1
|
Chuang CH, Cheng CH, Tsai YC, Tsai MJ, Sheu CC, Chong IW. Pulmonary alveolar proteinosis in Taiwan. J Formos Med Assoc 2023; 122:1061-1068. [PMID: 37105870 DOI: 10.1016/j.jfma.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND/PURPOSE Pulmonary alveolar proteinosis (PAP) is rare disease manifested as alveolar macrophage dysfunction and abnormal accumulation of surfactant protein in the alveoli. In this nationwide, population-based study, we investigated the epidemiology of PAP in Taiwan, and discovered the comorbidities and prognostic factors of PAP. METHODS From the National Health Insurance Research Database (NHIRD), we obtained comprehensive information about all patients of PAP in Taiwan between 1995 and 2013. The incidence, baseline characteristics comorbidities, and prognostic factors of PAP were investigated. RESULTS The annual incidence rate of PAP was around 0.79 (range: 0.49-1.17) patients per million people after 2000, and the prevalence rate was 7.96 patients per million people by the end of 2013. In total, 276 patients of PAP were identified, including 177 (64%) and 99 (36%) patients with primary and secondary PAP, respectively. The median age of diagnosis was 53.8 years. The median survival was 9.6 years after the initial PAP diagnosis, and the 5-year survival rate was 65.96%. Twenty (7%) patients received whole lung lavage (WLL) within three months after the diagnosis had significantly better survival compared to the others. Multivariable Cox regression analyses showed that elder age, secondary PAP, and malignancy were associated with poorer survival, while WLL within 3 months of diagnosis might greatly improve the survival. CONCLUSION We demonstrated the epidemiology of PAP in Taiwan, showing several poor prognostic factors and the potential effectiveness of WLL. Further prospective studies based on registry are warranted to improve the diagnosis and treatment of PAP.
Collapse
Affiliation(s)
- Cheng-Hao Chuang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Yu-Chen Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chau-Chyun Sheu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Respiratory Care, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Zhang K, Chen H, Li F, Huang S, Chen F, Li Y. Bright future or blind alley? CAR-T cell therapy for solid tumors. Front Immunol 2023; 14:1045024. [PMID: 36761757 PMCID: PMC9902507 DOI: 10.3389/fimmu.2023.1045024] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells therapy has emerged as a significant breakthrough in adoptive immunotherapy for hematological malignancies with FDA approval. However, the application of CAR-T cell therapy in solid tumors remains challenging, mostly due to lack of suitable CAR-T target antigens, insufficient trafficking and extravasation to tumor sites, and limited CAR-T survival in the hostile tumor microenvironment (TME). Herein, we reviewed the development of CARs and the clinical trials in solid tumors. Meanwhile, a "key-and-lock" relationship was used to describe the recognition of tumor antigen via CAR T cells. Some strategies, including dual-targets and receptor system switches or filter, have been explored to help CAR T cells matching targets specifically and to minimize on-target/off-tumor toxicities in normal tissues. Furthermore, the complex TME restricts CAT T cells activity through dense extracellular matrix, suppressive immune cells and cytokines. Recent innovations in engineered CARs to shield the inhibitory signaling molecules were also discussed, which efficiently promote CAR T functions in terms of expansion and survival to overcome the hurdles in the TME of solid tumors.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Fei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Yi Li,
| |
Collapse
|
3
|
Dang W, Tao Y, Xu X, Zhao H, Zou L, Li Y. The role of lung macrophages in acute respiratory distress syndrome. Inflamm Res 2022; 71:1417-1432. [PMID: 36264361 PMCID: PMC9582389 DOI: 10.1007/s00011-022-01645-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.
Collapse
Affiliation(s)
- Wenpei Dang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xinxin Xu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Hui Zhao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijuan Zou
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Bird D, Evans J, Pahoff C. Rituximab rescue therapy for autoimmune pulmonary alveolar proteinosis. Respir Med Case Rep 2022; 37:101637. [PMID: 35342706 PMCID: PMC8943437 DOI: 10.1016/j.rmcr.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (aPAP) is a rare lung disease characterised by abnormal alveolar surfactant accumulation due to macrophage dysfunction. Whole lung lavage (WLL) is the cornerstone of first-line aPAP therapy, but effective rescue treatments have not yet been well established. We report a case of a 41-year-old man with aPAP in whom further WLL is contraindicated. His diagnosis was established using a combination of classical radiological findings, positive serum GM-CSF IgG antibodies and bronchoalveolar lavage (BAL) findings. Following a literature review of emerging therapies, a decision was made to treat with a course of rituximab to suppress GM-CSF autoantibody production and restore alveolar surfactant-macrophage homeostasis. A significant clinical response was demonstrated within 6 months with improvements in arterial oxygenation, respiratory membrane gas diffusion, six-minute walk test and radiological findings.
Collapse
Affiliation(s)
- Daniel Bird
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| | - Jack Evans
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| | - Carl Pahoff
- Department of Respiratory Medicine, Gold Coast University Hospital, Hospital Blvd, Southport, Queensland, Australia, 4215
| |
Collapse
|
5
|
Kheir S, Villeret B, Garcia-Verdugo I, Sallenave JM. IL-6-elafin genetically modified macrophages as a lung immunotherapeutic strategy against Pseudomonas aeruginosa infections. Mol Ther 2022; 30:355-369. [PMID: 34371178 PMCID: PMC8753374 DOI: 10.1016/j.ymthe.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa (P.a) infections are a major public health issue in ventilator-associated pneumoniae, cystic fibrosis, and chronic obstructive pulmonary disease exacerbations. P.a is multidrug resistant, and there is an urgent need to develop new therapeutic approaches. Here, we evaluated the effect of direct pulmonary transplantation of gene-modified (elafin and interleukin [IL]-6) syngeneic macrophages in a mouse model of acute P.a infection. Wild-type (WT) or Elafin-transgenic (eTg) alveolar macrophages (AMs) or bone marrow-derived macrophages (BMDMs) were recovered from bronchoalveolar lavage or generated from WT or eTg mouse bone marrow. Cells were modified with adenovirus IL-6 (Ad-IL-6), characterized in vitro, and transferred by oropharyngeal instillation in the lungs of naive mice. The protective effect was assessed during P.a acute infection (survival studies, mechanistic studies of the inflammatory response). We show that a single bolus of genetically modified syngeneic AMs or BMDMs provided protection in our P.a-induced model. Mechanistically, Elafin-modified AMs had an IL-6-IL-10-IL-4R-IL-22-antimicrobial molecular signature that, in synergy with IL-6, enhanced epithelial cell proliferation and tissue repair in the alveolar unit. We believe that this innovative cell therapy strategy could be of value in acute bacterial infections in the lung.
Collapse
Affiliation(s)
- Saadé Kheir
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Bérengère Villeret
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Ignacio Garcia-Verdugo
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Jean-Michel Sallenave
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France,Corresponding author: Jean-Michel Sallenave, INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France.
| |
Collapse
|
6
|
van Heeckeren AM, Sutton MT, Fletcher DR, Hodges CA, Caplan AI, Bonfield TL. Enhancing Cystic Fibrosis Immune Regulation. Front Pharmacol 2021; 12:573065. [PMID: 34054509 PMCID: PMC8155373 DOI: 10.3389/fphar.2021.573065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
In cystic fibrosis (CF), sustained infection and exuberant inflammation results in debilitating and often fatal lung disease. Advancement in CF therapeutics has provided successful treatment regimens for a variety of clinical consequences in CF; however effective means to treat the pulmonary infection and inflammation continues to be problematic. Even with the successful development of small molecule cystic fibrosis transmembrane conductance regulator (CFTR) correctors and potentiators, there is only a modest effect on established infection and inflammation in CF patients. In the pursuit of therapeutics to treat inflammation, the conundrum to address is how to overcome the inflammatory response without jeopardizing the required immunity to manage pathogens and prevent infection. The key therapeutic would have the capacity to dull the inflammatory response, while sustaining the ability to manage infections. Advances in cell-based therapy have opened up the avenue for dynamic and versatile immune interventions that may support this requirement. Cell based therapy has the capacity to augment the patient’s own ability to manage their inflammatory status while at the same time sustaining anti-pathogen immunity. The studies highlighted in this manuscript outline the potential use of cell-based therapy for CF. The data demonstrate that 1) total bone marrow aspirates containing Cftr sufficient hematopoietic and mesenchymal stem cells (hMSCs) provide Cftr deficient mice >50% improvement in survival and improved management of infection and inflammation; 2) myeloid cells can provide sufficient Cftr to provide pre-clinical anti-inflammatory and antimicrobial benefit; 3) hMSCs provide significant improvement in survival and management of infection and inflammation in CF; 4) the combined interaction between macrophages and hMSCs can potentially enhance anti-inflammatory and antimicrobial support through manipulating PPARγ. These data support the development of optimized cell-based therapeutics to enhance CF patient’s own immune repertoire and capacity to maintain the balance between inflammation and pathogen management.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Morgan T Sutton
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, TN, United States
| | - David R Fletcher
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Craig A Hodges
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tracey L Bonfield
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Skeletal Research Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Departments of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
7
|
Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H, Zheng W, Lu Y, Zhang W, Bei Y, Shen P. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer 2019; 121:837-845. [PMID: 31570753 PMCID: PMC6889154 DOI: 10.1038/s41416-019-0578-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background The extracellular matrix (ECM) is essential for malignant tumour progression, as it is a physical barrier to various kinds of anticancer therapies. Matrix metalloproteinase (MMPs) can degrade almost all ECM components, and macrophages are an important source of MMPs. Studies using macrophages to treat tumours have shown that macrophages can enter tumour tissue to play a regulatory role. Methods We modified macrophages with a designed chimeric antigen receptor (CAR), which could be activated after recognition of the tumour antigen HER2 to trigger the internal signalling of CD147 and increase the expression of MMPs. Results Although CAR-147 macrophage treatment did not affect tumour cell growth in vitro compared with control treatment. However, we found that the infusion of CAR-147 macrophages significantly inhibited HER2-4T1 tumour growth in BALB/c mice. Further investigation showed that CAR-147 macrophages could reduce tumour collagen deposition and promote T-cell infiltration into tumours, which were consistent with expectations. Interestingly, the levels of the inflammatory cytokines TNF-α and IL-6, which are key factors in cytokine release syndrome, were significantly decreased in the peripheral blood in CAR-147 macrophage-transfused mice. Conclusion Our data suggest that targeting the ECM by engineered macrophages would be an effective treatment strategy for solid tumours.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Ling Liu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - HuiFang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Qin Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, PR China
| | - Jie Shen
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, PR China
| | - Hanren Dai
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Weijie Zhang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 210008, Nanjing, Jiangsu, China
| | - Yuncheng Bei
- College of Life Sciences, Peking University, 100871, Beijing, PR China.
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China.
| |
Collapse
|
8
|
Culemann S, Grüneboom A, Krönke G. Origin and function of synovial macrophage subsets during inflammatory joint disease. Adv Immunol 2019; 143:75-98. [PMID: 31607368 DOI: 10.1016/bs.ai.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes, including monocytes and macrophages, are a central component of the host's innate immune system designated to protect against invading pathogens. However, these cells do not only interact with various parts of the innate and adaptive immune system, but also fulfill indispensable duties during the control of tissue homeostasis and organ function. Moreover, macrophages are crucially involved in tissue remodeling and repair in response to damage. Simultaneously, mononuclear phagocytes might also contribute to the pathogenesis of various inflammatory and autoimmune diseases. In particular, their potential role in inflammatory joint diseases such as rheumatoid arthritis (RA) has drawn increasing attention and substantially shaped our general understanding of the role of monocytes and macrophages during health and disease. This review summarizes our current knowledge about the origin and function of mononuclear phagocytes within the joint and addresses their involvement in joint inflammation.
Collapse
Affiliation(s)
- Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anika Grüneboom
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
9
|
Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T, Chalk C, Glage S, Dittrich-Breiholz O, Trapnell B, Moritz T, Hansen G. Pulmonary Transplantation of Human Induced Pluripotent Stem Cell-derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019; 198:350-360. [PMID: 29652170 DOI: 10.1164/rccm.201708-1562oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although the transplantation of induced pluripotent stem cell (iPSC)-derived cells harbors enormous potential for the treatment of pulmonary diseases, in vivo data demonstrating clear therapeutic benefits of human iPSC-derived cells in lung disease models are missing. OBJECTIVES We have tested the therapeutic potential of iPSC-derived macrophages in a humanized disease model of hereditary pulmonary alveolar proteinosis (PAP). Hereditary PAP is caused by a genetic defect of the GM-CSF (granulocyte-macrophage colony-stimulating factor) receptor, which leads to disturbed macrophage differentiation and protein/surfactant degradation in the lungs, subsequently resulting in severe respiratory insufficiency. METHODS Macrophages derived from human iPSCs underwent intrapulmonary transplantation into humanized PAP mice, and engraftment, in vivo differentiation, and therapeutic efficacy of the transplanted cells were analyzed. MEASUREMENTS AND MAIN RESULTS On intratracheal application, iPSC-derived macrophages engrafted in the lungs of humanized PAP mice. After 2 months, transplanted cells displayed the typical morphology, surface markers, functionality, and transcription profile of primary human alveolar macrophages. Alveolar proteinosis was significantly reduced as demonstrated by diminished protein content and surfactant protein D levels, decreased turbidity of the BAL fluid, and reduced surfactant deposition in the lungs of transplanted mice. CONCLUSIONS We here demonstrate for the first time that pulmonary transplantation of human iPSC-derived macrophages leads to pulmonary engraftment, their in situ differentiation to an alveolar macrophage phenotype, and a reduction of alveolar proteinosis in a humanized PAP model. To our knowledge, this finding presents the first proof-of-concept for the therapeutic potential of human iPSC-derived cells in a pulmonary disease and may have profound implications beyond the rare disease of PAP.
Collapse
Affiliation(s)
- Christine Happle
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| | - Nico Lachmann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Mania Ackermann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Anja Mirenska
- 1 Department of Pediatric Pneumology, Allergology and Neonatology
| | | | | | - Adele Mucci
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Miriam Hetzel
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Torsten Glomb
- 7 Core Unit Transcriptomics, Institute for Physiological Chemistry, and
| | - Takuji Suzuki
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Claudia Chalk
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Silke Glage
- 9 Central Animal Facility, Hannover Medical School, Hannover, Germany; and
| | | | - Bruce Trapnell
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas Moritz
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Gesine Hansen
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
10
|
D'Silva K, Brown S, Hunninghake GM, Vivero M, Loscalzo J. Gasping for a Diagnosis. N Engl J Med 2019; 380:961-967. [PMID: 30855747 PMCID: PMC7189901 DOI: 10.1056/nejmcps1809942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kristin D'Silva
- From the Departments of Medicine (K.D., S.B., G.M.H., J.L.) and Pathology (M.V.), Brigham and Women's Hospital, Boston
| | - Sarah Brown
- From the Departments of Medicine (K.D., S.B., G.M.H., J.L.) and Pathology (M.V.), Brigham and Women's Hospital, Boston
| | - Gary M Hunninghake
- From the Departments of Medicine (K.D., S.B., G.M.H., J.L.) and Pathology (M.V.), Brigham and Women's Hospital, Boston
| | - Marina Vivero
- From the Departments of Medicine (K.D., S.B., G.M.H., J.L.) and Pathology (M.V.), Brigham and Women's Hospital, Boston
| | - Joseph Loscalzo
- From the Departments of Medicine (K.D., S.B., G.M.H., J.L.) and Pathology (M.V.), Brigham and Women's Hospital, Boston
| |
Collapse
|
11
|
Ma P, Han H, Qin H. Reply to: "Studies of macrophage therapy for cirrhosis - From mice to men". J Hepatol 2018; 68:1091-1093. [PMID: 29317296 DOI: 10.1016/j.jhep.2017.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China; Department of Hepatobiliary Surgery, PLA Navy General Hospital, Beijing, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Trukalj M, Perica M, Ferenčić Ž, Erceg D, Navratil M, Redžepi G, Nogalo B. Successful Treatment of Autoimmune Pulmonary Alveolar Proteinosis in a Pediatric Patient. AMERICAN JOURNAL OF CASE REPORTS 2016; 17:641-5. [PMID: 27592713 PMCID: PMC5012460 DOI: 10.12659/ajcr.897868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patient: Male, 13 Final Diagnosis: Pulmonary alveolar protinosis (autoimmune subtype) Symptoms: Dyspnea • general weakness • subfebrile episodes Medication: Vincristine Clinical Procedure: Bronchoscopy • bronchoalveolar lavage • CT scan • lung biopsy • GM CSF antibody testing • diagnosis confirmation • therapy with inhaled GM-CSF • bilateral lung transplantation • chemotherapy due to PTLD Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Mirjana Trukalj
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Marija Perica
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Željko Ferenčić
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Damir Erceg
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Marta Navratil
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| | - Gzim Redžepi
- Department of Pulomonology, University Hospital Zagreb, Zagreb, Croatia
| | - Boro Nogalo
- Department of Pediatric Allergology and Pulmonology, Children's Hospital Srebrnjak, Zagreb, Croatia
| |
Collapse
|
13
|
Staples KJ. Lung macrophages: old hands required rather than new blood? Thorax 2016; 71:973-974. [PMID: 27531530 DOI: 10.1136/thoraxjnl-2016-208992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Karl J Staples
- Department of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton, UK Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
14
|
Eguíluz-Gracia I, Schultz HHL, Sikkeland LIB, Danilova E, Holm AM, Pronk CJH, Agace WW, Iversen M, Andersen C, Jahnsen FL, Baekkevold ES. Long-term persistence of human donor alveolar macrophages in lung transplant recipients. Thorax 2016; 71:1006-1011. [DOI: 10.1136/thoraxjnl-2016-208292] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
|
15
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
16
|
Darley DR, Malouf MA, Glanville AR. A rare case of everolimus-induced pulmonary alveolar proteinosis. J Heart Lung Transplant 2015; 35:147-148. [PMID: 26525403 DOI: 10.1016/j.healun.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 11/17/2022] Open
Affiliation(s)
- David R Darley
- Lung Transplantation Unit, St Vincent׳s Hospital, Darlinghurst, New South Wales, Australia
| | - Monique A Malouf
- Lung Transplantation Unit, St Vincent׳s Hospital, Darlinghurst, New South Wales, Australia
| | - Allan R Glanville
- Lung Transplantation Unit, St Vincent׳s Hospital, Darlinghurst, New South Wales, Australia
| |
Collapse
|