1
|
Lin J, Zhuo Y, Zhang D. Nephrolithiasis and Osteomalacia associated with adefovir-induced Fanconi syndrome in a patient with hepatitis B. BMC Nephrol 2017; 18:275. [PMID: 28851305 PMCID: PMC5576285 DOI: 10.1186/s12882-017-0693-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
Background An increasing number of case reports suggest that acquired renal Fanconi syndrome may be associated with prolonged use of adefovir against hepatitis B virus. Renal Fanconi syndrome is an uncommon disease, and its complication with nephrolithiasis is quite rare. Herein, we report a rare coexistence of nephrolithiasis and acquired renal Fanconi syndrome in a chronic hepatitis B-positive patient with prolonged adefovir therapy. Case presentation The patient presented with osteomalacia and nephrolithiasis. Consequently, extracorporeal shock-wave lithotripsy and left double-J ureteral stent insertion were considered for obstructive nephropathy, which was caused by nephrolithiasis. However, osteomalacia had been misdiagnosed as osteoporosis before admission to our hospital. On admission, a complexity of multiple fractures, hypophosphataemia, glycosuria without hyperglycaemia and non–anion-gap metabolic acidosis indicated a diagnosis of acquired renal Fanconi syndrome induced by adefovir. After switching from adefovir to entecavir, the patient’s symptoms and laboratory findings improved significantly. Conclusions The mechanism responsible for nephrolithiasis in renal Fanconi syndrome is still unclear. We recommend regularly monitoring renal function and serum calcium and serum phosphate to prevent renal Fanconi syndrome during the prolonged use of adefovir for hepatitis B virus.
Collapse
Affiliation(s)
- Jueying Lin
- Department of Traditional Chinese Medicine, Zhong Shan Hospital Xiamen University, No. 201 Hubin nan Road, Xiamen, Fujian, 361004, China
| | - Yufeng Zhuo
- Department of Traditional Chinese Medicine, Zhong Shan Hospital Xiamen University, No. 201 Hubin nan Road, Xiamen, Fujian, 361004, China
| | - Dongdong Zhang
- Department of Traditional Chinese Medicine, Zhong Shan Hospital Xiamen University, No. 201 Hubin nan Road, Xiamen, Fujian, 361004, China.
| |
Collapse
|
2
|
Taranta-Janusz K, Łabieniec Ł, Porowski T, Szymański K, Porowska H, Wasilewska A. Determining normal values of urinary phosphorus excretion in 3913 healthy children aged 2-18 to aid early diagnosis and treatment for urolithiasis. Acta Paediatr 2017; 106:1170-1175. [PMID: 28370428 DOI: 10.1111/apa.13856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
AIM This study determined the specific reference values for urinary phosphorus excretion in healthy children and adolescents aged 2-18 years and evaluated whether they changed with age during growth and were gender dependent. METHODS We enrolled 3913 healthy children and adolescents aged 2-18 years to this study. The study population was divided into age groups, and the analysis was performed in one-year periods, separately for boys and girls. Urinary phosphorus excretion was analysed using four categories: P1 in mmol/24 hour units, P2 in mmol/kg/24 hours, P3 in mmol/1.73 m2 /24 hours and P4 in mmol/mmol creatinine. RESULTS Clear differences in urinary exertion for girls and boys were observed as well as systematic changes with age. The boys presented with significantly higher daily urinary phosphorus excretion independent of its manner of expression (p < 0.001). The median urinary phosphorus (P1) rose with age (p < 0.001). Percentile tables of phosphorous exertion are presented. CONCLUSION This was the largest study of urinary phosphate excretion based on a randomly selected sample of girls and boys aged 2-18 years. It highlights the importance of determining phosphorus reference values for children of different ages to provide early diagnosis and treatment for urolithiasis.
Collapse
Affiliation(s)
| | | | - Tadeusz Porowski
- Department of Paediatrics and Nephrology; Medical University of Bialystok; Bialystok Poland
| | | | - Halina Porowska
- Department of Medical Chemistry; Medical University of Bialystok; Bialystok Poland
| | - Anna Wasilewska
- Department of Paediatrics and Nephrology; Medical University of Bialystok; Bialystok Poland
| |
Collapse
|
3
|
Yiu AJ, Callaghan D, Sultana R, Bandyopadhyay BC. Vascular Calcification and Stone Disease: A New Look towards the Mechanism. J Cardiovasc Dev Dis 2015; 2:141-164. [PMID: 26185749 PMCID: PMC4501032 DOI: 10.3390/jcdd2030141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate (CaP) crystals are formed in pathological calcification as well as during stone formation. Although there are several theories as to how these crystals can develop through the combined interactions of biochemical and biophysical factors, the exact mechanism of such mineralization is largely unknown. Based on the published scientific literature, we found that common factors can link the initial stages of stone formation and calcification in anatomically distal tissues and organs. For example, changes to the spatiotemporal conditions of the fluid flow in tubular structures may provide initial condition(s) for CaP crystal generation needed for stone formation. Additionally, recent evidence has provided a meaningful association between the active participation of proteins and transcription factors found in the bone forming (ossification) mechanism that are also involved in the early stages of kidney stone formation and arterial calcification. Our review will focus on three topics of discussion (physiological influences-calcium and phosphate concentration-and similarities to ossification, or bone formation) that may elucidate some commonality in the mechanisms of stone formation and calcification, and pave the way towards opening new avenues for further research.
Collapse
Affiliation(s)
- Allen J. Yiu
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Daniel Callaghan
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
| | - Razia Sultana
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
| | - Bidhan C. Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, 50 Irving Street, NW, Washington, DC 20422, USA; E-Mails: (A.J.Y.); (D.C.); (R.S.)
- Department of Pharmacology and Physiology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20007, USA
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-202-745-8622; Fax: +1-202-462-2006
| |
Collapse
|
4
|
Wang B, Means CK, Yang Y, Mamonova T, Bisello A, Altschuler DL, Scott JD, Friedman PA. Ezrin-anchored protein kinase A coordinates phosphorylation-dependent disassembly of a NHERF1 ternary complex to regulate hormone-sensitive phosphate transport. J Biol Chem 2012; 287:24148-63. [PMID: 22628548 PMCID: PMC3397842 DOI: 10.1074/jbc.m112.369405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/19/2012] [Indexed: 12/14/2022] Open
Abstract
Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.
Collapse
Affiliation(s)
- Bin Wang
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Chris K. Means
- the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Yanmei Yang
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Tatyana Mamonova
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Alessandro Bisello
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - Daniel L. Altschuler
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | - John D. Scott
- the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Peter A. Friedman
- From the Laboratory for G Protein-coupled Receptor Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| |
Collapse
|
5
|
Affiliation(s)
- Vishal N Ratkalkar
- Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 And The Department of Veterans Affairs, Medical Center, Milwaukee, WI 53295
| | | |
Collapse
|
6
|
Lanzano L, Lei T, Okamura K, Giral H, Caldas Y, Masihzadeh O, Gratton E, Levi M, Blaine J. Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. Am J Physiol Cell Physiol 2011; 301:C850-61. [PMID: 21593452 DOI: 10.1152/ajpcell.00412.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The kidney is a key regulator of phosphate homeostasis. There are two predominant renal sodium phosphate cotransporters, NaPi2a and NaPi2c. Both are regulated by parathyroid hormone (PTH), which decreases the abundance of the NaPi cotransporters in the apical membrane of renal proximal tubule cells. The time course of PTH-induced removal of the two cotransporters from the apical membrane, however, is markedly different for NaPi2a compared with NaPi2c. In animals and in cell culture, PTH treatment results in almost complete removal of NaPi2a from the brush border (BB) within 1 h whereas for NaPi2c this process in not complete until 4 to 8 h after PTH treatment. The reason for this is poorly understood. We have previously shown that the unconventional myosin motor myosin VI is required for PTH-induced removal of NaPi2a from the proximal tubule BB. Here we demonstrate that myosin VI is also necessary for PTH-induced removal of NaPi2c from the apical membrane. In addition, we show that, while at baseline the two cotransporters have similar diffusion coefficients within the membrane, after PTH addition the diffusion coefficient for NaPi2a initially exceeds that for NaPi2c. Thus NaPi2c appears to remain "tethered" in the apical membrane for longer periods of time after PTH treatment, accounting, at least in part, for the difference in response times to PTH of NaPi2a versus NaPi2c.
Collapse
Affiliation(s)
- Luca Lanzano
- Laboratory for Fluorescence Dynamics, University of California, Irvine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Composition and morphology of phosphate stones and their relation with etiology. ACTA ACUST UNITED AC 2010; 38:459-67. [DOI: 10.1007/s00240-010-0320-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 11/25/2022]
|
8
|
Chemical composition and microstructure of uroliths associated with the feeding of high-level cottonseed meal diet to sheep. Res Vet Sci 2010; 91:405-11. [PMID: 20933249 DOI: 10.1016/j.rvsc.2010.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/27/2010] [Accepted: 09/08/2010] [Indexed: 11/22/2022]
Abstract
The chemical composition and microstructure of five urolith samples (4 bladder stones and one kidney stone) associated with the feeding of high level of cottonseed meal (CSM) diet to Chinese merino fine wool sheep (Junken breed, Xinjiang) were examined by optical microscope, X-ray diffraction, X-ray energy dispersive spectrometry (EDS), scanning electron microscopy (SEM), and infrared spectroscopy analysis. The bladder stone samples appeared yellow or white, small powder and loose mass, and as finely granular under the optical microscope. However, the kidney stone samples from a experimental sheep were found as small brown mass, higher hardness, and as a cracklike structure. Oxygen, phosphorus, potassium and magnesium were found as four major elements in these uroliths by X-ray energy dispersive spectrometry (EDS). Potassium magnesium phosphate (MgKPO(4)) and potassium magnesium phosphate hexahydrate (MgKPO(4)·6H(2)O) were major components in the bladder stones, while less magnesium ammonium phosphate hexahydrate (MgNH(4)PO(4)·6H(2)O) examined by X-ray diffraction and infrared spectroscopy analysis. However, the newly found prismatic crystals, which were rich in magnesium and pyrophosphate, were identified as magnesium pyrophosphate (Mg(2)P(2)O(7)) in the kidney stone. The bladder stone samples appeared irregular mass and balls, cracked under SEM with low magnification, while appeared cracked, irregular layer-like, honeycomb-like or tiny balls under high magnification. The kidney stone samples were observed as cone, irregular block or layered crystal structures.
Collapse
|
9
|
Ha YS, Tchey DU, Kang HW, Kim YJ, Yun SJ, Lee SC, Kim WJ. Phosphaturia as a promising predictor of recurrent stone formation in patients with urolithiasis. Korean J Urol 2010; 51:54-9. [PMID: 20414412 PMCID: PMC2855459 DOI: 10.4111/kju.2010.51.1.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
Purpose Recent studies have suggested that renal phosphate leakage and the associated phosphaturia are significant underlying causes of calcium urolithiasis. The aims of this study were to assess whether phosphaturia relates to urinary metabolic abnormalities and recurrent stone formation. Materials and Methods A database of patient histories and urine chemistries was analyzed for 1,068 consecutive stone formers (SFs) and 106 normal controls. Urine values for phosphaturia that were higher than 95% of the normal control values were defined as indicating hyperphosphaturia, and the effect of phosphaturia on urinary metabolites and stone recurrence was determined. Of these patients, 247 patients (23.1%) who had been followed up for more than 36 months or had a recurrence of stones during follow-up (median, 46.0 months; range, 5-151) were included in the analyses for stone recurrence. Results Of the SFs, 19.9% (212/1,068) had increased urinary phosphate excretion. SFs with hyperphosphaturia had a greater urinary volume and higher levels of calcium, uric acid, oxalate, and citrate than did SFs with normophosphaturia. A multivariate Cox regression model, stratified by stone episodes, revealed that hyperphosphaturia was an independent predictor of recurrent stone formation in first-time SFs (hazard ratio [HR]: 2.122; 95% confidence interval [CI]: 1.100-4.097; p=0.025). No association was detected between hyperphosphaturia and recurrent stone formation in recurrent SFs. Kaplan-Meier curves showed identical results. Conclusions This study demonstrates that hyperphosphaturia is closely associated with urinary metabolic abnormalities. Furthermore, hyperphosphaturia is a significant risk factor for stone recurrence in first-time SFs.
Collapse
Affiliation(s)
- Yun-Sok Ha
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Breusegem SY, Takahashi H, Giral-Arnal H, Wang X, Jiang T, Verlander JW, Wilson P, Miyazaki-Anzai S, Sutherland E, Caldas Y, Blaine JT, Segawa H, Miyamoto KI, Barry NP, Levi M. Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. Am J Physiol Renal Physiol 2009; 297:F350-61. [PMID: 19493963 PMCID: PMC2724260 DOI: 10.1152/ajprenal.90765.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (Pi) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-Pi cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694–704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160–49171, 2004). Here we investigated the role of the renal Na-Pi cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled Pi transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.
Collapse
Affiliation(s)
- Sophia Y Breusegem
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Brendan M Reilly
- Department of Medicine, Weill Cornell Medical Center, New York, NY 10065, USA.
| | | | | | | |
Collapse
|