1
|
Yalcinkaya A, Cavalli M, Aranda-Guillén M, Cederholm A, Güner A, Rietrae I, Mildner H, Behere A, Eriksson O, Gonzalez L, Mugabo CH, Johnsson A, Lakshmikanth T, Brodin P, Wadelius M, Hallberg P, Landegren N. Autoantibodies to protein S may explain rare cases of coagulopathy following COVID-19 vaccination. Sci Rep 2024; 14:24512. [PMID: 39424883 PMCID: PMC11489816 DOI: 10.1038/s41598-024-75514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
While Coronavirus disease 2019 (COVID-19) vaccines have proven to be both effective and generally safe, rare but severe adverse events following immunization (AEFIs) are described. Autoantibodies to platelet factor-4 are associated with catastrophic thrombotic AEFIs, but comprehensive investigations of other autoantibodies are lacking. We aimed to detect and describe autoantibodies targeting coagulation-related proteins in a population-wide cohort (SWEDEGENE) including AEFIs attributed to COVID-19 vaccines in Sweden. Subjects were recruited from December 2020 to October 2022 and were stratified based on diagnosis and COVID-19 exposure. Screening was carried out in two phases, with a multiplex bead-based assay in the first subset (until September 2021) and with targeted assays for the second (until October 2022). Positivity was defined based on absolute, relative, and biological/technical thresholds. Patients with coagulation-related AEFIs were older and the Vaxzevria vaccine was overrepresented in this group. Two cases had antiphospholipid antibodies but none had PF4 antibodies. We identified six positives for protein S autoantibodies. Protein S concentrations were negatively correlated with autoantibody response in patients with immunoreactivity and functional analysis revealed low protein S activity in three subjects. Our population-wide analysis reveals cases with autoantibodies against protein S which possibly underlie coagulopathic AEFIs.
Collapse
Affiliation(s)
- Ahmet Yalcinkaya
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Pharmacogenomics, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maribel Aranda-Guillén
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Almira Güner
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Isabel Rietrae
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hedvig Mildner
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anish Behere
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Oskar Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Gonzalez
- Unit for Clinical Pediatrics, Department of Women's and Children's Health (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Constantin Habimana Mugabo
- Unit for Clinical Pediatrics, Department of Women's and Children's Health (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Anette Johnsson
- Unit for Clinical Pediatrics, Department of Women's and Children's Health (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Unit for Clinical Pediatrics, Department of Women's and Children's Health (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women's and Children's Health (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacogenomics, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Medicine (Solna), Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Benemei S, Gatto F, Marcucci R, Gresele P. Emerging Thrombotic Disorders Associated with Virus-Based Innovative Therapies: From VITT to AAV Gene Therapy-Related Thrombotic Microangiopathy. Thromb Haemost 2024. [PMID: 39260400 DOI: 10.1055/a-2413-4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Gene therapy is a promising therapeutic approach for treating life-threatening disorders. Despite the clinical improvements observed with gene therapy, immune responses either innate or adaptive against the vector used for gene delivery, can affect treatment efficacy and lead to adverse reactions. Thrombotic microangiopathy (TMA) is a thrombosis with thrombocytopenia syndrome (TTS) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and small vessel occlusion known to be elicited by several drugs, that has been recently reported as an adverse event of adeno-associated virus (AAV)-based gene therapy. TMA encompasses a heterogenous group of disorders, its classification and underlining mechanisms are still uncertain, and still lacks validated biomarkers. The identification of predictors of TMA, such as vector dose and patient characteristics, is a pressing need to recognize patients at risk before and after AAV-based gene therapy administration. This review aims to explore the literature on TMA associated with AAV-based gene therapy in the larger context of TMA (i.e., hemolytic-uremic syndrome, thrombotic thrombocytopenic purpura, and other drug-related TMAs). Considering the wide attention recently gained by another TTS associated with a non-gene therapy viral platform (adenovirus, AV COVID-19 vaccine), namely vaccine-induced immune thrombocytopenia and thrombosis (VITT), AAV gene therapy-related TMA mechanisms will be discussed and differentiated from those of VITT to avoid recency bias and favor a correct positioning of these two recently emerged syndromes within the heterogenous group of drug-related TTS. Finally, the review will discuss strategies for enhancing the safety and optimize the management of AAV-based gene therapy that is emerging as an efficacious therapeutic option for disparate, severe, and often orphan conditions.
Collapse
Affiliation(s)
| | | | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Schönborn L, Pavord S, Chen VMY, Pai M, Gwarzo DH, Buttery J, Munoz FM, Tran H, Greinacher A, Law B. Thrombosis with thrombocytopenia syndrome (TTS) and vaccine-induced immune thrombocytopenia and thrombosis (VITT): Brighton Collaboration case definitions and guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2024; 42:1799-1811. [PMID: 38302339 DOI: 10.1016/j.vaccine.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
This is a revision of the online November 2021 Brighton thrombosis with thrombocytopenia syndrome (TTS) case definition and a new Brighton Collaboration case definition for vaccine-induced immune thrombocytopenia and thrombosis (VITT). These case definitions are intended for use in clinical trials and post-licensure pharmacovigilance activities to facilitate safety data comparability across multiple settings. They are not intended to guide clinical management. The case definitions were developed by a group of subject matter and Brighton Collaboration process experts as part of the Coalition for Epidemic Preparedness Innovations (CEPI)-funded Safety Platform for Evaluation of vACcines (SPEAC). The case definitions, each with defined levels of diagnostic certainty, are based on relevant published evidence and expert consensus and are accompanied by specific guidelines for TTS and VITT data collection and analysis. The document underwent peer review by a reference group of vaccine safety stakeholders and haematology experts to ensure case definition useability, applicability and scientific integrity.
Collapse
Affiliation(s)
- Linda Schönborn
- University Medicine Greifswald, Institute for Transfusion Medicine, Greifswald, Germany.
| | - Sue Pavord
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Vivien Mun Yee Chen
- Department of Haematology, Concord Repatriation General Hospital and NSW Health Pathology, Concord, NSW, Australia; ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, University of Sydney, Concord, NSW, Australia.
| | - Menaka Pai
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada; McMaster University, Hamilton, Ontario, Canada.
| | - Dalha Haliru Gwarzo
- Institution: Bayero University, Kano, Nigeria; Aminu Kano Teaching Hospital, Kano, Nigeria.
| | - Jim Buttery
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Flor M Munoz
- Department of Pediatrics, Division of Infectious Diseases, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - Huyen Tran
- Clinical Haematology Department, Monash University, Melbourne, Victoria, Australia; The Alfred Hospital, Melbourne, Victoria, Australia.
| | - Andreas Greinacher
- University Medicine Greifswald, Institute for Transfusion Medicine, Greifswald, Germany.
| | - Barbara Law
- SPEAC, Brighton Collaboration, Independent Consultant, Stratford, Ontario, Canada.
| |
Collapse
|
4
|
Warkentin TE. Autoimmune Heparin-Induced Thrombocytopenia. J Clin Med 2023; 12:6921. [PMID: 37959386 PMCID: PMC10649402 DOI: 10.3390/jcm12216921] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Autoimmune thrombocytopenia (aHIT) is a severe subtype of heparin-induced thrombocytopenia (HIT) with atypical clinical features caused by highly pathological IgG antibodies ("aHIT antibodies") that activate platelets even in the absence of heparin. The clinical features of aHIT include: the onset or worsening of thrombocytopenia despite stopping heparin ("delayed-onset HIT"), thrombocytopenia persistence despite stopping heparin ("persisting" or "refractory HIT"), or triggered by small amounts of heparin (heparin "flush" HIT), most cases of fondaparinux-induced HIT, and patients with unusually severe HIT (e.g., multi-site or microvascular thrombosis, overt disseminated intravascular coagulation [DIC]). Special treatment approaches are required. For example, unlike classic HIT, heparin cessation does not result in de-escalation of antibody-induced hemostasis activation, and thus high-dose intravenous immunoglobulin (IVIG) may be indicated to interrupt aHIT-induced platelet activation; therapeutic plasma exchange may be required if high-dose IVIG is ineffective. Also, aHIT patients are at risk for treatment failure with (activated partial thromboplastin time [APTT]-adjusted) direct thrombin inhibitor (DTI) therapy (argatroban, bivalirudin), either because of APTT confounding (where aHIT-associated DIC and resulting APTT prolongation lead to systematic underdosing/interruption of DTI therapy) or because DTI inhibits thrombin-induced protein C activation. Most HIT laboratories do not test for aHIT antibodies, contributing to aHIT under-recognition.
Collapse
Affiliation(s)
- Theodore E. Warkentin
- Department of Pathology and Molecular Medicine and Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; ; Tel.: +1-(905)-527-0271 (ext. 46139)
- Service of Benign Hematology, Hamilton Health Sciences (General Site), Hamilton, ON L8L 2X2, Canada
- Transfusion Medicine, Hamilton Regional Laboratory Medicine Program, Hamilton, ON L8L 2X2, Canada
| |
Collapse
|