1
|
Brinkmann R, Rosenberg E, Louis DN, Podolsky SH. Building a Community of Medical Learning - A Century of Case Records of the Massachusetts General Hospital in the Journal. N Engl J Med 2024; 391:858-863. [PMID: 39231351 DOI: 10.1056/nejmms2405389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Rory Brinkmann
- From Harvard Medical School (R.B., E.R., D.N.L., S.H.P.), Massachusetts General Hospital (E.R., D.N.L., S.H.P.), and Brigham and Women's Hospital (D.N.L.) - all in Boston
| | - Eric Rosenberg
- From Harvard Medical School (R.B., E.R., D.N.L., S.H.P.), Massachusetts General Hospital (E.R., D.N.L., S.H.P.), and Brigham and Women's Hospital (D.N.L.) - all in Boston
| | - David N Louis
- From Harvard Medical School (R.B., E.R., D.N.L., S.H.P.), Massachusetts General Hospital (E.R., D.N.L., S.H.P.), and Brigham and Women's Hospital (D.N.L.) - all in Boston
| | - Scott H Podolsky
- From Harvard Medical School (R.B., E.R., D.N.L., S.H.P.), Massachusetts General Hospital (E.R., D.N.L., S.H.P.), and Brigham and Women's Hospital (D.N.L.) - all in Boston
| |
Collapse
|
2
|
Xie Z, Liu J, Xie T, Liu P, Hui X, Zhang Q, Xiao X. Integration of proteomics and metabolomics reveals energy and metabolic alterations induced by glucokinase (GCK) partial inactivation in hepatocytes. Cell Signal 2024; 114:111009. [PMID: 38092300 DOI: 10.1016/j.cellsig.2023.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/01/2024]
Abstract
AIMS Glucokinase (GCK) acts as the glucose sensor in maintaining glucose homeostasis. The inactivating mutation of the GCK gene leads to glucokinase-maturity onset diabetes of the young (GCK-MODY). This study aims to gain further insights into the molecular alterations triggered by GCK partial inactivation in hepatocytes, potentially underlying the favorable prognosis of GCK-MODY. MAIN METHODS A GCK knockdown HepG2 cell model was established, and the integration of proteomics and metabolomics was used to gain a comprehensive understanding of the molecular pathway changes caused by GCK inactivation in the liver. KEY FINDINGS Proteomic analysis identified 257 differential proteins. KEGG pathway enrichment analysis showed that protein expression changes in the GCK knockdown group were significantly enriched in central carbon metabolism, the TCA cycle, amino acid metabolism and the oxidative phosphorylation pathway. Among them, enzymes in the TCA cycle (PC, IDH2, SDH) were significantly downregulated in GCK-knockdown group. Targeted metabolomics revealed that in the GCK knockdown hepatocytes, TCA cycle intermediates were significantly decreased, including pyruvate, oxaloacetate, citrate and succinic acid, and three metabolites increased including glycine, betaine and homocysteine. These metabolic alterations in turn reduced the accumulation of reactive oxygen species in GCK knockdown hepatocytes. Correlation analysis indicated that TCA cycle metabolites were positively correlated with proteins involved in the TCA cycle, carbon metabolism, glycolysis, Ras signaling, fibrosis and inflammation. SIGNIFICANCE In conclusion, GCK knockdown reduced TCA cycle flux and oxidative stress in hepatocytes by influencing the levels of key transcription factors and enzymes, providing a comprehensive understanding of the effects of GCK partial inactivation on liver metabolism and molecular mechanisms.
Collapse
Affiliation(s)
- Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Vivante A, Tan W, Harrington SG, Udler MS, Pollin TI. Case 36-2023: A 19-Year-Old Man with Diabetes and Kidney Cysts. N Engl J Med 2023; 389:1993-2003. [PMID: 37991859 DOI: 10.1056/nejmcpc2309347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Weizhen Tan
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Samantha G Harrington
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Miriam S Udler
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| | - Toni I Pollin
- From the Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - both in Israel (A.V.); the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Massachusetts General Hospital, and the Departments of Pediatrics (W.T.), Radiology (S.G.H.), and Medicine (M.S.U.), Harvard Medical School - both in Boston; and the Department of Medicine, University of Maryland School of Medicine, Baltimore (T.I.P.)
| |
Collapse
|
4
|
Hughes AE, Houghton JAL, Bunce B, Chakera AJ, Spyer G, Shepherd MH, Flanagan SE, Hattersley AT. Bringing precision medicine to the management of pregnancy in women with glucokinase-MODY: a study of diagnostic accuracy and feasibility of non-invasive prenatal testing. Diabetologia 2023; 66:1997-2006. [PMID: 37653058 PMCID: PMC10542291 DOI: 10.1007/s00125-023-05982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
AIMS/HYPOTHESIS In pregnancies where the mother has glucokinase-MODY (GCK-MODY), fetal growth is determined by fetal genotype. When the fetus inherits a maternal pathogenic GCK variant, normal fetal growth is anticipated, and insulin treatment of maternal hyperglycaemia is not recommended. At present, fetal genotype is estimated from measurement of fetal abdominal circumference on ultrasound. Non-invasive prenatal testing of fetal GCK genotype (NIPT-GCK) using cell-free DNA in maternal blood has recently been developed. We aimed to compare the diagnostic accuracy of NIPT-GCK with that of ultrasound, and determine the feasibility of using NIPT-GCK to guide pregnancy management. METHODS We studied an international cohort of pregnant women with hyperglycaemia due to GCK-MODY. We compared the diagnostic accuracy of NIPT-GCK with that of measurement of fetal abdominal circumference at 28 weeks' gestation (n=38) using a directly genotyped offspring sample as the reference standard. In a feasibility study, we assessed the time to result given to clinicians in 43 consecutive pregnancies affected by GCK-MODY between July 2019 and September 2021. RESULTS In terms of diagnostic accuracy, NIPT-GCK was more sensitive and specific than ultrasound in predicting fetal genotype (sensitivity 100% and specificity 96% for NIPT-GCK vs sensitivity 53% and specificity 61% for fetal abdominal circumference 75th percentile). In terms of feasibility, a valid NIPT-GCK fetal genotype (≥95% probability) was reported in all 38 pregnancies with an amenable variant and repeated samples when needed. The median time to report was 5 weeks (IQR 3-8 weeks). For the 25 samples received before 20 weeks' gestation, results were reported at a median gestational age of 20 weeks (IQR 18-24), with 23/25 (92%) reported before 28 weeks. CONCLUSIONS/INTERPRETATION Non-invasive prenatal testing of fetal genotype in GCK-MODY pregnancies is highly accurate and is capable of providing a result before the last trimester for most patients. This means that non-invasive prenatal testing of fetal genotype is the optimal approach to management of GCK-MODY pregnancies.
Collapse
Affiliation(s)
- Alice E Hughes
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Benjamin Bunce
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Ali J Chakera
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Diabetes and Endocrinology, Royal Sussex County Hospital, University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Gill Spyer
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Department of Diabetes and Endocrinology, Torbay Hospital, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Maggie H Shepherd
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- National Institute for Health and Care Research, Exeter Clinical Research Facility, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Sarah E Flanagan
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Andrew T Hattersley
- Faculty of Health and Life Sciences, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.
- National Institute for Health and Care Research, Exeter Clinical Research Facility, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| |
Collapse
|
5
|
Ren Q, Wang Z, Yang W, Han X, Ji L. Maternal and Infant Outcomes in GCK-MODY Complicated by Pregnancy. J Clin Endocrinol Metab 2023; 108:2739-2746. [PMID: 37011183 DOI: 10.1210/clinem/dgad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
CONTEXT Challenges exist in the management of Glucokinase-maturity-onset diabetes of the young (GCK-MODY), especially during pregnancy. OBJECTIVE This work aimed to evaluate the prevalence of congenital anomaly in newborns from GCK-MODY mothers, and the relationship between fetus genotype and the risk of congenital malformation as well as other adverse pregnancy outcomes. METHODS Electronic databases including PubMed, EMBASE, and Cochrane database last updated July 16, 2022, were searched. We included observational studies conducted in GCK-MODY complicated by pregnancy, and reporting at least one pregnancy outcome. We extracted data in duplicate, and the risk of bias was evaluated by the Newcastle-Ottawa Quality Assessment Scale (NOS). All statistical analysis was performed by Cochrane Review Manager. RESULTS Eight studies were selected in the meta-analysis. Five were of high quality and 3 were of medium quality evaluated by NOS. A total of 257 GCK-MODY mothers and 499 offspring were enrolled. Among them, 370 offspring were divided into 2 groups: GCK-affected offspring (GCK+, n = 238) and GCK-unaffected offspring (GCK-, n = 132). The percentage of congenital malformations in GCK pregnant women's offspring was 2.4%. The risk of congenital malformations was similar between the GCK+ and GCK- group (odds ratio = 0.56; 95% CI, 0.07-4.51; I2 = 0%; P = .59). The risk of macrosomia/large for gestational age, neonatal hypoglycemia, and combined adverse neonatal outcome was significantly lower in offspring with the GCK mutation compared with non-GCK mutation carriers. CONCLUSION The percentage of congenital malformations was 2.4% in GCK-MODY pregnant women's offspring, and newborns with the GCK mutation have lower birth complication than non-GCK mutation carriers.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xicheng District, Beijing 100044, People's Republic of China
| | - Zhihui Wang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xicheng District, Beijing 100044, People's Republic of China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xicheng District, Beijing 100044, People's Republic of China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xicheng District, Beijing 100044, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Xicheng District, Beijing 100044, People's Republic of China
| |
Collapse
|
6
|
Yau TTL, Yu SCY, Cheng JY, Kwok JSS, Ma RCW. GCK-MODY in pregnancy: A pregnant woman with diabetes and a small-for-gestational-age fetus. Clin Case Rep 2022; 10:e6629. [PMID: 36483860 PMCID: PMC9723257 DOI: 10.1002/ccr3.6629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glucokinase-maturity-onset diabetes of the young (GCK-MODY) is often misdiagnosed as other forms of diabetes. A 42-year-old pregnant lady with pre-existing diabetes was treated with insulin during first trimester. Fetal growth restriction was noted since mid-second trimester. Genetic testing suggested the diagnosis of GCK-MODY.
Collapse
Affiliation(s)
- Tiffany Tse Ling Yau
- Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Stephanie Cheuk Yin Yu
- Department of Chemical PathologyThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Jenny Yeuk‐Ki Cheng
- Department of Chemical PathologyThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Jeffrey Sung Shing Kwok
- Department of Chemical PathologyThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
| | - Ronald Ching Wan Ma
- Department of Medicine and TherapeuticsThe Chinese University of Hong Kong, Prince of Wales HospitalShatinHong Kong
- Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatinHong Kong
- Chinese University of Hong Kong‐Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision MedicineThe Chinese University of Hong KongShatinHong Kong
| |
Collapse
|
7
|
Tosur M, Philipson LH. Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY). J Diabetes Investig 2022; 13:1465-1471. [PMID: 35638342 PMCID: PMC9434589 DOI: 10.1111/jdi.13860] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022] Open
Abstract
Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.
Collapse
Affiliation(s)
- Mustafa Tosur
- The Division of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of MedicineTexas Children's HospitalHoustonTexasUSA
| | - Louis H Philipson
- Departments of Medicine and Pediatrics, Kovler Diabetes CenterUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
8
|
The Challenges of Treating Glucokinase MODY during Pregnancy: A Review of Maternal and Fetal Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105980. [PMID: 35627517 PMCID: PMC9141824 DOI: 10.3390/ijerph19105980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023]
Abstract
Background: The optimal treatment strategy for the follow-up and management of women with glucokinase maturity-onset diabetes of the young (GCK−MODY)during pregnancy remains unknown. Data regarding maternal and fetal outcomes are lacking. Aim: This paper summarizes the existing literature regarding the maternal and fetal outcomes of women with glucokinase MODY to guide future treatment strategy. Methods: A literature search was conducted in Pubmed, Embace, and Cochrane library with citation follow-up using the terms: glucokinase, MODY, diabetes, pregnancy, gestation, and outcomes. We searched for articles with known fetal mutational status. Relevant outcomes included: birthweight, large for gestational age (LGA), small for gestational age (SGA), macrosomia, cesarean delivery (CD), shoulder dystocia, congenital anomalies, miscarriages, preterm births, and long-term outcomes. Results: Fourteen relevant manuscripts were identified describing maternal and fetal outcomes. The percentage of LGA and macrosomia in 102 glucokinase -unaffected offspring (GCK−) was significantly higher than in the glucokinase -affected offspring (GCK+) (44% vs. 10%, p < 0.001 and 22% vs. 2%, p < 0.001, respectively). Among the 173 GCK(+) offspring, only 5% were SGA, which can be expected according to the normal distribution. We observed higher rates of CD and shoulder dystocia in the GCK(−) offspring. Conclusions: GCK(−) offspring have significantly higher birthweights and more birth complications. The optimal treatment strategy to guide management should take into consideration multiple variables other than fetal mutational status.
Collapse
|
9
|
Kwak SH, Powe CE, Jang SS, Callahan MJ, Bernstein SN, Lee SM, Kang S, Park KS, Jang HC, Florez JC, Kim JI, Chae JH. Sequencing Cell-free Fetal DNA in Pregnant Women With GCK-MODY. J Clin Endocrinol Metab 2021; 106:2678-2689. [PMID: 34406393 PMCID: PMC8660061 DOI: 10.1210/clinem/dgab265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Individuals with monogenic diabetes due to inactivating glucokinase (GCK) variants typically do not require treatment, except potentially during pregnancy. In pregnancy, fetal GCK genotype determines whether treatment is indicated, but noninvasive methods are not clinically available. OBJECTIVE This work aims to develop a method to determine fetal GCK genotype noninvasively using maternal cell-free fetal DNA. METHODS This was a proof-of-concept study involving 3 pregnant women with a causal GCK variant that used information from 1) massive parallel sequencing of maternal plasma cell-free DNA, 2) direct haplotype sequences of maternal genomic DNA, and 3) the paternal genotypes to estimate relative haplotype dosage of the pathogenic variant-linked haplotype. Statistical testing of variant inheritance was performed using a sequential probability ratio test (SPRT). RESULTS In each of the 3 cases, plasma cell-free DNA was extracted once between gestational weeks 24 and 36. The fetal fraction of cell-free DNA ranged from 21.8% to 23.0%. Paternal homozygous alleles that were identical to the maternal GCK variant-linked allele were not overrepresented in the cell-free DNA. Paternal homozygous alleles that were identical to the maternal wild-type-linked allele were significantly overrepresented. Based on the SPRT, we predicted that all 3 cases did not inherit the GCK variant. Postnatal infant genotyping confirmed our prediction in each case. CONCLUSION We have successfully implemented a noninvasive method to predict fetal GCK genotype using cell-free DNA in 3 pregnant women carrying an inactivating GCK variant. This method could guide tailoring of hyperglycemia treatment in pregnancies of women with GCK monogenic diabetes.
Collapse
Affiliation(s)
- Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Camille E Powe
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Se Song Jang
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Michael J Callahan
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Sarah N Bernstein
- Harvard Medical School, Boston, MA 02115, USA
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea
| | - Sunyoung Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Hak C Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- Harvard Medical School, Boston, MA 02115, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114-2696, USA
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
10
|
Powe CE, Udler MS, Hsu S, Allard C, Kuang A, Manning AK, Perron P, Bouchard L, Lowe WL, Scholtens D, Florez JC, Hivert MF. Genetic Loci and Physiologic Pathways Involved in Gestational Diabetes Mellitus Implicated Through Clustering. Diabetes 2021; 70:268-281. [PMID: 33051273 PMCID: PMC7876560 DOI: 10.2337/db20-0772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Hundreds of common genetic variants acting through distinguishable physiologic pathways influence the risk of type 2 diabetes (T2D). It is unknown to what extent the physiology underlying gestational diabetes mellitus (GDM) is distinct from that underlying T2D. In this study of >5,000 pregnant women from three cohorts, we aimed to identify physiologically related groups of maternal variants associated with GDM using two complementary approaches that were based on Bayesian nonnegative matrix factorization (bNMF) clustering. First, we tested five bNMF clusters of maternal T2D-associated variants grouped on the basis of physiology outside of pregnancy for association with GDM. We found that cluster polygenic scores representing genetic determinants of reduced β-cell function and abnormal hepatic lipid metabolism were associated with GDM; these clusters were not associated with infant birth weight. Second, we derived bNMF clusters of maternal variants on the basis of pregnancy physiology and tested these clusters for association with GDM. We identified a cluster that was strongly associated with GDM as well as associated with higher infant birth weight. The effect size for this cluster's association with GDM appeared greater than that for T2D. Our findings imply that the genetic and physiologic pathways that lead to GDM differ, at least in part, from those that lead to T2D.
Collapse
Affiliation(s)
- Camille E Powe
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA
- Broad Institute, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Miriam S Udler
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA
- Broad Institute, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Sarah Hsu
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA
- Broad Institute, Cambridge, MA
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alan Kuang
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alisa K Manning
- Broad Institute, Cambridge, MA
- Harvard Medical School, Boston, MA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Quebec, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, Quebec, Canada
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Denise Scholtens
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jose C Florez
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA
- Broad Institute, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Marie-France Hivert
- Diabetes Unit, Endocrine Division, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Université de Sherbrooke, Quebec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA
| |
Collapse
|
11
|
Powe CE, Hivert MF, Udler MS. Defining Heterogeneity Among Women With Gestational Diabetes Mellitus. Diabetes 2020; 69:2064-2074. [PMID: 32843565 PMCID: PMC7506831 DOI: 10.2337/dbi20-0004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Attention to precision medicine in type 2 diabetes (T2D) has provided two favored approaches to subclassifying affected individuals and parsing heterogeneity apparent in this condition: phenotype-based and genotype-based. Gestational diabetes mellitus (GDM) shares phenotypic characteristics with T2D. However, unlike T2D, GDM emerges in the setting of profound pregnancy-related physiologic changes in glucose metabolism. T2D and GDM also share common genetic architecture, but there are likely to be unique genetic influences on pregnancy glycemic regulation that contribute to GDM. In this Perspective, we describe efforts to decipher heterogeneity in T2D and detail how we and others are applying approaches developed for T2D to the study of heterogeneity in GDM. Emerging results reveal the potential of phenotype- and genotype-based subclassification of GDM to deliver the promise of precision medicine to the obstetric population.
Collapse
Affiliation(s)
- Camille E Powe
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Marie-France Hivert
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Population Medicine, Harvard Pilgrim Healthcare Institute, Boston, MA
| | - Miriam S Udler
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|