CML centers on personalized treatment, close monitoring, and proactive support.
Collapse
Affiliation(s)
- Jessica M Stempel
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| | - Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| | - Rong Wong
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
13
|
Akhtar S, Ahmad F, Alam M, Ansari AW, Uddin S, Steinhoff M, Buddenkotte J, Ahmad A, Datsi A. Interleukin-31: The Inflammatory Cytokine Connecting Pruritus and Cancer. FRONT BIOSCI-LANDMRK 2024; 29:312. [PMID: 39344323 DOI: 10.31083/j.fbl2909312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor β chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Angeliki Datsi
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
14
|
Berginski ME, Jenner MR, Joisa CU, Herrera Loeza G, Golitz BT, Lipner MB, Leary JR, Rashid N, Johnson GL, Yeh JJ, Gomez SM. Kinome state is predictive of cell viability in pancreatic cancer tumor and cancer-associated fibroblast cell lines. PeerJ 2024; 12:e17797. [PMID: 39221276 PMCID: PMC11365483 DOI: 10.7717/peerj.17797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous aspects of cellular signaling are regulated by the kinome-the network of over 500 protein kinases that guides and modulates information transfer throughout the cell. The key role played by both individual kinases and assemblies of kinases organized into functional subnetworks leads to kinome dysregulation driving many diseases, particularly cancer. In the case of pancreatic ductal adenocarcinoma (PDAC), a variety of kinases and associated signaling pathways have been identified for their key role in the establishment of disease as well as its progression. However, the identification of additional relevant therapeutic targets has been slow and is further confounded by interactions between the tumor and the surrounding tumor microenvironment. In this work, we attempt to link the state of the human kinome, or kinotype, with cell viability in treated, patient-derived PDAC tumor and cancer-associated fibroblast cell lines. We applied classification models to independent kinome perturbation and kinase inhibitor cell screen data, and found that the inferred kinotype of a cell has a significant and predictive relationship with cell viability. We further find that models are able to identify a set of kinases whose behavior in response to perturbation drive the majority of viability responses in these cell lines, including the understudied kinases CSNK2A1/3, CAMKK2, and PIP4K2C. We next utilized these models to predict the response of new, clinical kinase inhibitors that were not present in the initial dataset for model devlopment and conducted a validation screen that confirmed the accuracy of the models. These results suggest that characterizing the perturbed state of the human protein kinome provides significant opportunity for better understanding of signaling behavior and downstream cell phenotypes, as well as providing insight into the broader design of potential therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Matthew E. Berginski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chinmaya U. Joisa
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| | - Gabriela Herrera Loeza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian T. Golitz
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew B. Lipner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jack R. Leary
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of Florida, Gainsville, FL, United States of America
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shawn M. Gomez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, United States of America
| |
Collapse
|
15
|
Wang W, Zhang D, Liang Q, Liu X, Shi J, Zhou F. Global burden, risk factor analysis, and prediction study of leukaemia from 1990 to 2030. J Glob Health 2024; 14:04150. [PMID: 39173170 PMCID: PMC11345035 DOI: 10.7189/jogh.14.04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Background Leukaemia is a devastating disease with an incidence that progressively increases with advancing age. The World Health Organization has designated 2021-30 as the decade of healthy ageing, highlighting the need to address age-related diseases. We estimated the disease burden of leukaemia and forecasted it by 2030. Methods Based on the Global Burden of Disease 2019 database, we systematically analysed the geographical distribution of leukaemia and its subtypes. We used Joinpoint regression and Bayesian age-period-cohort models to evaluate incidence and mortality trends from 1990 to 2019 and projections through 2030. We analysed five leukaemia subtypes and the impact of age, gender, and social development. Decomposition analysis revealed the effects of disease burden on ageing and population growth. We used frontier analysis to illustrate the potential of each country to reduce its burden based on its development levels. Results Globally, the absolute numbers of leukaemia incidence and mortality have increased, while the age-standardised rates (ASRs) have shown a decreasing trend. The disease burden was more pronounced in men, the elderly, and regions with a high socio-demographic index (SDI), where ageing and population growth played varying roles across subtypes. From 2000 to 2006, disease burdens were most effectively controlled. Global ASRs of incidence might stabilise, while ASRs of death are expected to decrease until 2030. Frontier analysis showed that middle and high-middle SDI countries have the most improvement potential. Smoking and high body mass index were the main risk factors for leukaemia-related mortality and disability-adjusted life years. Conclusions The absolute number of leukaemia cases has increased worldwide, but there has been a sharp decline in ASRs over the past decade, primarily driven by population growth and ageing. Countries with middle and high-middle SDI urgently need to take action to address this challenge.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Donglei Zhang
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Liang
- Zhoukou Central Hospital, Zhoukou, China
| | - Xiaoyan Liu
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Shi
- Regenerative Medicine Clinic, State Key Laboratory of Experimental Haematology, National Clinical Research Centre for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Haematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fuling Zhou
- Department of Haematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Mechahougui H, Gutmans J, Colarusso G, Gouasmi R, Friedlaender A. Advances in Personalized Oncology. Cancers (Basel) 2024; 16:2862. [PMID: 39199633 PMCID: PMC11352922 DOI: 10.3390/cancers16162862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Advances in next-generation sequencing (NGS) have catalyzed a paradigm shift in cancer treatment, steering the focus from conventional, organ-specific protocols to precision medicine. Emerging targeted therapies offer a cutting-edge approach to cancer treatment, while companion diagnostics play an essential role in aligning therapeutic choices with specific molecular changes identified through NGS. Despite these advances, interpreting the clinical implications of a rapidly expanding catalog of genetic mutations remains a challenge. The selection of therapies in the presence of multiple mutations requires careful clinical judgment, supported by quality-centric genomic testing that emphasizes actionable mutations. Molecular tumor boards can play an increasing role in assimilating genomic data into clinical trials, thereby refining personalized treatment approaches and improving patient outcomes.
Collapse
Affiliation(s)
- Hiba Mechahougui
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - James Gutmans
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Gina Colarusso
- Oncology Department, Geneva University Hospital (HUG), 1205 Geneva, Switzerland; (H.M.)
| | - Roumaïssa Gouasmi
- Cancer Research Center of Lyon, CNRS UMR5286, Inserm U1052, University of Lyon, 69100 Lyon, France
| | | |
Collapse
|
17
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
18
|
Sonkin D, Thomas A, Teicher BA. Cancer treatments: Past, present, and future. Cancer Genet 2024; 286-287:18-24. [PMID: 38909530 PMCID: PMC11338712 DOI: 10.1016/j.cancergen.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
There is a rich history of cancer treatments which provides a number of important lessons for present and future cancer therapies. We outline this history by looking in the past, reviewing the current landscape of cancer treatments, and by glancing at the potential future cancer therapies.
Collapse
Affiliation(s)
- Dmitriy Sonkin
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA.
| | - Anish Thomas
- National Cancer Institute, Center for Cancer Research, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Rockville, MD 20850, USA
| |
Collapse
|
19
|
Lee S, Wang D, Seeliger MA, Tiwary P. Calculating Protein-Ligand Residence Times through State Predictive Information Bottleneck Based Enhanced Sampling. J Chem Theory Comput 2024; 20:6341-6349. [PMID: 38991145 DOI: 10.1021/acs.jctc.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long time scales. Recent advances in rare event sampling have allowed us to reach these time scales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitude of time scales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anticancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.
Collapse
Affiliation(s)
- Suemin Lee
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, United States
| | - Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, United States
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | - Pratyush Tiwary
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, United States
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, United States
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, United States
| |
Collapse
|
20
|
Huang CY, Chung YH, Wu SY, Wang HY, Lin CY, Yang TJ, Fang JM, Hu CM, Chang ZF. Glutathione determines chronic myeloid leukemia vulnerability to an inhibitor of CMPK and TMPK. Commun Biol 2024; 7:843. [PMID: 38987326 PMCID: PMC11237035 DOI: 10.1038/s42003-024-06547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Bcr-Abl transformation leads to chronic myeloid leukemia (CML). The acquirement of T315I mutation causes tyrosine kinase inhibitors (TKI) resistance. This study develops a compound, JMF4073, inhibiting thymidylate (TMP) and cytidylate (CMP) kinases, aiming for a new therapy against TKI-resistant CML. In vitro and in vivo treatment of JMF4073 eliminates WT-Bcr-Abl-32D CML cells. However, T315I-Bcr-Abl-32D cells are less vulnerable to JMF4073. Evidence is presented that ATF4-mediated upregulation of GSH causes T315I-Bcr-Abl-32D cells to be less sensitive to JMF4073. Reducing GSH biosynthesis generates replication stress in T315I-Bcr-Abl-32D cells that require dTTP/dCTP synthesis for survival, thus enabling JMF4073 susceptibility. It further shows that the levels of ATF4 and GSH in several human CML blast-crisis cell lines are inversely correlated with JMF4073 sensitivity, and the combinatory treatment of JMF4073 with GSH reducing agent leads to synthetic lethality in these CML blast-crisis lines. Altogether, the investigation indicates an alternative option in CML therapy.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Glutathione/metabolism
- Humans
- Animals
- Mice
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
Collapse
Affiliation(s)
- Chang-Yu Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yin-Hsuan Chung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Yang Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yen Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tsung-Jung Yang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jim-Min Fang
- Institute of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Chaudhary P, Chaudhary S, Patel F, Patel S, Vaishnani T, Trivedi N, Patel D, Sonagara T, Hirapara A, Vyas K, Patel L, Kumar R, Chakraborty N, Sharma D, Suthar J, Kamdar P, Jajodia E, Ahmad F, Arora N. Validation of a novel NGS based BCR::ABL1 kinase domain mutation detection assay in Indian cohort. Sci Rep 2024; 14:15745. [PMID: 38977756 PMCID: PMC11231265 DOI: 10.1038/s41598-024-66310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The efficacy and treatment outcome of a CML patient are heavily dependent on BCR::ABL1 kinase domain (KD) mutation status. Next-generation sequencing technology is a bright alternative to the previously used sanger sequencing method due to its global presence in diagnostic setups, massive parallel sequencing ability, and far better sensitivity. In the present study, we have demonstrated a new protocol for kinase domain mutation analysis using the next-generation sequencing (NGS) method using the ion torrent sequencing platform. This protocol uses RNA as the starting material, followed by nested PCR to amplify the fusion transcript, which is subsequently used as a template for NGS. Initial validation and comparison of this assay with the sanger sequencing (SS) method yielded 95.23% agreement. CML samples (n = 121) with a failure to TKI response were subjected to this newly developed NGS-based assay to detect KD mutations, from which samples were found to have mutations with a sensitivity ranging from 2.32 to 93.41%. A total of 34.71% of samples (n = 42) were found to be positive for one or more KD mutations, whereas 65.29% of samples (n = 81) were found to be negative. Nine samples out of 42 positive samples, i.e., 21.42%, were found to have compound mutations. This is one of the first studies from India, which includes more than 160 samples and is analyzed by the NGS approach for KD mutation analysis.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India.
| | - Spandan Chaudhary
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India.
| | - Falguni Patel
- Department of Biotechnology and Microbiology, Shri M.M. Patel Institute of Science and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, India
| | - Shiv Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Toral Vaishnani
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Nikha Trivedi
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Dhiren Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Tushar Sonagara
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Ashish Hirapara
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Kavisha Vyas
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Lokesh Patel
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Raja Kumar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Nikkan Chakraborty
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Divya Sharma
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Jigar Suthar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Payal Kamdar
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Ekta Jajodia
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Firoz Ahmad
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| | - Neeraj Arora
- Molecular Department, Unipath Specialty Laboratory Ltd, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Yu L, Liu J, Jia J, Yang J, Tong R, Zhang X, Zhang Y, Yin S, Li J, Sun D. Fusion Genes Landscape of Lung Cancer Patients From Inner Mongolia, China. Genes Chromosomes Cancer 2024; 63:e23258. [PMID: 39011998 DOI: 10.1002/gcc.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.
Collapse
Affiliation(s)
- Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jinyang Liu
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jie Yang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Ruiying Tong
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Yun Zhang
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Songtao Yin
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Junlin Li
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
23
|
Baker ZD, Rasmussen DM, Levinson NM. Exploring the conformational landscapes of protein kinases: perspectives from FRET and DEER. Biochem Soc Trans 2024; 52:1071-1083. [PMID: 38778760 PMCID: PMC11346445 DOI: 10.1042/bst20230558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Conformational changes of catalytically-important structural elements are a key feature of the regulation mechanisms of protein kinases and are important for dictating inhibitor binding modes and affinities. The lack of widely applicable methods for tracking kinase conformational changes in solution has hindered our understanding of kinase regulation and our ability to design conformationally selective inhibitors. Here we provide an overview of two recently developed methods that detect conformational changes of the regulatory activation loop and αC-helix of kinases and that yield complementary information about allosteric mechanisms. An intramolecular Förster resonance energy transfer-based approach provides a scalable platform for detecting and classifying structural changes in high-throughput, as well as quantifying ligand binding cooperativity, shedding light on the energetics governing allostery. The pulsed electron paramagnetic resonance technique double electron-electron resonance provides lower throughput but higher resolution information on structural changes that allows for unambiguous assignment of conformational states and quantification of population shifts. Together, these methods are shedding new light on kinase regulation and drug interactions and providing new routes for the identification of novel kinase inhibitors and allosteric modulators.
Collapse
Affiliation(s)
- Zachary D. Baker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Damien M. Rasmussen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
| | - Nicholas M. Levinson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, U.S.A
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, U.S.A
| |
Collapse
|
24
|
Blaesi AH, Saka N. Gastroretentive fibrous dosage forms for prolonged delivery of sparingly-soluble tyrosine kinase inhibitors. Part 1: Dosage form design, and models of expansion, post-expansion mechanical strength, and drug release. Int J Pharm 2024:124360. [PMID: 38909925 DOI: 10.1016/j.ijpharm.2024.124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
At present, the efficacy and safety of many sparingly-soluble tyrosine kinase inhibitors (TKIs) delivered by the prevalent oral dosage forms are compromised by excessive fluctuations in the drug concentration in blood. To mitigate this limitation, in this four-part study gastroretentive fibrous dosage forms that deliver drug into the gastric fluid (and into the blood) at a controlled rate for prolonged time are presented. The dosage form comprises a cross-ply structure of expandable, water-absorbing, high-molecular-weight hydroxypropyl methylcellulose (HPMC)-based fibers coated with a strengthening, enteric excipient. The intervening spaces between the coated fibers are solid annuli of drug particles, and low-molecular-weight HPMC and enteric excipients. The central regions of the annuli are open channels. In this part, models are developed for dosage form expansion, post-expansion mechanical strength, and drug release. The models suggest that upon immersing in a dissolution fluid, the fluid percolates the open channels, diffuses into the annuli and the coated fibers, and the dosage form expands. The expansion rate is inversely proportional, and the post-expansion mechanical strength proportional to the thickness of the strengthening coating. Drug particles are released from the annuli as the surrounding excipient dissolves. The drug release rate is proportional to the concentration of low-molecular-weight HPMC at the annulus/dissolution fluid interface. The dosage forms can be readily designed for expansion in a few hours, formation of a high-strength viscoelastic mass, and drug release at a constant rate over a day.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Blaesi AG, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Bruzzoni-Giovanelli H, Zouali H, Sahbatou M, Maneglier B, Cayuela JM, Rebollo A, Marin GH, Geromin D, Tomczak C, Alberdi A, Deleuze JF, Rousselot P. Constitutional DNA Polymorphisms Associated with the Plasma Imatinib Concentration in Chronic Myeloid Leukemia Patients. Pharmaceutics 2024; 16:834. [PMID: 38931954 PMCID: PMC11207966 DOI: 10.3390/pharmaceutics16060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The tyrosine kinase Inhibitor (TKI) imatinib is approved for the treatment of the chronic phase of chronic myeloid leukemia (CP-CML). Pharmacokinetic studies have highlighted the importance of inter-patient variability on imatinib plasma trough concentrations (ima[C]min). In the OPTIM-imatinib trial, we demonstrated that therapeutic drug monitoring (TDM) is able to improve the molecular response of CP-CML patients treated with imatinib. Here, we analyzed the constitutional exomes and RNAseq data of these patients. We performed an association analysis between the constitutional genetic variants of the patients and their ima[C]min, measured after 12 weeks of treatment with 400 mg once daily. Using linear regression, we identified 50 SNPs that showed excess heterozygosity depending on the ima[C]min. Ten SNPs were from non-coding sequences, and among the 40 remaining, 30 (from 25 genes) could be split into two categories. The first group of 16 SNPs concerns genes encoding extracellular matrix, cell junction, and membrane proteins. Coincidentally, cell adhesion proteins were also identified by RNA-seq as being overexpressed in patients with high ima[C]min. The other group of 14 SNPs were from genes encoding proteins involved in transcription/translation. Although most of the SNPs are intronic variants (28), we also identified missense (3), synonymous (4), 5'/3' (2), splicing (1), and upstream (4) variants. A haplotype analysis of four genes showed a significant association with high ima[C]min. None of the SNPs were significantly associated with the response. In conclusion, we identified a number of ima[C]min-associated SNPs, most of which correspond to genes encoding proteins that could play a role in the diffusion and transit of imatinib through membranes or epithelial barriers.
Collapse
Affiliation(s)
| | - Habib Zouali
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
| | - Mourad Sahbatou
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
| | - Benjamin Maneglier
- Département de Pharmacologie, Centre Hospitalier de Versailles, 78150 Le Chesnay, France
| | - Jean-Michel Cayuela
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Angelita Rebollo
- UTCBS, INSERM U1267-CNRS UMR8258, Faculté de Pharmacie, Université de Paris, 4 Avenue de l’Observatoire, CEDEX 06, 75270 Paris, France
| | - Gustavo H. Marin
- CUFAR, Farmacologia Básica, CONICET—FCMLP, Universidad Nacional de La Plata, 60 & 120, La Plata 1900, Argentina
| | - Daniela Geromin
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Carole Tomczak
- Département d’Hématologie et Biologie Moléculaire et EA3518, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Antonio Alberdi
- UMS Saint-Louis US53/UAR2030, Institut de Recherche Saint Louis, Plateforme Technologique Centre Hayem, Hôpital Saint-Louis, Université Paris Cite—INSERM—CNRS, 1 Av Claude Vellefaux, CEDEX 10, 75475 Paris, France;
| | - Jean-Francois Deleuze
- Fondation Jean Dausset-Centre d’Étude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
- Centre National de Recherche en Génomique Humaine, Institut François Jacob, CEA, Université Paris Saclay, CNRGH, 91190 Evry, France
| | - Philippe Rousselot
- Département d’Hématologie, Centre Hospitalier de Versailles, 78157 Le Chesnay, France
- UMR1184, Département IDMIT, Commissariat à L’énergie Atomique et aux Energies Alternatives, Université de Versailles Saint-Quentin-en-Yvelines Paris-Saclay, 92265 Fontenay-Aux-Roses, France
| |
Collapse
|
26
|
Luskin MR. Finding the perPh+ect balance in Ph+ ALL. Blood 2024; 143:2339-2340. [PMID: 38842859 DOI: 10.1182/blood.2024024465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
|
27
|
Bystrom RP, DeAngelo DJ, Garcia JS. PhALLCON Soars to New Heights-Faster, Stronger, but Better? JAMA 2024; 331:1805-1806. [PMID: 38722663 DOI: 10.1001/jama.2024.5871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Affiliation(s)
- Rebecca P Bystrom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline S Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
28
|
García-Trejo MA, Castañeda G, Ríos Á. Analytical control of imatinib in bioanalytical samples using graphene quantum dots sensing. Anal Bioanal Chem 2024:10.1007/s00216-024-05346-1. [PMID: 38795213 DOI: 10.1007/s00216-024-05346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
An analytical method for the determination of imatinib (IMA, the primary treatment for chronic myeloid leukemia), based on the fluorescence properties of graphene quantum dots (GQDs), is reported in this work. The method is addressed to the analytical control of IMA in biological and pharmaceutical samples, due to the present interest in the control of the doses of this anticancer drug, as well as the therapeutic monitoring. The whole method involves the use of a solid-phase extraction (SPE) procedure, followed by an evaporation step, for the treatment of biological samples. For that, tC18 sorbent cartridges were used. After the sample treatment, the solution containing the analyte was mixed with an aqueous solution of GQDs at pH 7.2, and the fluorescent quenching of GQDs was measured. IMA was determined in the 10-250 µg L-1 range, with a limit of detection of 21 µg L-1 and a precision of 1.5% as relative standard deviation, measured in terms of reproducibility. The recovery for biological samples was in the 84-113% range.
Collapse
Affiliation(s)
- María A García-Trejo
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain
| | - Gregorio Castañeda
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain.
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain.
| |
Collapse
|
29
|
Zhu B, Sun L, Li Z, Shang P, Yang C, Li K, Li J, Zhi Q, Hua Z. Zinc as a potential regulator of the BCR-ABL oncogene in chronic myelocytic leukemia cells. J Trace Elem Med Biol 2024; 83:127407. [PMID: 38325182 DOI: 10.1016/j.jtemb.2024.127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.
Collapse
MESH Headings
- Humans
- Apoptosis
- Ethylenediamines/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Genes, abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Zinc/metabolism
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Longshuo Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Pengyou Shang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kaiqiang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Zhi
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
30
|
Yaron-Barir TM, Joughin BA, Huntsman EM, Kerelsky A, Cizin DM, Cohen BM, Regev A, Song J, Vasan N, Lin TY, Orozco JM, Schoenherr C, Sagum C, Bedford MT, Wynn RM, Tso SC, Chuang DT, Li L, Li SSC, Creixell P, Krismer K, Takegami M, Lee H, Zhang B, Lu J, Cossentino I, Landry SD, Uduman M, Blenis J, Elemento O, Frame MC, Hornbeck PV, Cantley LC, Turk BE, Yaffe MB, Johnson JL. The intrinsic substrate specificity of the human tyrosine kinome. Nature 2024; 629:1174-1181. [PMID: 38720073 PMCID: PMC11136658 DOI: 10.1038/s41586-024-07407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.
Collapse
Affiliation(s)
- Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Discovery Technologies, Calico Life Sciences, South San Francisco, CA, USA
| | - Jose M Orozco
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christina Schoenherr
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Pau Creixell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge, UK
| | - Konstantin Krismer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mina Takegami
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harin Lee
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Margaret C Frame
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Wachter F, Nowak RP, Ficarro S, Marto J, Fischer ES. Structural characterization of methylation-independent PP2A assembly guides alphafold2Multimer prediction of family-wide PP2A complexes. J Biol Chem 2024; 300:107268. [PMID: 38582449 PMCID: PMC11087950 DOI: 10.1016/j.jbc.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jarrod Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
32
|
Casolino R, Beer PA, Chakravarty D, Davis MB, Malapelle U, Mazzarella L, Normanno N, Pauli C, Subbiah V, Turnbull C, Westphalen CB, Biankin AV. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J Clin 2024; 74:264-285. [PMID: 38174605 DOI: 10.3322/caac.21825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The last decade has seen rapid progress in the use of genomic tests, including gene panels, whole-exome sequencing, and whole-genome sequencing, in research and clinical cancer care. These advances have created expansive opportunities to characterize the molecular attributes of cancer, revealing a subset of cancer-associated aberrations called driver mutations. The identification of these driver mutations can unearth vulnerabilities of cancer cells to targeted therapeutics, which has led to the development and approval of novel diagnostics and personalized interventions in various malignancies. The applications of this modern approach, often referred to as precision oncology or precision cancer medicine, are already becoming a staple in cancer care and will expand exponentially over the coming years. Although genomic tests can lead to better outcomes by informing cancer risk, prognosis, and therapeutic selection, they remain underutilized in routine cancer care. A contributing factor is a lack of understanding of their clinical utility and the difficulty of results interpretation by the broad oncology community. Practical guidelines on how to interpret and integrate genomic information in the clinical setting, addressed to clinicians without expertise in cancer genomics, are currently limited. Building upon the genomic foundations of cancer and the concept of precision oncology, the authors have developed practical guidance to aid the interpretation of genomic test results that help inform clinical decision making for patients with cancer. They also discuss the challenges that prevent the wider implementation of precision oncology.
Collapse
Affiliation(s)
- Raffaella Casolino
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip A Beer
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Hull York Medical School, York, UK
| | | | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York City, New York, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Mazzarella
- Laboratory of Translational Oncology and Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - C Benedikt Westphalen
- Department of Medicine III, Ludwig Maximilians University (LMU) Hospital Munich, Munich, Germany
- Comprehensive Cancer Center, LMU Hospital Munich, Munich, Germany
- German Cancer Consortium, LMU Hospital Munich, Munich, Germany
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Liverpool, New South Wales, Australia
| |
Collapse
|
33
|
Fontana D, Zambrotta GPM, Scannella A, Piazza R, Gambacorti-Passerini C. Late relapse of chronic myeloid leukemia after allogeneic bone marrow transplantation points to KANSARL (KANSL1::ARL17A) alteration: a case report with insights on the molecular landscape. Ann Hematol 2024; 103:1561-1568. [PMID: 38321229 PMCID: PMC11009776 DOI: 10.1007/s00277-024-05649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome and the consequent BCR::ABL1 oncoprotein. In the era before the introduction of tyrosine kinase inhibitors (TKIs), the only potentially curative treatment was allogeneic hematopoietic stem cell transplantation (HSCT). Here, we present the case of a patient affected by CML who experienced a relapse 20 years after allogeneic HSCT. Following relapse, the patient was treated with imatinib and bosutinib, resulting in a deep molecular response and successfully discontinued treatment. Additional analysis including whole-exome sequencing and RNA sequencing provided some insights on the molecular mechanisms of the relapse: the identification of the fusion transcript KANSL1::ARL17A (KANSARL), a cancer predisposition fusion gene, could justify a condition of genomic instability which may be associated with the onset and/or probably the late relapse of his CML.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy.
| | - Giovanni Paolo Maria Zambrotta
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Antonio Scannella
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, Monza, MB, 20900, Italy
- Hematology Division and Bone Marrow Unit, IRCCS, San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
34
|
Lai X, Jiao X, Zhang H, Lei J. Computational modeling reveals key factors driving treatment-free remission in chronic myeloid leukemia patients. NPJ Syst Biol Appl 2024; 10:45. [PMID: 38678088 PMCID: PMC11055880 DOI: 10.1038/s41540-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Patients with chronic myeloid leukemia (CML) who receive tyrosine kinase inhibitors (TKIs) have been known to achieve treatment-free remission (TFR) upon discontinuing treatment. However, the underlying mechanisms of this phenomenon remain incompletely understood. This study aims to elucidate the mechanism of TFR in CML patients, focusing on the feedback interaction between leukemia stem cells and the bone marrow microenvironment. We have developed a mathematical model to explore the interplay between leukemia stem cells and the bone marrow microenvironment, allowing for the simulation of CML progression dynamics. Our proposed model reveals a dichotomous response following TKI discontinuation, with two distinct patient groups emerging: one prone to early molecular relapse and the other capable of achieving long-term TFR after treatment cessation. This finding aligns with clinical observations and underscores the essential role of feedback interaction between leukemic cells and the tumor microenvironment in sustaining TFR. Notably, we have shown that the ratio of leukemia cells in peripheral blood (PBLC) and the tumor microenvironment (TME) index can be a valuable predictive tool for identifying patients likely to achieve TFR after discontinuing treatment. This study provides fresh insights into the mechanism of TFR in CML patients and underscores the significance of microenvironmental control in achieving TFR.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, China
| | - Xiaopei Jiao
- Department of Mathematics, Tsinghua University, Beijing, China
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, China.
| |
Collapse
|
35
|
Lee S, Wang D, Seeliger MA, Tiwary P. Calculating Protein-Ligand Residence Times Through State Predictive Information Bottleneck based Enhanced Sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589710. [PMID: 38659748 PMCID: PMC11042289 DOI: 10.1101/2024.04.16.589710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long timescales. Recent advances in rare event sampling have allowed us to reach these timescales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitudes of timescales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anti-cancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.
Collapse
Affiliation(s)
- Suemin Lee
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Pratyush Tiwary
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Rockville, United States
| |
Collapse
|
36
|
Zhang H, Xu D, Huang H, Jiang H, Hu L, Liu L, Sun G, Gao J, Li Y, Xia C, Chen S, Zhou H, Kong X, Wang M, Luo C. Discovery of a Covalent Inhibitor Selectively Targeting the Autophosphorylation Site of c-Src Kinase. ACS Chem Biol 2024; 19:999-1010. [PMID: 38513196 DOI: 10.1021/acschembio.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nonreceptor tyrosine kinase c-Src plays a crucial role in cell signaling and contributes to tumor progression. However, the development of selective c-Src inhibitors turns out to be challenging. In our previous study, we performed posttranslational modification-inspired drug design (PTMI-DD) to provide a plausible way for designing selective kinase inhibitors. In this study, after identifying a unique pocket comprising a less conserved cysteine and an autophosphorylation site in c-Src as well as a promiscuous covalent inhibitor, chemical optimization was performed to obtain (R)-LW-Srci-8 with nearly 75-fold improved potency (IC50 = 35.83 ± 7.21 nM). Crystallographic studies revealed the critical C-F···C═O interactions that may contribute to tight binding. The kinact and Ki values validated the improved binding affinity and decreased warhead reactivity of (R)-LW-Srci-8 for c-Src. Notably, in vitro tyrosine kinase profiling and cellular activity-based protein profiling (ABPP) cooperatively indicated a specific inhibition of c-Src by (R)-LW-Srci-8. Intriguingly, (R)-LW-Srci-8 preferentially binds to inactive c-Src with unphosphorylated Y419 both in vitro and in cells, subsequently disrupting the autophosphorylation. Collectively, our study demonstrated the feasibility of developing selective kinase inhibitors by cotargeting a nucleophilic residue and a posttranslational modification site and providing a chemical probe for c-Src functional studies.
Collapse
Affiliation(s)
- Huimin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dounan Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongchan Huang
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hao Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
| | - Liping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Ge Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuicui Xia
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Xiangqian Kong
- Center for Chemical Biology and Drug Discovery, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences (UCAS), 19 Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
37
|
Tobaiqy M, Helmi N, MacLure K, Saade S. The prevalence of hepatic and thyroid toxicity associated with imatinib treatment of chronic myeloid leukaemia: a systematic review. Int J Clin Pharm 2024; 46:368-381. [PMID: 38147280 DOI: 10.1007/s11096-023-01671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Imatinib, a potent inhibitor of targeted protein tyrosine kinases, treats chronic myeloid leukaemia (CML). Data on imatinib-associated changes in hepatic and thyroid functions are limited and conflicting. AIM To report the prevalence of hepatic and thyroid toxicity associated with the use of imatinib in CML patients. METHOD Articles for the systematic review were selected from electronic databases (PubMed, CINALH, Web of Science). Readily accessible peer-reviewed full articles in English published 1st January 2000 to 18th July 2023 were included. The search terms included combinations of: imatinib, CML, liver toxicity, hepatic toxicity, thyroid toxicity. Screening of titles, abstracts, full text articles was conducted independently by two reviewers. Inclusions and exclusions were recorded following PRISMA guidelines. Detailed reasons for exclusion were recorded. Included articles were critically appraised. RESULTS Ten thousand one hundred and twenty-three CML patients were reported in the 82 included studies corresponding to 21 case reports, 2 case series, 39 clinical trials and 20 observational studies were selected. Excluding case studies/reports, 1268 (12.6%; n = 1268/10046) hepatotoxicity adverse events were reported, of which 64.7% were rated as mild grade I & II adverse events, 363 (28.6%) as severe, grade III and IV adverse events; some led to treatment discontinuation, liver transplantation and fatal consequences. Twenty (35.1%) studies reported discontinuation of imatinib treatment due to the severity of hepatic toxicity. Fourteen (8.4%, n = 14/167) thyroid dysfunction adverse events were reported. CONCLUSION High frequency of mild and severe hepatotoxicity, associated with imatinib in CML patients, was reported in the published literature. Low numbers of mild and manageable thyroid toxicity events were reported.
Collapse
Affiliation(s)
- Mansour Tobaiqy
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia.
| | - Nawal Helmi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sylvia Saade
- Health and Sciences Department, American University of Science and Technology, Beirut, Lebanon
| |
Collapse
|
38
|
Özmen D, Alpaydın DD, Saldoğan MA, Eşkazan AE. A safety review of tyrosine kinase inhibitors for chronic myeloid leukemia. Expert Opin Drug Saf 2024; 23:411-423. [PMID: 38484148 DOI: 10.1080/14740338.2024.2331190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Since the introduction of first tyrosine kinase inhibitor (TKI) imatinib, the treatment of chronic myeloid leukemia (CML) has reached excellent survival expectancies. Long survival rates bring about issues regarding TKI safety. AREAS COVERED The aim of this review is to compare the side effects of current TKIs both in the first and later lines and outline a safety andprofile of CML treatment. Seminal studies on TKIs and other newer drugs and extended follow-up of these studies; real-life data of each drug were usedduring the course of this. PubMed was used as a search database and onlyarticles in English were included. EXPERT OPINION With longer follow-up CML patients, resistant slowgrade adverse events seem to be the major obstacle in the way of treatmentefficacy. If efficacy is the priority, vigorous treatment of side effect and administration of full dose TKI are reasonable. But when treatment goals are reached, dose modifications or alternative treatment regimens may be acceptedpossible. More studies are needed on dose modification protocols and potential benefits and safety of treatment-free remission.
Collapse
Affiliation(s)
- Deniz Özmen
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Duygu Demet Alpaydın
- Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | | | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
39
|
Fujiwara Y, Kato S, Kurzrock R. Evolution of Precision Oncology, Personalized Medicine, and Molecular Tumor Boards. Surg Oncol Clin N Am 2024; 33:197-216. [PMID: 38401905 PMCID: PMC10894322 DOI: 10.1016/j.soc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
With multiple molecular targeted therapies available for patients with cancer that correspond to a specific genetic alteration, the selection of the best treatment is essential to ensure therapeutic efficacy. Molecular tumor boards (MTBs) play a key role in this process to deliver personalized medicine to patients with cancer in a multidisciplinary manner. Historically, personalized medicine has been offered to patients with advanced cancer, but the incorporation of molecular targeted therapies and immunotherapy into the perioperative setting requires clinicians to understand the role of the MTB. Evidence is accumulating to support feasibility and survival benefit in patients treated with matched therapy.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA; Division of Hematology and Oncology, Department of Medicine, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Froedtert and Medical College of Wisconsin Cancer Center and Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
40
|
Sönmez Ö, Özgür Yurttaş N, İhtiyaroğlu İ, Çakır HM, Atlı Z, Elverdi T, Salihoğlu A, Seyahi N, Ar MC, Öngören Ş, Başlar Z, Soysal T, Eşkazan AE. Effect of Tyrosine Kinase Inhibitor Therapy on Estimated Glomerular Filtration Rate in Patients with Chronic Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:232-239. [PMID: 38281820 DOI: 10.1016/j.clml.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The advent of tyrosine kinase inhibitors (TKIs) was revolutionary in the management of chronic myeloid leukemia (CML). Although TKIs were generally considered to be safe, they can be associated with renal injury. We evaluated the effect of TKIs on renal functions in a cohort of patients with long-term follow-up. MATERIAL AND METHODS We retrospectively examined patients with chronic phase CML treated with TKIs. We analyzed the estimated glomerular filtration rate (eGFR) of patients from the initiation of TKI to the last follow-up. eGFR values of CML patients were compared to those of patients with stage 1 or 2 chronic kidney disease (CKD). RESULTS A total of 195 patients with CML and 138 patients with CKD were examined. eGFR decline was 1.556 ml/min/1.73m2/year for patients with CML (P = .221). Patients receiving second-generation TKIs (2GTKI) were estimated to have 0.583 ml/min/1.73m2 higher eGFR value than that of the imatinib group, but it was not significant (P = .871). eGFR of patients who had used bosutinib had a downward trend. Duration of TKI therapy, age, and hypertension were found to be significant factors in eGFR decline for CML patients. Lower baseline GFR was associated with an increased risk of CKD development. CONCLUSION Imatinib could result in a decline in eGFR which was clinically similar to early-stage CKD patients. We did not observe significant kidney function deterioration in patients receiving 2GTKIs including dasatinib and nilotinib. We recommend close renal function monitoring in patients receiving imatinib, especially for elderly patients with lower baseline eGFR and hypertension.
Collapse
Affiliation(s)
- Özge Sönmez
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - İlker İhtiyaroğlu
- Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Halil Mete Çakır
- Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Atlı
- Department of Statistics, Faculty of Science and Letters, Sinop University, Sinop, Turkey
| | - Tuğrul Elverdi
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ayşe Salihoğlu
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Nurhan Seyahi
- Division of Nephrology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Muhlis Cem Ar
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Şeniz Öngören
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zafer Başlar
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Teoman Soysal
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| |
Collapse
|
41
|
Kim HR, Lee SJ, Ahn MS, Kim JE, Kang MJ, Hong JY, Lee J, Kim ST. Imatinib in c-KIT-mutated metastatic solid tumors: A multicenter trial of Korean Cancer Study Group (UN18-05 Trial). J Cancer Res Ther 2024; 20:972-978. [PMID: 39023605 DOI: 10.4103/jcrt.jcrt_2698_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 07/20/2024]
Abstract
INTRODUCTION We conducted an open-label, single-arm, multi-center phase II trial to evaluate the efficacy and safety of imatinib chemotherapy-refractory or metastatic solid tumor patients with c-KIT mutations and/or amplification. METHODS c-KIT mutations and amplification were detected using NGS. Imatinib (400 mg daily) was administered continuously in 28-day cycles until disease progression, unacceptable adverse events, or death by any cause. The primary endpoint was the objective response rate (ORR). RESULT In total, 18 patients were enrolled on this trial. The most common tumor type was melanoma (n = 15, 83.3%), followed by ovarian cancer, breast cancer, and metastasis of unknown origin (MUO) (each n = 1, 5.5%). The total number of evaluable patients was 17, of which one patient had a complete response, six patients had partial response, and two patients had stable disease. The overall response rate (ORR) of 41.2% (95% CI 17.80-64.60) and a disease control rate of 52.9% (95% CI 29.17-76.63). The median progression-free survival was 2.2 months (95% CI 1.29-3.20), and median overall survival was 9.1 months (95% CI 2.10-16.11). The most common adverse events were edema (31.3%), anorexia (25.0%), nausea (18.8%), and skin rash (18.8%). CONCLUSION Imatinib demonstrated modest anti-tumor activity and a manageable safety profile in chemotherapy-refractory solid tumors with c-KIT mutation, especially in melanoma patients.
Collapse
Affiliation(s)
- Hye Ryeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Su Jin Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Mi Sun Ahn
- Division of Hematology/Oncology, Department of Medicine, Ajou University Medical Center, Suwon, Korea
| | - Jeong Eun Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Myoung Joo Kang
- Division of Oncology, Department of Internal Medicine, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Blaesi AH, Saka N. WITHDRAWN: Gastroretentive fibrous dosage forms for prolonged delivery of sparingly-soluble tyrosine kinase inhibitors. Part 1: Dosage form design, and models of expansion, post-expansion mechanical strength, and drug release. Int J Pharm 2024; 653:123428. [PMID: 37806505 DOI: 10.1016/j.ijpharm.2023.123428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Blaesi AG, CH-7078, Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Veltmaat L, Cortes J. Arterio-occlusive events among patients with chronic myeloid leukemia on tyrosine kinase inhibitors. Blood 2024; 143:858-865. [PMID: 38194683 DOI: 10.1182/blood.2023022403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Tyrosine kinase inhibitors (TKIs) are standard therapy for patients with chronic myeloid leukemia. Each of these drugs has a specific profile of tyrosine kinases that they inhibit and, although all are clinically effective, they each have unique toxicity profiles. With the introduction of ponatinib, arterio-occlusive events were first noted and later found to occur with all TKIs to various extents. The recognition of this "class effect" was delayed considering ponatinib was introduced 10 years after the introduction of imatinib. The reasons for the delay in identification of this class effect are likely multifaceted. Importantly, there is an inconsistency in adverse event reporting criteria among the major clinical trials of the various TKIs, likely resulting in mixed reporting of arterio-occlusive events. Reporting events based on a frequency threshold, lack of sufficient follow-up, attempts at causality attribution, and the primary focus on molecular response may all have played an additional role. Considering the increasing rate of arterio-occlusive events over time, the termination of many trials after only 5 years prevents full assessment of the impact of these events. A comprehensive evaluation of TKI adverse effects using uniform Medical Dictionary for Regulatory Activities terms and comprehensive adjudication of these events may be helpful in better assessing the real risk for patients with each TKI. Future clinical trials should use a uniform and comprehensive approach to reporting adverse events without attempting to assign causality to the study drug.
Collapse
Affiliation(s)
| | - Jorge Cortes
- Georgia Cancer Center at Augusta University, Augusta, GA
| |
Collapse
|
44
|
Karabay AZ, Ozkan T, Koc A, Hekmatshoar Y, Gurkan-Alp AS, Sunguroglu A. Nilotinib exhibits less toxicity than imatinib and influences the immune state by modulating iNOS, p-p38 and p-JNK in LPS/IFN gamma-activated macrophages. Toxicol In Vitro 2024; 95:105754. [PMID: 38061604 DOI: 10.1016/j.tiv.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
In this study, we aimed to analyze the effects of first and second-generation Bcr-Abl tyrosine kinase inhibitors, imatinib and nilotinib on LPS/IFN gamma activated RAW 264.7 macrophages. Our data revealed that imatinib was less effective on nitrite levels and more toxic on macrophages compared to nilotinib. Therefore, we further analysed the effect of nilotinib on various inflammatory markers including iNOS, COX-2, NFkB, IL-6, p-ERK, p-p38 and p-JNK in LPS/IFN gamma activated RAW264.7 macrophages. Spectrophotometric viability test and Griess assay,western blot, RT-PCR and luciferase reporter assays were used to analyze the biological activity of nilotinib. Our findings revealed that nilotinib decreases nitrite levels, iNOS mRNA, iNOS and p-p38 protein expressions significantly whereas induces IL-6 mRNA and p-JNK protein expressions at particular doses. We did not find significant effect of nilotinib on COX-2, p-ERK and nuclear p65 proteins and NFkB transcriptional activity. In addition, the binding mode of nilotinib to iNOS protein was predicted by molecular docking. According to the docking analyses, nilotinib exhibited hydrophobic interactions between MET349, ALA191, VAL346, PHE363, TYR367, MET368, CYS194, TRP366 residues at the binding pocket and the molecule as well as van der Waals interactions at specific residues. In conclusion, our results reveal that, in addition to its anticancer activity, nilotinib can exhibit immune modulatory effects on macrophages through its effects on iNOS, IL-6, p-p38 and p-JNK.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Yalda Hekmatshoar
- Department of Medical Biology, School of Medicine, Altinbas University, Istanbul, Turkey.
| | - A Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
45
|
Jabbour E, Apperley J, Cortes J, Rea D, Deininger M, Abruzzese E, Chuah C, DeAngelo DJ, Hochhaus A, Lipton JH, Mauro M, Nicolini F, Pinilla-Ibarz J, Rosti G, Rousselot P, Shah NP, Talpaz M, Vorog A, Ren X, Kantarjian H. Dose modification dynamics of ponatinib in patients with chronic-phase chronic myeloid leukemia (CP-CML) from the PACE and OPTIC trials. Leukemia 2024; 38:475-481. [PMID: 38287132 PMCID: PMC10912029 DOI: 10.1038/s41375-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024]
Abstract
Ponatinib, the only approved all known-BCR::ABL1 inhibitor, is a third-generation tyrosine-kinase inhibitor (TKI) designed to inhibit BCR::ABL1 with or without any single resistance mutation, including T315I, and induced robust and durable responses at 45 mg/day in patients with CP-CML resistant to second-generation TKIs in the PACE trial. However, cardiovascular toxicities, including arterial occlusive events (AOEs), have emerged as treatment-related AEs within this class of TKIs. The OPTIC trial evaluated the efficacy and safety of ponatinib using a novel, response-based, dose-reduction strategy in patients with CP-CML whose disease is resistant to ≥2 TKIs or who harbor T315I. To assess the dose-response relationship and the effect on the safety of ponatinib, we examined the outcomes of patients with CP-CML enrolled in PACE and OPTIC who received 45 mg/day of ponatinib. A propensity score analysis was used to evaluate AOEs across both trials. Survival rates and median time to achieve ≤1% BCR::ABL1IS in OPTIC were similar or better than in PACE. The outcomes of patients with T315I mutations were robust in both trials. Patients in OPTIC had a lower exposure-adjusted incidence of AOEs compared with those in PACE. This analysis demonstrates that response-based dosing for ponatinib improves treatment tolerance and mitigates cardiovascular risk.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Leukemia, Myeloid, Chronic-Phase/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Imidazoles/therapeutic use
- Imidazoles/pharmacology
- Pyridazines/therapeutic use
- Pyridazines/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Protein Kinase Inhibitors/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Elias Jabbour
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | - Michael Deininger
- Versiti Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Charles Chuah
- Singapore General Hospital, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | | | | | | | | | - Philippe Rousselot
- Hospital Mignot University de Versailles Saint-Quentin-en-Yvelines, Paris, France
| | - Neil P Shah
- University of California San Francisco, San Francisco, CA, USA
| | - Moshe Talpaz
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Vorog
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Xiaowei Ren
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Hagop Kantarjian
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Boucher R, Haigh O, Barreau E, Champiat S, Lambotte O, Adam C, Labetoulle M, Rousseau A. Ocular surface toxicities associated with modern anticancer therapies. Surv Ophthalmol 2024; 69:198-210. [PMID: 37806566 DOI: 10.1016/j.survophthal.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Cancer treatments have recently shifted from broad-spectrum cytotoxic therapies to more focused treatments, maximizing anticancerous activity while reducing toxicity to healthy cells. These modern anticancer therapies (MATs) encompass a wide range of innovative molecules that include immune checkpoint inhibitors and other targeted anticancer therapies, comprising antibody drug conjugates and inhibitors of signal transduction. Some MATs are associated with ocular surface adverse events that can cause severe discomfort and even lead to loss of vision. While these complications remain rare, they are probably underreported. It is likely that both oncologists and ophthalmologists will come across MATs-associated ocular surface-adverse events in their practices, owing to the increasing number of patients being treated with MATs. Rapid identification of ocular surface-adverse events is crucial, as early intervention can manage these conditions to avoid vision loss and reduce negative impacts on quality of life. We discuss characteristics of ocular surface pathologies attributed to MATs, describe the suspected underlying pathophysiological mechanisms, and outline the main lines of treatment.
Collapse
Affiliation(s)
- Rafael Boucher
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Oscar Haigh
- Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Emmanuel Barreau
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| | - Stéphane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Lambotte
- Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France; Department of Internal Medicine and Immunology, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Clovis Adam
- Department of Pathology, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Antoine Rousseau
- Service d'Ophtalmologie, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay. Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France; Department of Immunology of Viral and Auto-immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
47
|
Munoz J, Deshpande A, Rimsza L, Nowakowski GS, Kurzrock R. Navigating between Scylla and Charybdis: A roadmap to do better than Pola-RCHP in DLBCL. Cancer Treat Rev 2024; 124:102691. [PMID: 38310754 DOI: 10.1016/j.ctrv.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
In treating diffuse large B-cell lymphoma (DLBCL), oncologists have traditionally relied on the chemotherapy backbone of R-CHOP as standard of care. The two dangers that the hematologist must navigate between are the aggressive disease (Charybdis that in the absence of therapy systematically destroys all the ships) and the toxicity of the therapies (Scylla with its six monstrous heads that devours six crew members at a time), and hematologists have to navigate very carefully between both. Therefore, three different strategies were employed with the goal of improving cure rates: de-escalating regimens, escalating regimens, and replacement strategies. With a replacement strategy, a breakthrough in treatment was identified with polatuzumab vedotin (anti-CD79B antibody/drug conjugate) plus R-CHP. However, this regimen still did not achieve the elusive universal cure rate. Fortunately, advances in genomic and molecular technologies have allowed for an improved understanding of the heterogenous molecular nature of the disease to help develop and guide more targeted, precise, and individualized therapies. Additionally, new pharmaceutical technologies have led to the development of novel cellular therapies, such as chimeric antigen receptor (CAR) T-cell therapy, that could be more effective, while maintaining an acceptable safety profile. Thus, we aim to highlight the challenges of DLBCL therapy as well as the need to address therapeutic regimens eventually no longer tethered to a chemotherapy backbone. In the intersection of artificial intelligence and multi-omics (genomics, epigenomics, transcriptomics, proteomics, metabolomics), we propose the need to analyze multidimensional biologic datato launch a decisive attack against DLBCL in a targeted and individualized fashion.
Collapse
Affiliation(s)
- Javier Munoz
- Department of Hematology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Lisa Rimsza
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Grzegorz S Nowakowski
- Department of Internal Medicine, Division of Hematology, Mayo Clinic College of Medicine and Mayo Foundation, Rochester, MN, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
48
|
Hollenbach L, Rogahn J, le Coutre P, Schulze S, Muegge LO, Geissler J, Gruen J, Junghanss C, Felser S. Physical exercise recommendations for patients with chronic myeloid leukemia based on individual preferences identified in a large international patient survey study of the East German Study Group for Hematology and Oncology (OSHO #97). Front Oncol 2024; 14:1345050. [PMID: 38450192 PMCID: PMC10915004 DOI: 10.3389/fonc.2024.1345050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) have significantly lowered mortality of chronic myeloid leukemia (CML) patients adjusting life expectancy to that of the standard population. However, CML and its treatment with TKIs causes a high disease burden. Physical exercise (PE) could be a non-pharmacological approach to reducing these and improving quality of life. Purpose The aim of this study was to determine the individual disease burden as well as PE preferences of CML patients and to deduce thereof specific PE recommendations. Methods This multicenter survey was conducted in cooperation with the LeukaNET/Leukemia-patient network including CML patients aged ≥18 years (German Registry of Clinical Trials, DRKS00023698). The severity of selected symptoms was assessed using the adapted Myeloproliferative Neoplasms Symptom Assessment Form: 0 (absent), 1-30 (mild), 31-70 (moderate), or 71-100 (severe). Information about patients' PE needs and preferences depending on their motivation was recorded. Results A total of 212 questionnaires were analyzed (52% female, median age 54 years). The prevalence of moderate-to-severe symptoms was 49% for fatigue, 40% for musculoskeletal pain, and 37% for concentration problems. Other commonly reported symptoms included skin reactions (42%) and weight gain (24%). The proportion of overweight/obese patients was 52%. Half of all respondents requested more information regarding PE. Patients with CML preferred individual training (82%), located outdoors (71%), at home (47%), or in an indoor swimming pool (31%). Regarding the training frequency, sports-inactive patients preferred a frequency of 1-2 training sessions per week, whereas sports-active patients preferred 3-4 sessions per week (p <0.001). Sports-inactive patients preferred a training time of 15-45 minutes, while sports-active patients preferred 30-60 minutes (p = 0.002). Subsequently, PE recommendations were developed for patients with CML. Combined resistance and endurance training (moderate intensity twice per week for 30 minutes) was recommended for beginners. Obese patients should prioritize joint-relieving sports. To reduce the risk of skin reactions, direct sunlight and possibly water sports should be avoided, and UV protection should be used. Conclusion Counseling and motivation of CML patients to be physically active should be part of the standard of care as well as support for implementation.
Collapse
Affiliation(s)
- Lina Hollenbach
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Julia Rogahn
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Philipp le Coutre
- Department of Hematology, Oncology, and Cancer Immunology, Campus Virchow‐Klinikum, Charité ‐ Universitätsmedizin Berlin, Berlin, Germany
| | - Susann Schulze
- Krukenberg Cancer Center Halle, University Hospital Halle, Halle (Saale), Germany
- Department of Medicine, Medical Clinic II, Carl-von-Basedow-Klinikum, Merseburg, Germany
| | - Lars-Olof Muegge
- Department of Internal Medicine III, Heinrich Braun Klinikum Zwickau, Zwickau, Germany
| | - Jan Geissler
- LeukaNET/Leukemia-Online e. V., Riemering, Germany
| | - Julia Gruen
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Sabine Felser
- Department of Internal Medicine, Clinic III – Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
49
|
Zhou I, Plana D, Palmer AC. Tumor-Specific Activity of Precision Medicines in the NCI-MATCH Trial. Clin Cancer Res 2024; 30:786-792. [PMID: 38109210 PMCID: PMC10922532 DOI: 10.1158/1078-0432.ccr-23-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) is a precision medicine basket trial designed to test the effectiveness of treating cancers based on specific genetic changes in patients' tumors, regardless of cancer type. Multiple subprotocols have each tested different targeted therapies matched to specific genetic aberrations. Most subprotocols exhibited low rates of tumor shrinkage as evaluated across all tumor types enrolled. We hypothesized that these results may arise because these precision cancer therapies have tumor type-specific efficacy, as is common among other cancer therapies. EXPERIMENTAL DESIGN To test the hypothesis that certain tumor types are more sensitive to specific therapies than other tumor types, we applied permutation testing to tumor volume change and progression-free survival data from 10 published NCI-MATCH subprotocols (together n = 435 patients). FDR was controlled by the Benjamini-Hochberg procedure. RESULTS Six of ten subprotocols exhibited statistically significant evidence of tumor-specific drug sensitivity, four of which were previously considered negative based on response rate across all tumors. This signal-finding analysis highlights potential uses of FGFR tyrosine kinase inhibition in urothelial carcinomas with actionable FGFR aberrations and MEK inhibition in lung cancers with BRAF non-V600E mutations. In addition, it identifies low-grade serious ovarian carcinoma with BRAF v600E mutation as especially sensitive to BRAF and MEK co-inhibition (dabrafenib plus trametinib), a treatment that received accelerated FDA approval for advanced solid tumors with BRAF v600E mutation. CONCLUSIONS These findings support the value of basket trials because even when precision medicines do not have tumor-agnostic activity, basket trials can identify tumor-specific activity for future study.
Collapse
Affiliation(s)
- Ivvone Zhou
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Deborah Plana
- Laboratory of Systems Pharmacology, and the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
50
|
Hayes DN, Oluoha O, Schwartz DL. For Squamous Cancers, the Streetlamps Shine on Occasional Keys, Most Baskets Are Empty, and the Umbrellas Cannot Keep Us Dry: A Call for New Models in Precision Oncology. J Clin Oncol 2024; 42:487-490. [PMID: 38190587 DOI: 10.1200/jco.23.01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- D Neil Hayes
- University of Tennessee Health Science Center, Center for Cancer Research, Memphis, TN
| | | | - David L Schwartz
- University of Tennessee Health Science Center, Center for Cancer Research, Memphis, TN
| |
Collapse
|