1
|
Busselman RE, Killets KC, Saunders AB, Hamer SA. Viable Trypanosoma cruzi cultured from a dead Paratriatoma lecticularia (Hemiptera: Reduviidae) encountered in a large dog kennel environment in south Texas, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae129. [PMID: 39413116 DOI: 10.1093/jme/tjae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Trypanosoma cruzi (Chagas, 1909) is a protozoan parasite transmitted by triatomine (Hemiptera: Reduviidae) insects and is the causative agent of Chagas disease. Oral transmission of the parasite occurs through consumption of contaminated food or infected triatomines and may depend on the degree to which T. cruzi survives in triatomine abdomens. Dead triatomines may be abundant in areas with insecticide use, such as dog kennels where animals may encounter them. We attempted to culture T. cruzi from the gut material of 108 triatomines collected near dog kennels-14 found alive and 94 found dead-and also tested for T. cruzi DNA and discrete typing units using PCR. In total, 30 (27.8%) tested positive for T. cruzi using PCR, 5 alive (35.7%) and 25 dead (26.6%), with no difference in infection between insects found alive versus dead (P-value = 0.53) and more PCR positives identified in dead triatomines with intact gut contents than in dead desiccated triatomines (P-value = 0.049). One Paratriatoma lecticularia (Stål, 1859) that was found dead (1.1%, n = 94) had T. cruzi growth in culture. Given the use of bleach for external decontamination of triatomines as well as the level of bacterial and fungal contamination of cultures, both of which may have impacted the growth of T. cruzi, the apparent prevalence of viable parasites in this study should be interpreted as a conservative estimate. Vector control initiatives should consider that dead insects may still pose a risk of T. cruzi transmission to animals and humans.
Collapse
Affiliation(s)
- Rachel E Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Keswick C Killets
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Ashley B Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Lohr T, Herbst C, Bzdyl NM, Jenkins C, Scheuplein NJ, Sugiarto WO, Whittaker JJ, Guskov A, Norville I, Hellmich UA, Hausch F, Sarkar-Tyson M, Sotriffer C, Holzgrabe U. High Affinity Inhibitors of the Macrophage Infectivity Potentiator Protein from Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila─A Comparison. ACS Infect Dis 2024; 10:3681-3691. [PMID: 39357850 PMCID: PMC11476723 DOI: 10.1021/acsinfecdis.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Since Chagas disease, melioidosis, and Legionnaires' disease are all potentially life-threatening infections, there is an urgent need for new treatment strategies. All causative agents, Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila, express a virulence factor, the macrophage infectivity potentiator (MIP) protein, emerging as a promising new therapeutic target. Inhibition of MIP proteins having a peptidyl-prolyl isomerase activity leads to reduced viability, proliferation, and cell invasion. The affinity of a series of pipecolic acid-type MIP inhibitors was evaluated against all MIPs using a fluorescence polarization assay. The analysis of structure-activity relationships led to highly active inhibitors of MIPs of all pathogens, characterized by a one-digit nanomolar affinity for the MIPs and a very effective inhibition of their peptidyl-prolyl isomerase activity. Docking studies, molecular dynamics simulations, and quantum mechanical calculations suggest an extended σ-hole of the meta-halogenated phenyl sulfonamide to be responsible for the high affinity.
Collapse
Affiliation(s)
- Theresa Lohr
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Carina Herbst
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Nicole M. Bzdyl
- Marshall
Centre for Infectious Diseases Research and Training, School of Biomedical
Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Christopher Jenkins
- DSTL,
Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Nicolas J. Scheuplein
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Wisely Oki Sugiarto
- Department
of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, Darmstadt 64287, Germany
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Groningen 9747AG, Netherlands
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, Groningen 9747AG, Netherlands
| | - Isobel Norville
- DSTL,
Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Ute A. Hellmich
- Institute
of Organic Chemistry & Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, Jena 07743, Germany
- Center
for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main 60438, Germany
- Cluster
of Excellence “Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, Darmstadt 64287, Germany
- Centre
for Synthetic Biology, Technical University
Darmstadt, Darmstadt 64287, Germany
| | - Mitali Sarkar-Tyson
- Marshall
Centre for Infectious Diseases Research and Training, School of Biomedical
Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Christoph Sotriffer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am Hubland, Würzburg, 97074, Germany
| |
Collapse
|
3
|
Lage TAR, Rocha MOC, Tupinambás JT, Botoni FA, de Pádua LB, Mutarelli A, Silva JLP, Martins MAP, Teixeira AL, Nunes MCP. Predictors of ischemic stroke in Chagas disease: Insights into mechanisms beyond cardiomyopathy severity. Int J Cardiol 2024; 418:132628. [PMID: 39395719 DOI: 10.1016/j.ijcard.2024.132628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Chagas disease is a risk factor for ischemic stroke, which causes high mortality rates and significant disability. This study aims to determine the incidence and risk factors for ischemic strokes in a large cohort of Chagas cardiomyopathy patients, with a particular focus on the mechanisms involved in the pathophysiology of stroke in this condition. METHODS The study enrolled 517 patients with Chagas cardiomyopathy who were referred to our institution from March 2000 to December 2021. All patients underwent systematic cardiological and neurological assessments. The primary outcome was the occurrence of ischemic stroke during the follow-up period, classified based on the SSS-TOAST and CCS criteria. Natural cubic splines functions were applied to examine the potential nonlinear association between continuous variables and stroke risk. RESULTS The mean age of the cohort was 52 ± 13 years, and 299 (58 %) were men. During a mean follow-up period of 4.8 years (interquartile range-IQR 1.1 to 7.1 years), a total of 72 patients (14.8 %) had an ischemic stroke, being fatal in 10. The overall incidence rate of ischemic stroke was 3.0/100 patient-years (95 % confidence interval 2.4 to 3.8). The stroke subtypes were cardioembolic (n = 41), undetermined (n = 11), and other subtypes (n = 20). The predictors of stroke were age, left atrial volume, left ventricular ejection fraction (LVEF), LV thrombus and prior stroke with thrombus. There was a nonlinear relationship between stroke risk, LVEF, and left atrial volume. A bimodal distribution of stroke occurrences was observed according to the severity of LV dysfunction, with a threshold for LVEF of 45 %. The final model for stroke risk prediction showed good discrimination, with a C statistic of 0.775. CONCLUSIONS In a contemporary cohort of Chagas disease patients with a broad spectrum of disease severity, stroke incidence remains high despite anticoagulation. Stroke risk shows a nonlinear association with ventricular dysfunction and left atrial size, highlighting a distinct bimodal pattern of stroke occurrence in Chagas disease.
Collapse
Affiliation(s)
- Thaís Aparecida Reis Lage
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Manoel O C Rocha
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia Teixeira Tupinambás
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Antônio Botoni
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Bretas de Pádua
- School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Mutarelli
- School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jose Luiz P Silva
- Department of Statistics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Auxiliadora Parreiras Martins
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; The Biggs Institute, UT Health Science Center, San Antonio, TX, USA
| | - Maria Carmo Pereira Nunes
- Post Graduation Program in Infectious Diseases and Tropical Medicine, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Ponce-Revello C, Quiroga N, San Juan E, Correa JP, Botto-Mahan C. Detection of Trypanosoma cruzi DNA in lizards: Using non-lethal sampling techniques in a sylvatic species with zoonotic reservoir potential in Chile. Vet Parasitol Reg Stud Reports 2024; 55:101113. [PMID: 39326965 DOI: 10.1016/j.vprsr.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Several reptile species have been described as hosts of Trypanosoma cruzi, the causative agent of Chagas disease, and therefore, they have become vertebrates of epidemiological interest. In recent decades, there has been a growing interest in animal welfare, especially in populations with small numbers where lethal sampling could have catastrophic consequences, and non-lethal methodologies have been developed for detecting zoonotic parasites. In this study, we compared three non-lethal sampling methodologies for detecting T. cruzi DNA in 21 captured specimens of the native lizard Liolaemus monticola, collected from the semiarid Mediterranean ecosystem of Chile. Specimens were subjected to xenodiagnosis (XD), tail clipping, and living syringe sampling procedures to evaluate whether lizards could serve as sentinel species for T. cruzi in endemic regions. To detect the protozoan, real-time PCR (qPCR) was performed on the DNA extracted from the samples (intestinal contents, tail tissues, and blood from living syringes). Trypanosoma cruzi DNA was detected in 12 of 21 lizards, considering all three methodologies. By XD, 12 specimens showed infection (57.1 %), and both living syringe and tail sampling methodologies detected only one infected lizard (4.8 %). Therefore, T. cruzi can be detected in lizards by qPCR using the three methodologies but XD is by far the most effective non-lethal detection methodology. The use of tail and living syringe methodologies showed a large underestimation; however, they might be options for monitoring the presence of T. cruzi in lizard populations when large sample sizes are available.
Collapse
Affiliation(s)
- Carla Ponce-Revello
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| | - Nicol Quiroga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile
| | - Juana P Correa
- Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Research Ring in Pest Insects and Climatic Change (PIC(2)), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Barnadas-Carceller B, Del Portillo HA, Fernandez-Becerra C. Extracellular vesicles as biomarkers in parasitic disease diagnosis. CURRENT TOPICS IN MEMBRANES 2024; 94:187-223. [PMID: 39370207 DOI: 10.1016/bs.ctm.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Parasitic diseases constitute a major global health problem, affecting millions of people worldwide. Recent advances in the study of extracellular vesicles (EVs) have opened up new strategies for biomarker discovery in protozoan and helminth infections. Analyses of EVs in cultures and biological fluids have identified numerous potential biomarkers that could be useful for early and differential diagnosis, monitoring therapeutic responses, and the overall management and control of these diseases. Despite the potential of these biomarkers, several challenges must be addressed, including limited research, the need for standardized protocols, and the reproducibility of results across studies. In many parasitic infections, EVs have been obtained from various sample types, including plasma from human patients and mouse models, as well as cultures of the parasites at different stages. EVs were isolated by various methods and predominantly characterized through proteomic analysis or RNA sequencing to assess their cargo and identify potential biomarkers. These biomarker candidates were investigated and validated using different assays such as ELISA, Western Blot, and ROC curves. Overall, the use of EVs is considered a promising new diagnostic strategy for parasite infections, but further research with larger cohorts, standardized methods, and additional validation tests are essential for effective diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Barcelona Institute for Global Health, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; IGTP Institut d'Investigació Germans Trias I Pujol, Badalona, Barcelona, Spain; CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Veluswami K, Rao S, Aggarwal S, Mani S, Balasubramanian A. Unraveling the Missing Pieces: Exploring the Gaps in Understanding Chagas Cardiomyopathy. Cureus 2024; 16:e66955. [PMID: 39280489 PMCID: PMC11401617 DOI: 10.7759/cureus.66955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Chagas cardiomyopathy affects a considerable number of patients infected with the protozoan Trypanosoma cruzi (T. cruzi) and remains one of the most neglected tropical diseases despite being a significant contributor to morbidity and mortality in both endemic regions of Latin America and non-endemic countries like the United States. Since its discovery almost a century ago, knowledge gaps still exist in the mechanisms involved in the pathogenesis of Chagas cardiomyopathy, and numerous challenges exist in its diagnosis and treatment. This article reviews the main pathogenetic mechanisms involved in the progression of Chagas cardiomyopathy, which has been proposed as a result of years of research. It also emphasizes the challenges involved in the diagnosis of the asymptomatic indeterminate phase and has focused on several diagnostic techniques, including echocardiography, electrocardiogram (ECG), magnetic resonance imaging (MRI), and nuclear imaging in diagnosing symptomatic Chagas cardiomyopathy. In this article, we have also provided a brief overview of the current treatment of Chagas cardiomyopathy, which is not etiology-specific but instead derived from the knowledge acquired from the treatment of other cardiomyopathies.
Collapse
Affiliation(s)
| | - Sudipta Rao
- Internal Medicine, JSS Medical College, Mysore, IND
| | | | - Sweatha Mani
- Internal Medicine, K.A.P. Viswanatham Government Medical College, Tiruchirappalli, IND
| | | |
Collapse
|
7
|
Antequera A, Molin-Veglia AD, López-Alcalde J, Álvarez-Díaz N, Muriel A, Muñoz J. Reactivation of Trypanosoma cruzi infection in immunosuppressed patients: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:980-988. [PMID: 38697392 DOI: 10.1016/j.cmi.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The risk of Trypanosoma cruzi reactivation is poorly understood. Previous studies evaluating the risk of reactivation report imprecise findings, and recommendations for monitoring and management from clinical guidelines rely on consensus opinion. OBJECTIVES We conducted a systematic review and meta-analysis to estimate the cumulative T. cruzi reactivation incidence in immunosuppressed adults, summarize the available evidence on prognostic factors for reactivation, and examine its prognostic effect on mortality. DATA SOURCES MEDLINE, Embase, LILACS, Clinical Trials, and CENTRAL from inception to 4 July 2022. STUDY ELIGIBILITY CRITERIA Studies reporting the incidence of T. cruzi reactivation. PARTICIPANTS Immunosuppressed adults chronically infected by T. cruzi. METHODS Two authors independently extracted data (including, but not limited to, incidence data, reactivation definition, follow-up, treatment, monitoring schedule, examined prognostic factors) and evaluated the risk of bias. We pooled cumulative incidence using a random-effects model. RESULTS Twenty-two studies (806 participants) were included. The overall pooled incidence of T. cruzi reactivation was 27% (95% CI, 19-36), with the highest pooled proportion in the sub-group of transplant recipients (36%; 95% CI, 25-48). The highest risk period was in the first 6 months after transplant (32%; 95% CI, 17-58), decreasing drastically the number of new cases later. People living with HIV and patients with autoimmune diseases experienced significantly lower cumulative reactivation incidences (17%; 95% CI, 8-29 and 18%; 95% CI, 9-29, respectively). A single study explored the independent effect of benznidazole and found benefits for preventing reactivations. No studies evaluated the independent association between reactivation and mortality, while sensitivity analysis results using unadjusted estimates were inconclusive. The heterogeneity of diagnostic algorithms was substantial. CONCLUSIONS Reactivation occurs in three out of ten T. cruzi-seropositive immunosuppressed adults. These findings can assist clinicians and panel guidelines in tailoring monitoring schedules. There is a great need for an accurate definition of reactivation and targeted monitoring.
Collapse
Affiliation(s)
- Alba Antequera
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona (UB), Barcelona, Spain.
| | - Agustina Dal Molin-Veglia
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona (UB), Barcelona, Spain
| | - Jesús López-Alcalde
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain; Clinical Biostatistics Unit, Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain; CIBERESP, Madrid, Spain; Institute for Complementary and Integrative Medicine, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Noelia Álvarez-Díaz
- Medical Library, Hospital Universitario Ramon y Cajal, Irycis, Madrid, Spain
| | - Alfonso Muriel
- Clinical Biostatistics Unit, Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain; CIBERESP, Madrid, Spain; Department of Nursing and Physiotherapy, Universidad Alcalá de Henares, Alcalá de Henares, Spain
| | - José Muñoz
- Barcelona Institute for Global Health, Hospital Clínic Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
Giancola ML, Angheben A, Scorzolini L, Carrara S, Petrone A, Vulcano A, Lionetti R, Corpolongo A, Marrone R, Faraglia F, Ascoli Bartoli T, De Marco P, Tomassi MV, Fontana C, Nicastri E. Chagas Disease in the Non-Endemic Area of Rome, Italy: Ten Years of Experience and a Brief Overview. Infect Dis Rep 2024; 16:650-663. [PMID: 39195001 DOI: 10.3390/idr16040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Chagas disease (CD) is a parasitic infection endemic in Latin America and also affects patients in Western countries due to migration flows. This has a significant impact on health services worldwide due to its high morbidity and mortality burden. This paper aims to share our experience at the National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, in Rome, Italy, where to date, a total of 47 patients-mainly Bolivian women-diagnosed with CD have received treatment with benznidazole, with all but one presenting with chronic disease. Most of the patients were recruited through the first extensive screening program held in 2014 at our Institute. About a quarter of our patients showed adverse effects to benznidazole, including a case of severe drug-induced liver injury, but 83% completed a full course of treatment. In addition to the description of our cohort, the paper reports a brief overview of the disease compiled through a review of the existing literature on CD in non-endemic countries. The growing prevalence of CD in Western countries highlights the importance of screening at-risk populations and urges public concern and medical awareness about this neglected tropical disease. There are still many unanswered questions that need to be addressed to develop a personalized approach in treating patients.
Collapse
Affiliation(s)
- Maria Letizia Giancola
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Andrea Angheben
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Sacro Cuore Hospital, Negrar, 37024 Verona, Italy
| | - Laura Scorzolini
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Stefania Carrara
- Laboratory of Microbiology and Biological Bank, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Ada Petrone
- Radiology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Antonella Vulcano
- Laboratory of Microbiology and Biological Bank, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Raffaella Lionetti
- Infectious Diseases and Epatology, Transplant Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Angela Corpolongo
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Rosalia Marrone
- National Institute for Health, Migration and Poverty (INMP), 00153 Rome, Italy
| | - Francesca Faraglia
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Tommaso Ascoli Bartoli
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Patrizia De Marco
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Maria Virginia Tomassi
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Carla Fontana
- Laboratory of Microbiology and Biological Bank, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| | - Emanuele Nicastri
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy
| |
Collapse
|
9
|
Carrero JC, Espinoza B, Huerta L, Silva-Miranda M, Guzmán-Gutierrez SL, Dorazco-González A, Reyes-Chilpa R, Espitia C, Sánchez S. Introducing the NUATEI Consortium: A Mexican Research Program for the Identification of Natural and Synthetic Antimicrobial Compounds for Prevalent Infectious Diseases. Pharmaceuticals (Basel) 2024; 17:957. [PMID: 39065807 PMCID: PMC11280322 DOI: 10.3390/ph17070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The need for new drugs to treat human infections is a global health concern. Diseases like tuberculosis, trypanosomiasis, amoebiasis, and AIDS remain significant problems, especially in developing countries like Mexico. Despite existing treatments, issues such as resistance and adverse effects drive the search for new alternatives. Herein, we introduce the NUATEI research consortium, made up of experts from the Institute of Biomedical Research at UNAM, who identify and obtain natural and synthetic compounds and test their effects against human pathogens using in vitro and in vivo models. The consortium has evaluated hundreds of natural extracts and compounds against the pathogens causing tuberculosis, trypanosomiasis, amoebiasis, and AIDS, rendering promising results, including a patent with potential for preclinical studies. This paper presents the rationale behind the formation of this consortium, as well as its objectives and strategies, emphasizing the importance of natural and synthetic products as sources of antimicrobial compounds and the relevance of the diseases studied. Finally, we briefly describe the methods of the evaluation of the compounds in each biological model and the main achievements. The potential of the consortium to screen numerous compounds and identify new therapeutic agents is highlighted, demonstrating its significant contribution to addressing these infectious diseases.
Collapse
Affiliation(s)
- Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (B.E.); (L.H.); (C.E.)
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (B.E.); (L.H.); (C.E.)
| | - Leonor Huerta
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (B.E.); (L.H.); (C.E.)
| | - Mayra Silva-Miranda
- CONAHCyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.S.-M.); (S.-L.G.-G.)
| | - Silvia-Laura Guzmán-Gutierrez
- CONAHCyT-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.S.-M.); (S.-L.G.-G.)
| | - Alejandro Dorazco-González
- Departmento de Química Inorgánica, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ricardo Reyes-Chilpa
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (B.E.); (L.H.); (C.E.)
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
10
|
Olivera MJ, Muñoz L. Exploring the latency period in Chagas disease: duration and determinants in a cohort from Colombia. Trans R Soc Trop Med Hyg 2024; 118:440-447. [PMID: 38411919 DOI: 10.1093/trstmh/trae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Chagas disease has a varying latency period, the time between infection and onset of cardiac symptoms, due to multiple factors. This study seeks to identify and understand these factors to enhance our knowledge of the disease. METHODS A retrospective follow-up study was conducted in Colombia on patients with indeterminate chronic Chagas disease. Medical files were examined to evaluate the disease latency time using time ratios (TRs) and the AFT Weibull model. RESULTS The study followed 578 patients, of whom 309 (53.5%) developed cardiac disease, with a median latency period of 18.5 (95% CI 16 to 20) y for the cohort. Those with the TcISyl genotype (TR 0.72; 95% CI 0.61 to 0.80), individuals who lived 5-15 y (TR 0.80; 95% CI 0.67 to 0.95), 15-30 y (TR 0.63; 95% CI 0.53 to 0.74) or >30 y (vs 5 y) in areas with high disease prevalence had shorter latency periods. On the other hand, undergoing treatment increased the latency period (TR: 1.74; 95% CI 1.52 to 1.87). CONCLUSIONS The latency period of Chagas disease was found to be independently related to male gender, receipt of etiological treatment, length of time spent in an endemic area and the TcISyl genotype. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Mario Javier Olivera
- Departamento de investigación en salud pública, Grupo de Parasitología, Instituto Nacional de Salud, Bogotá 111321, D.C., Colombia
| | - Lyda Muñoz
- Departamento de investigación en salud pública, Grupo de Parasitología, Instituto Nacional de Salud, Bogotá 111321, D.C., Colombia
| |
Collapse
|
11
|
Seydel CM, Gonzaga BMDS, Coelho LL, Garzoni LR. Exploring the Dimensions of Pre-Clinical Research: 3D Cultures as an Investigative Model of Cardiac Fibrosis in Chagas Disease. Biomedicines 2024; 12:1410. [PMID: 39061986 PMCID: PMC11274318 DOI: 10.3390/biomedicines12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 07/28/2024] Open
Abstract
A three-dimensional (3D) cell culture can more precisely mimic tissues architecture and functionality, being a promising alternative model to study disease pathophysiology and drug screening. Chagas disease (CD) is a neglected parasitosis that affects 7 million people worldwide. Trypanosoma cruzi's (T. cruzi) mechanisms of invasion/persistence continue to be elucidated. Benznidazole (BZ) and Nifurtimox (NF) are trypanocidal drugs with few effects on the clinical manifestations of the chronic disease. Chronic Chagas cardiomyopathy (CCC) is the main manifestation of CD due to its frequency and severity. The development of fibrosis and hypertrophy in cardiac tissue can lead to heart failure and sudden death. Thus, there is an urgent need for novel therapeutic options. Our group has more than fifteen years of expertise using 3D primary cardiac cell cultures, being the first to reproduce fibrosis and hypertrophy induced by T. cruzi infection in vitro. These primary cardiac spheroids exhibit morphological and functional characteristics that are similar to heart tissue, making them an interesting model for studying CD cardiac fibrosis. Here, we aim to demonstrate that our primary cardiac spheroids are great preclinical models which can be used to develop new insights into CD cardiac fibrosis, presenting advances already achieved in the field, including disease modeling and drug screening.
Collapse
Affiliation(s)
| | | | | | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (C.M.S.); (B.M.d.S.G.); (L.L.C.)
| |
Collapse
|
12
|
Dantas RO. INFLUENCE OF ESOPHAGEAL MOTILITY IMPAIRMENT ON UPPER AND LOWER ESOPHAGEAL SPHINCTER PRESSURE IN CHAGAS DISEASE. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23174. [PMID: 38896574 DOI: 10.1590/s0004-2803.24612023-174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chagas disease causes digestive anatomic and functional changes, including the loss of the myenteric plexus and abnormal esophageal radiologic and manometric findings. OBJECTIVE To evaluate the association of abnormal esophageal radiologic findings, cardiac changes, distal esophageal contractions, and complaints of dysphagia and constipation in upper (UES) and lower (LES) esophageal sphincter basal pressure in Chagas disease patients. METHODS The study evaluated 99 patients with Chagas disease and 40 asymptomatic normal volunteers. The patients had normal esophageal radiologic examination (n=61) or esophageal retention without an increase in esophageal diameter (n=38). UES and LES pressure was measured with the rapid pull-through method in a 4-channel water-perfused round catheter. Before manometry, the patients were asked about dysphagia and constipation and submitted to electrocardiography and chest radiography. RESULTS The amplitude of esophageal distal contraction decreased from controls to chagasic patients with esophageal retention. The proportion of failed and simultaneous contractions increased in patients with abnormal radiologic examination (P<0.01). There were no significant differences in UES and LES pressure between the groups. UES pressure was similar between Chagas disease patients with cardiomegaly (n=27, 126.5±62.7 mmHg) and those without it (n=72, 144.2±51.6 mmHg, P=0.26). Patients with constipation had lower LES pressure (n=23, 34.7±20.3 mmHg) than those without it (n=76, 42.9±20.5 mmHg, P<0.03). CONCLUSION Chagas disease patients with absent or mild esophageal radiologic involvement had no significant changes in UES and LES basal pressure. Constipation complaints are associated with decreased LES basal pressure.
Collapse
Affiliation(s)
- Roberto Oliveira Dantas
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP, Brasil
| |
Collapse
|
13
|
Aldfer MM, Hulpia F, van Calenbergh S, De Koning HP. Mapping the transporter-substrate interactions of the Trypanosoma cruzi NB1 nucleobase transporter reveals the basis for its high affinity and selectivity for hypoxanthine and guanine and lack of nucleoside uptake. Mol Biochem Parasitol 2024; 258:111616. [PMID: 38401850 DOI: 10.1016/j.molbiopara.2024.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Trypanosoma cruzi is a protozoan parasite and the etiological agent of Chagas disease, a debilitating and sometimes fatal disease that continues to spread to new areas. Yet, Chagas disease is still only treated with two related nitro compounds that are insufficiently effective and cause severe side effects. Nucleotide metabolism is one of the known vulnerabilities of T. cruzi, as they are auxotrophic for purines, and nucleoside analogues have been shown to have genuine promise against this parasite in vitro and in vivo. Since purine antimetabolites require efficient uptake through transporters, we here report a detailed characterisation of the T. cruzi NB1 nucleobase transporter with the aim of elucidating the interactions between TcrNB1 and its substrates and finding the positions that can be altered in the design of novel antimetabolites without losing transportability. Systematically determining the inhibition constants (Ki) of purine analogues for TcrNB1 yielded their Gibbs free energy of interaction, ΔG0. Pairwise comparisons of substrate (hypoxanthine, guanine, adenine) and analogues allowed us to determine that optimal binding affinity by TcrNB1 requires interactions with all four nitrogen residues of the purine ring, with N1 and N9, in protonation state, functioning as presumed hydrogen bond donors and unprotonated N3 and N7 as hydrogen bond acceptors. This is the same interaction pattern as we previously described for the main nucleobase transporters of Trypanosoma brucei spp. and Leishmania major and makes it the first of the ENT-family genes that is functionally as well as genetically conserved between the three main kinetoplast pathogens.
Collapse
Affiliation(s)
- Mustafa M Aldfer
- School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, University of Glasgow, GlasgowG12 8TA, UK
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Serge van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Harry P De Koning
- School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, University of Glasgow, GlasgowG12 8TA, UK.
| |
Collapse
|
14
|
Trometer N, Pecourneau J, Feng L, Navarro-Huerta JA, Lazarin-Bidóia D, de Oliveira Silva Lautenschlager S, Maes L, Fortes Francisco A, Kelly JM, Meunier B, Cal M, Mäser P, Kaiser M, Davioud-Charvet E. Synthesis and Anti-Chagas Activity Profile of a Redox-Active Lead 3-Benzylmenadione Revealed by High-Content Imaging. ACS Infect Dis 2024; 10:1808-1838. [PMID: 38606978 DOI: 10.1021/acsinfecdis.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chagas disease, or American trypanosomiasis, is a neglected tropical disease which is a top priority target of the World Health Organization. The disease, endemic mainly in Latin America, is caused by the protozoan Trypanosoma cruzi and has spread around the globe due to human migration. There are multiple transmission routes, including vectorial, congenital, oral, and iatrogenic. Less than 1% of patients have access to treatment, relying on two old redox-active drugs that show poor pharmacokinetics and severe adverse effects. Hence, the priorities for the next steps of R&D include (i) the discovery of novel drugs/chemical classes, (ii) filling the pipeline with drug candidates that have new mechanisms of action, and (iii) the pressing need for more research and access to new chemical entities. In the present work, we first identified a hit (4a) with a potent anti-T. cruzi activity from a library of 3-benzylmenadiones. We then designed a synthetic strategy to build a library of 49 3-(4-monoamino)benzylmenadione derivatives via reductive amination to obtain diazacyclic benz(o)ylmenadiones. Among them, we identified by high content imaging an anti-amastigote "early lead" 11b (henceforth called cruzidione) revealing optimized pharmacokinetic properties and enhanced specificity. Studies in a yeast model revealed that a cruzidione metabolite, the 3-benzoylmenadione (cruzidione oxide), enters redox cycling with the NADH-dehydrogenase, generating reactive oxygen species, as hypothesized for the early hit (4a).
Collapse
Affiliation(s)
- Nathan Trometer
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Jérémy Pecourneau
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Liwen Feng
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - José A Navarro-Huerta
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, CEP 87020-900 Paraná, Brazil
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, CDE-S7.27 Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France
| | - Monica Cal
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
- University of Basel, Petersgraben 1, CH-4001 Basel, Switzerland
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Bio(in)organic & Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087 Strasbourg, France
| |
Collapse
|
15
|
Pelozo MF, Cordeiro CF, Inácio LF, de Cassia Alves Lemini R, Gonçalves Souza E Leite E, Benedetti MD, Tulha CA, Novaes RD, Caldas IS, Carvalho DT, Lavorato SN, Hawkes JA, Franco LL. Synthesis of new trypanocidal agents from the hybridisation of metronidazole and eugenol analogues. Bioorg Chem 2024; 146:107288. [PMID: 38521013 DOI: 10.1016/j.bioorg.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Nitroimidazole compounds are well-known bioactive substances, and the structural activity relationship has been reported whereby the position of the nitro group within the imidazole ring has a large influence on the activity. This study focuses on synthesising new trypanocidal agents from the hybridisation of metronidazole with different natural phenols (eugenol, dihydroeugenol and guaiacol). Two different coupling methodologies have been explored in order to analyse the influence of the connector on bioactivity: i) classic direct esterification (AD compounds) and ii) "click" chemistry using a triazole connector (AC compounds). The in vitro trypanocidal tests show good results for both AC and AD hybrid compounds against both epimastigote and trypomastigote forms of T. cruzi. In silico studies showed positive data for most of the synthesised compounds and, in general present low toxicological risks. The AC compounds present lower ClogP (lipophilicity) values than those found for the AD series and higher TPSA (topological polar surface area) values, suggesting lower lipophilicity may be related to the presence of the triazole connector. The AD series compounds have higher Drug Score values than the AC series derivatives, suggesting better general properties for a pharmacological action.
Collapse
Affiliation(s)
| | | | - Letícia Fonseca Inácio
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG 37130-001, Brazil
| | | | | | - Monique Dias Benedetti
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG 37130-001, Brazil
| | - Cristiane Alves Tulha
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG 37130-001, Brazil
| | - Rômulo Dias Novaes
- Departamento de Biologia Estrutural, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo Santana Caldas
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, MG 37130-001, Brazil
| | | | - Stefânia Neiva Lavorato
- Centro de Ciências Biológicas e Saúde, Universidade Federal do Oeste da Bahia, BA 47810-047 Brazil
| | - Jamie Anthony Hawkes
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG 37130-001, Brazil
| | - Lucas Lopardi Franco
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, MG 37130-001, Brazil.
| |
Collapse
|
16
|
Bethencourt-Estrella CJ, López-Arencibia A, Lorenzo-Morales J, Piñero JE. Global Health Priority Box: Discovering Flucofuron as a Promising Antikinetoplastid Compound. Pharmaceuticals (Basel) 2024; 17:554. [PMID: 38794125 PMCID: PMC11123942 DOI: 10.3390/ph17050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Leishmaniasis, produced by Leishmania spp., and Chagas disease, produced by Trypanosoma cruzi, affect millions of people around the world. The treatments for these pathologies are not entirely effective and produce some side effects. For these reasons, it is necessary to develop new therapies that are more active and less toxic for patients. Some initiatives, such as the one carried out by the Medicines for Malaria Venture, allow for the screening of a large number of compounds of different origins to find alternatives to the lack of trypanocide treatments. In this work, 240 compounds were tested from the Global Health Priority Box (80 compounds with confirmed activity against drug-resistant malaria, 80 compounds for screening against neglected and zoonotic diseases and diseases at risk of drug resistance, and 80 compounds with activity against various vector species) against Trypanosoma cruzi and Leishmania amazonensis. Flucofuron, a compound with activity against vectors and with previous activity reported against Staphylococcus spp. and Schistosoma spp., demonstrates activity against L. amazonensis and T. cruzi and produces programmed cell death in the parasites. Flucofuron seems to be a good candidate for continuing study and proving its use as a trypanocidal agent.
Collapse
Affiliation(s)
- Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain;
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Rock KS, Chapman LAC, Dobson AP, Adams ER, Hollingsworth TD. The Hidden Hand of Asymptomatic Infection Hinders Control of Neglected Tropical Diseases: A Modeling Analysis. Clin Infect Dis 2024; 78:S175-S182. [PMID: 38662705 PMCID: PMC11045017 DOI: 10.1093/cid/ciae096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.
Collapse
Affiliation(s)
- Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Lloyd A C Chapman
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Emily R Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - T Déirdre Hollingsworth
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Carey SM, O’Neill DM, Conner GB, Sherman J, Rodriguez A, D’Antonio EL. Discovery of Strong 3-Nitro-2-Phenyl- 2H-Chromene Analogues as Antitrypanosomal Agents and Inhibitors of Trypanosoma cruzi Glucokinase. Int J Mol Sci 2024; 25:4319. [PMID: 38673904 PMCID: PMC11050443 DOI: 10.3390/ijms25084319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.
Collapse
Affiliation(s)
- Shane M. Carey
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Destiny M. O’Neill
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Garrett B. Conner
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, New York, NY 10016, USA (A.R.)
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA
| |
Collapse
|
19
|
Vitarelli MDO, Franco TA, Pires DDS, Lima ARJ, Viala VL, Kraus AJ, de Azevedo IDLMJ, da Cunha JPC, Elias MC. Integrating high-throughput analysis to create an atlas of replication origins in Trypanosoma cruzi in the context of genome structure and variability. mBio 2024; 15:e0031924. [PMID: 38441981 PMCID: PMC11005370 DOI: 10.1128/mbio.00319-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Trypanosoma cruzi is the etiologic agent of the most prevalent human parasitic disease in Latin America, Chagas disease. Its genome is rich in multigenic families that code for virulent antigens and are present in the rapidly evolving genomic compartment named Disruptive. DNA replication is a meticulous biological process in which flaws can generate mutations and changes in chromosomal and gene copy numbers. Here, integrating high-throughput and single-molecule analyses, we were able to identify Predominant, Flexible, and Dormant Orc1Cdc6-dependent origins as well as Orc1Cdc6-independent origins. Orc1Cdc6-dependent origins were found in multigenic family loci, while independent origins were found in the Core compartment that contains conserved and hypothetical protein-coding genes, in addition to multigenic families. In addition, we found that Orc1Cdc6 density is related to the firing of origins and that Orc1Cdc6-binding sites within fired origins are depleted of a specific class of nucleosomes that we previously categorized as dynamic. Together, these data suggest that Orc1Cdc6-dependent origins may contribute to the rapid evolution of the Disruptive compartment and, therefore, to the success of T. cruzi infection and that the local epigenome landscape is also involved in this process.IMPORTANCETrypanosoma cruzi, responsible for Chagas disease, affects millions globally, particularly in Latin America. Lack of vaccine or treatment underscores the need for research. Parasite's genome, with virulent antigen-coding multigenic families, resides in the rapidly evolving Disruptive compartment. Study sheds light on the parasite's dynamic DNA replication, discussing the evolution of the Disruptive compartment. Therefore, the findings represent a significant stride in comprehending T. cruzi's biology and the molecular bases that contribute to the success of infection caused by this parasite.
Collapse
Affiliation(s)
- Marcela de Oliveira Vitarelli
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | | | | | | | - Vincent Louis Viala
- Biochemistry Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | - Amelie Johanna Kraus
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | | | - Julia Pinheiro Chagas da Cunha
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| | - Maria Carolina Elias
- Cell Cycle Laboratory, Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brazil, São Paulo, Brazil
| |
Collapse
|
20
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, San Nicolás-Hernández D, Salazar-Villatoro L, Omaña-Molina M, Tejedor D, García-Tellado F, Lorenzo-Morales J, Piñero JE. Acrylonitrile derivatives: In vitro activity and mechanism of cell death induction against Trypanosoma cruzi and Leishmania amazonensis. Int J Parasitol Drugs Drug Resist 2024; 24:100531. [PMID: 38484645 PMCID: PMC10950693 DOI: 10.1016/j.ijpddr.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity.
Collapse
Affiliation(s)
- Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Medicina, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain.
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Lin Y, Scalese G, Bulman CA, Vinck R, Blacque O, Paulino M, Ballesteros-Casallas A, Pérez Díaz L, Salinas G, Mitreva M, Weil T, Cariou K, Sakanari JA, Gambino D, Gasser G. Antifungal and Antiparasitic Activities of Metallocene-Containing Fluconazole Derivatives. ACS Infect Dis 2024; 10:938-950. [PMID: 38329933 DOI: 10.1021/acsinfecdis.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Margot Paulino
- Área Bioinformática, Departamento DETEMA, Facultad de Química, Universidad de la República, 11600 Montevideo, Uruguay
| | - Andres Ballesteros-Casallas
- Área Bioinformática, Departamento DETEMA, Facultad de Química, Universidad de la República, 11600 Montevideo, Uruguay
| | - Leticia Pérez Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Gustavo Salinas
- Worm Biology Lab, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Biociencias, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Judy A Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| |
Collapse
|
22
|
Mahadevan L, Arya H, Droste A, Schliebs W, Erdmann R, Kalel VC. PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival. Front Cell Infect Microbiol 2024; 14:1274506. [PMID: 38510966 PMCID: PMC10952002 DOI: 10.3389/fcimb.2024.1274506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Carey SM, Kearns SP, Millington ME, Buechner GS, Alvarez BE, Daneshian L, Abiskaroon B, Chruszcz M, D'Antonio EL. At the outer part of the active site in Trypanosoma cruzi glucokinase: The role of phenylalanine 337. Biochimie 2024; 218:8-19. [PMID: 37741546 DOI: 10.1016/j.biochi.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
The hole mutagenesis approach was used to interrogate the importance of F337 in Trypanosoma cruzi glucokinase (TcGlcK) in order to understand the complete set of binding interactions that are made by d-glucosamine analogue inhibitors containing aromatic tail groups that can extend to the outer part of the active site. An interesting inhibitor of this analogue class includes 2-N-carboxybenzyl-2-deoxy-d-glucosamine (CBZ-GlcN), which exhibits strong TcGlcK binding with a Ki of 710 nM. The residue F337 is found at the outer part of the active site that stems from the second protein subunit of the homodimeric assembly. In this study, F337 was changed to leucine and alanine so as to diminish phenylalanine's side chain size and attenuate intermolecular interactions in this region of the binding cavity. Results from enzyme - inhibitor assays revealed that the phenyl group of F337 made dominant hydrophobic interactions with the phenyl group of CBZ-GlcN as opposed to π - π stacking interactions. Moreover, enzymatic activity assays and X-ray crystallographic experiments indicated that each of these site-directed mutants primarily retained their activity and had high structural similarity of their protein fold. A computed structure model of T. cruzi hexokinase (TcHxK), which was produced by the artificial intelligence system AlphaFold, was compared to an X-ray crystal structure of TcGlcK. Our structural analysis revealed that TcHxK lacked an F337 counterpart residue and probably exists in the monomeric form. We proposed that the d-glucosamine analogue inhibitors that are structurally similar to CBZ-GlcN may not bind as strongly in TcHxK as they do in TcGlcK because of absent van der Waals contact from residue side chains.
Collapse
Affiliation(s)
- Shane M Carey
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Sean P Kearns
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Matthew E Millington
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Gregory S Buechner
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Beda E Alvarez
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brendan Abiskaroon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Edward L D'Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA.
| |
Collapse
|
24
|
Pelizaro BI, Batista JCZ, Portapilla GB, das Neves AR, Silva F, Carvalho DB, Shiguemoto CYK, Pessatto LR, Paredes-Gamero EJ, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, Galvão F, Oliveira KMP, Cassemiro NS, Silva DB, Piranda EM, Arruda CCP, de Albuquerque S, Baroni ACM. Design and Synthesis of Novel 3-Nitro-1 H-1,2,4-triazole-1,2,3-triazole-1,4-disubstituted Analogs as Promising Antitrypanosomatid Agents: Evaluation of In Vitro Activity against Chagas Disease and Leishmaniasis. J Med Chem 2024; 67:2584-2601. [PMID: 38305199 DOI: 10.1021/acs.jmedchem.3c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A series of 28 compounds, 3-nitro-1H-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog 15g (R1 = 4-OCF3-Ph, IC50 = 0.09 μM, SI = >555.5) exhibited an outstanding antichagasic activity (Trypanosoma cruzi, Tulahuen LacZ strain) 68-fold more active than benznidazole (BZN, IC50 = 6.15 μM, SI = >8.13) with relevant selectivity index, and suitable LipE = 5.31. 15g was considered an appropriate substrate for the type I nitro reductases (TcNTR I), contributing to a likely potential mechanism of action for antichagasic activity. Finally, 15g showed nonmutagenic potential against Salmonella typhimurium strains (TA98, TA100, and TA102). Therefore, 3-nitro-1H-1,2,4-triazole 15g is a promising antitrypanosomatid candidate for in vivo studies.
Collapse
Affiliation(s)
- Bruno I Pelizaro
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Jaqueline C Z Batista
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Gisele B Portapilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-900, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Fernanda Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Cristiane Y K Shiguemoto
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Lucas R Pessatto
- Laboratório de Biologia Molecular (BioMol) e Cultivos Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande,Mato Grosso do Sul CEP 79070-900 ,Brazil
| | - Edgar J Paredes-Gamero
- Laboratório de Biologia Molecular (BioMol) e Cultivos Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande,Mato Grosso do Sul CEP 79070-900 ,Brazil
| | - Iara A Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - Pedro H Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Fernanda Galvão
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul CEP 79804-970, Brazil
| | - Kelly M P Oliveira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul CEP 79804-970, Brazil
| | - Nadla S Cassemiro
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande ,Mato Grosso do SulCEP 79070-900, Brazil
| | - Denise B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande ,Mato Grosso do SulCEP 79070-900, Brazil
| | - Eliane M Piranda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-900, Brazil
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| |
Collapse
|
25
|
Ribeiro HG, Galdino OA, de Souza KSC, Rosa Neta AP, Lin-Wang HT, Cunha-Neto E, de Rezende AA, Silbiger VN. Unraveling the role of miRNAs as biomarkers in Chagas cardiomyopathy: Insights into molecular pathophysiology. PLoS Negl Trop Dis 2024; 18:e0011865. [PMID: 38300899 PMCID: PMC10833550 DOI: 10.1371/journal.pntd.0011865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Chagas cardiomyopathy (ChCM) is a severe form of Chagas disease and a major cause of cardiovascular morbidity and mortality. The dysregulation of the immune response leads to cardiac remodeling and functional disruptions, resulting in life-threatening complications. Conventional diagnostic methods have limitations, and therapeutic response evaluation is challenging. MicroRNAs (miRNAs), important regulators of gene expression, show potential as biomarkers for diagnosis and prognosis. AIM This review aims to summarize experimental findings on miRNA expression in ChCM and explore the potential of these miRNAs as biomarkers of Chagas disease. METHODS The search was conducted in the US National Library of Medicine MEDLINE/PubMed public database using the terms "Chagas cardiomyopathy" OR "Chagas disease" AND "microRNA" OR "miRNA" OR "miR." Additionally, bioinformatics analysis was performed to investigate miRNA-target interactions and explore enrichment pathways of gene ontology biological processes and molecular functions. RESULTS The miR-21, miR-146b, miR-146a, and miR-155 consistently exhibited up-regulation, whereas miR-145 was down-regulated in ChCM. These specific miRNAs have been linked to fibrosis, immune response, and inflammatory processes in heart tissue. Moreover, the findings from various studies indicate that these miRNAs have the potential as biomarkers for the disease and could be targeted in therapeutic strategies for ChCM. CONCLUSION In this review, we point out miR-21, miR-146b, miR-146a, miR-155, and miR-145-5p role in the complex mechanisms of ChCM. These miRNAs have been shown as potential biomarkers for precise diagnosis, reliable prognostic evaluation, and effective treatment strategies in the ChCM.
Collapse
Affiliation(s)
- Heriks Gomes Ribeiro
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ony Araújo Galdino
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Antonia Pereira Rosa Neta
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hui Tzu Lin-Wang
- Molecular Biology Laboratory, Dante Pazzanese Institute of Cardiology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Shelton WJ, Gonzalez JM. Outcomes of patients in Chagas disease of the central nervous system: a systematic review. Parasitology 2024; 151:15-23. [PMID: 37987164 PMCID: PMC10941035 DOI: 10.1017/s0031182023001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Chagas disease is a parasitic infection caused by the protozoan Trypanosoma cruzi. One of the complications of the disease is the infection of the central nervous system (CNS), as it can result from either the acute phase or by reactivation during the chronic phase, exhibiting high mortality in immunocompromised patients. This systematic review aimed to determine clinical and paraclinical characteristics of patients with Chagas disease in the CNS. Articles were searched from PubMed, Scopus and LILACS until January 2023. From 2325 articles, 59 case reports and 13 case series of patients with Chagas in the CNS were retrieved from which 138 patients were identified. In this population, 77% of the patients were male, with a median age of 35 years old, from which most of them came from Argentina and Brazil. Most of the individuals were immunocompromised from which 89% were HIV-positive, and 54 patients had an average of 48 cells per mm3 CD4+ T cells. Motor deficits and seizures were the most common manifestation of CNS compromise. Furthermore, 90 patients had a documented CNS lesion by imaging from which 89% were supratentorial and 86% were in the anterior/middle cranial fossa. The overall mortality was of 74%. Among patients who were empirically treated with anti-toxoplasma drugs, 70% died. This review shows how Chagas disease in the CNS is a devastating complication requiring prompt diagnosis and treatment to improve patients’ outcomes.
Collapse
Affiliation(s)
- William J. Shelton
- Grupo de Ciencias Básicas Medicas, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - John M. Gonzalez
- Grupo de Ciencias Básicas Medicas, School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
27
|
Ferreira AZL, de Araújo CN, Cardoso ICC, de Souza Mangabeira KS, Rocha AP, Charneau S, Santana JM, Motta FN, Bastos IMD. Metacyclogenesis as the Starting Point of Chagas Disease. Int J Mol Sci 2023; 25:117. [PMID: 38203289 PMCID: PMC10778605 DOI: 10.3390/ijms25010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 01/12/2024] Open
Abstract
Chagas disease is a neglected infectious disease caused by the protozoan Trypanosoma cruzi, primarily transmitted by triatomine vectors, and it threatens approximately seventy-five million people worldwide. This parasite undergoes a complex life cycle, transitioning between hosts and shifting from extracellular to intracellular stages. To ensure its survival in these diverse environments, T. cruzi undergoes extreme morphological and molecular changes. The metacyclic trypomastigote (MT) form, which arises from the metacyclogenesis (MTG) process in the triatomine hindgut, serves as a crucial link between the insect and human hosts and can be considered the starting point of Chagas disease. This review provides an overview of the current knowledge regarding the parasite's life cycle, molecular pathways, and mechanisms involved in metabolic and morphological adaptations during MTG, enabling the MT to evade the immune system and successfully infect human cells.
Collapse
Affiliation(s)
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | - Isabela Cunha Costa Cardoso
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | | | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilândia, University of Brasilia, Brasilia 70910-900, Brazil
| | | |
Collapse
|
28
|
Seropian IM, Cassaglia P, Miksztowicz V, González GE. Unraveling the role of galectin-3 in cardiac pathology and physiology. Front Physiol 2023; 14:1304735. [PMID: 38170009 PMCID: PMC10759241 DOI: 10.3389/fphys.2023.1304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Galectin-3 (Gal-3) is a carbohydrate-binding protein with multiple functions. Gal-3 regulates cell growth, proliferation, and apoptosis by orchestrating cell-cell and cell-matrix interactions. It is implicated in the development and progression of cardiovascular disease, and its expression is increased in patients with heart failure. In atherosclerosis, Gal-3 promotes monocyte recruitment to the arterial wall boosting inflammation and atheroma. In acute myocardial infarction (AMI), the expression of Gal-3 increases in infarcted and remote zones from the beginning of AMI, and plays a critical role in macrophage infiltration, differentiation to M1 phenotype, inflammation and interstitial fibrosis through collagen synthesis. Genetic deficiency of Gal-3 delays wound healing, impairs cardiac remodeling and function after AMI. On the contrary, Gal-3 deficiency shows opposite results with improved remodeling and function in other cardiomyopathies and in hypertension. Pharmacologic inhibition with non-selective inhibitors is also protective in cardiac disease. Finally, we recently showed that Gal-3 participates in normal aging. However, genetic absence of Gal-3 in aged mice exacerbates pathological hypertrophy and increases fibrosis, as opposed to reduced fibrosis shown in cardiac disease. Despite some gaps in understanding its precise mechanisms of action, Gal-3 represents a potential therapeutic target for the treatment of cardiovascular diseases and the management of cardiac aging. In this review, we summarize the current knowledge regarding the role of Gal-3 in the pathophysiology of heart failure, atherosclerosis, hypertension, myocarditis, and ischemic heart disease. Furthermore, we describe the physiological role of Gal-3 in cardiac aging.
Collapse
Affiliation(s)
- Ignacio M. Seropian
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Servicio de Hemodinamia, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cassaglia
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
| | - Germán E. González
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
29
|
Biro M, Hill AL, Cardis M, Pasieka HB, Farhat FZ. Chagas disease reactivation associated with cutaneous vasculitis in a heart transplant patient. JAAD Case Rep 2023; 42:42-44. [PMID: 38034365 PMCID: PMC10681877 DOI: 10.1016/j.jdcr.2023.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Affiliation(s)
- Mark Biro
- Department of Dermatology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Alison L. Hill
- Department of Dermatology, Georgetown University School of Medicine, Washington, District of Columbia
| | - Michael Cardis
- Department of Dermatology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Helena B. Pasieka
- Department of Dermatology, MedStar Washington Hospital Center, Washington, District of Columbia
- Department of Dermatology, Georgetown University School of Medicine, Washington, District of Columbia
- Departments of Dermatology & Medicine, Uniformed Services University, Bethesda, Maryland
| | - Freba Z. Farhat
- Department of Dermatology, MedStar Washington Hospital Center, Washington, District of Columbia
- Department of Dermatology, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
30
|
Bhowal P, Roy B, Ganguli S, Igloi GL, Banerjee R. Elucidating the structure-function attributes of a trypanosomal arginyl-tRNA synthetase. Mol Biochem Parasitol 2023; 256:111597. [PMID: 37852416 DOI: 10.1016/j.molbiopara.2023.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are fundamental components of the protein translation machinery. In light of their pivotal role in protein synthesis and structural divergence among species, they have always been considered potential targets for the development of antimicrobial compounds. Arginyl-tRNA synthetase from Trypanosoma cruzi (TcArgRS), the parasite responsible for causing Chagas Disease, contains a 100-amino acid insertion that was found to be completely absent in the human counterpart of similar length, as ascertained from multiple sequence alignment results. Thus, we were prompted to perform a preliminary characterization of TcArgRS using biophysical, biochemical, and bioinformatics tools. We expressed the protein in E. coli and validated its in-vitro enzymatic activity. Additionally, analysis of DTNB kinetics, Circular dichroism (CD) spectra, and ligand-binding studies using intrinsic tryptophan fluorescence measurements aided us to understand some structural features in the absence of available crystal structures. Our study indicates that TcArgRS can discriminate between L-arginine and its analogues. Among the many tested substrates, only L-canavanine and L-thioarginine, a synthetic arginine analogue exhibited notable activation. The binding of various substrates was also determined using in silico methods. This study may provide a viable foundation for studying small compounds that can be targeted against TcArgRS.
Collapse
Affiliation(s)
- Pratyasha Bhowal
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India
| | - Bappaditya Roy
- Department of Microbiology, The Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sayak Ganguli
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Park Street, Mullick Bazar, Kolkata 700 016, India.
| | - Gabor L Igloi
- Institute of Biology III, University of Freiburg, Schänzlestr 1, D-79104 Freiburg, Germany
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, India.
| |
Collapse
|
31
|
Fonseca APA, de Melo RFQ, Menezes T, Soares CMA, Rodrigues V, Alves RPM, Pincerato RDCM, Roca F, da Rocha AJ. "Bunch of acai berries sign": a new radiological sign in patients with CNS involvement in Chagas disease. Neuroradiology 2023; 65:1665-1668. [PMID: 37311984 DOI: 10.1007/s00234-023-03181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Chagas disease is an infection caused by Trypanosoma cruzi, a parasite endemic in Latin America. Acute involvement of the CNS by Chagas has been considered rare, but presumed reactivation of chronic disease in immunosuppressed patients has been the subject of recent reports. Our objective is to describe the clinical and imaging characteristics of four patients with Chagas disease and CNS involvement, and the patients had to have available MRI and a diagnosis confirmed by biopsy. The imaging findings were similar, highlighting the presence of focal cerebral lesions with hypointensity on T2-WI, and these lesions assume a "bunch of acai berries appearance", a fruit involved in the transmission of T. cruzi. The post Gd T1-WI shows punctate enhancement. Knowledge of this pattern may be crucial to recognize this disease in immunocompromised patients from endemic areas.
Collapse
Affiliation(s)
- Ana Paula Alves Fonseca
- Division of Neuroradiology, Diagnósticos da América, São Paulo, Brazil.
- Americas Serviços Médicos - UnitedHealth Group, São Paulo, Brazil.
- Department of Neuroradiology, Irmandade da Santa Casa de Misericórdia de São Paulo, Dr. Cesário Mota Júnior, São Paulo, SP, 01221-010, Brazil.
| | - Rodolfo Ferreira Queiroz de Melo
- Americas Serviços Médicos - UnitedHealth Group, São Paulo, Brazil
- Department of Radiology, Clinical Hospital of Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tereza Menezes
- Department of Radiology, Clinical Hospital of Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândida Maria Alves Soares
- Department of Radiology, Clinical Hospital of Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanille Rodrigues
- Department of Radiology, Clinical Hospital of Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Antonio José da Rocha
- Division of Neuroradiology, Diagnósticos da América, São Paulo, Brazil
- Department of Neuroradiology, Irmandade da Santa Casa de Misericórdia de São Paulo, Dr. Cesário Mota Júnior, São Paulo, SP, 01221-010, Brazil
| |
Collapse
|
32
|
Marchiol AR, Herazo R, Flórez Sánchez C, Ayala Sotelo MS, Segura ML, Cortés Cortés LJ, Caicedo Díaz RA. [Evaluation of a change in the serological diagnostic algorithm for Chagas disease in ColombiaAvaliação da mudança do algoritmo de diagnóstico sorológico da doença de Chagas na Colômbia]. Rev Panam Salud Publica 2023; 47:e141. [PMID: 37881802 PMCID: PMC10597392 DOI: 10.26633/rpsp.2023.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/11/2023] [Indexed: 10/27/2023] Open
Abstract
Objective To evaluate the effects of changing the algorithm for serological diagnosis of T. cruzi infection in departmental-level public health laboratories and in the National Reference Laboratory of Colombia, from the perspective of access to diagnosis. Methods A descriptive, cross-sectional study was carried out, based on secondary sources between 2015 and 2021, consolidating the number of serological tests carried out by the laboratories. A survey was developed to identify benefits and limitations in the implementation of the new algorithm for serological diagnosis. Totals, proportions, and averages of the number of tests were estimated by comparing two different periods. Results Information from 33 public health laboratories was analyzed, 87.9% of which processed serological assays during the period under study. The use of serological tests increased after the publication of the new guideline in 2017, and the capacity to perform the second test increased from four to 33 public health laboratories. In absolute terms, ELISAs for antigens and recombinant antigens became the most performed tests in Colombia after 2017. Conclusions The change in the algorithm for serological diagnosis of Chagas disease in Colombia in 2017 had positive effects on access to diagnosis since it facilitated the use of the second test. This change resulted in increased diagnostic coverage. The country's laboratories have access to a simple, timely, quality algorithm that could be implemented in almost any clinical laboratory in the country.
Collapse
Affiliation(s)
- Andrea Rosana Marchiol
- Drugs for Neglected Diseases initiativeRio de JaneiroBrasilDrugs for Neglected Diseases initiative, Rio de Janeiro, Brasil.
| | - Rafael Herazo
- Drugs for Neglected Diseases initiativeRio de JaneiroBrasilDrugs for Neglected Diseases initiative, Rio de Janeiro, Brasil.
| | | | | | - Maryi Lorena Segura
- Instituto Nacional de SaludBogotáColombiaInstituto Nacional de Salud, Bogotá, Colombia.
| | | | - Ricardo Andrés Caicedo Díaz
- Drugs for Neglected Diseases initiativeRio de JaneiroBrasilDrugs for Neglected Diseases initiative, Rio de Janeiro, Brasil.
| |
Collapse
|
33
|
de Souza G, Teixeira SC, Fajardo Martínez AF, Silva RJ, Luz LC, de Lima Júnior JP, Rosini AM, dos Santos NCL, de Oliveira RM, Paschoalino M, Barbosa MC, Alves RN, Gomes AO, da Silva CV, Ferro EAV, Barbosa BF. Trypanosoma cruzi P21 recombinant protein modulates Toxoplasma gondii infection in different experimental models of the human maternal-fetal interface. Front Immunol 2023; 14:1243480. [PMID: 37915581 PMCID: PMC10617204 DOI: 10.3389/fimmu.2023.1243480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natália Carine Lima dos Santos
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Martins de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Science, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
34
|
Fernandez‐Becerra C, Xander P, Alfandari D, Dong G, Aparici‐Herraiz I, Rosenhek‐Goldian I, Shokouhy M, Gualdron‐Lopez M, Lozano N, Cortes‐Serra N, Karam PA, Meneghetti P, Madeira RP, Porat Z, Soares RP, Costa AO, Rafati S, da Silva A, Santarém N, Fernandez‐Prada C, Ramirez MI, Bernal D, Marcilla A, Pereira‐Chioccola VL, Alves LR, Portillo HD, Regev‐Rudzki N, de Almeida IC, Schenkman S, Olivier M, Torrecilhas AC. Guidelines for the purification and characterization of extracellular vesicles of parasites. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e117. [PMID: 38939734 PMCID: PMC11080789 DOI: 10.1002/jex2.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 06/29/2024]
Abstract
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.
Collapse
Affiliation(s)
- Carmen Fernandez‐Becerra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- CIBERINFECISCIII‐CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos IIIMadridSpain
| | - Patrícia Xander
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Daniel Alfandari
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - George Dong
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Iris Aparici‐Herraiz
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | | | - Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Melisa Gualdron‐Lopez
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Nicholy Lozano
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Nuria Cortes‐Serra
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
| | - Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Paula Meneghetti
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Rafael Pedro Madeira
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Ziv Porat
- Flow Cytometry UnitLife Sciences Core Facilities, WISRehovotIsrael
| | | | - Adriana Oliveira Costa
- Departamento de Análises Clínicas e ToxicológicasFaculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG)Belo HorizonteMinas GeraisBrasil
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine ResearchPasteur Institute of IranTehranIran
| | - Anabela‐Cordeiro da Silva
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | - Nuno Santarém
- Host‐Parasite Interactions GroupInstitute of Research and Innovation in HealthUniversity of PortoPortoPortugal
- Department of Biological SciencesFaculty of PharmacyUniversity of PortoPortoPortugal
| | | | - Marcel I. Ramirez
- EVAHPI ‐ Extracellular Vesicles and Host‐Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de TripanossomatideosInstituto Carlos Chagas‐FiocruzCuritibaParanáBrasil
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Facultat de Ciències BiològiquesUniversitat de ValènciaBurjassotValenciaSpain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i ParasitologiaUniversitat de ValènciaBurjassotValenciaSpain
| | - Vera Lucia Pereira‐Chioccola
- Laboratório de Biologia Molecular de Parasitas e Fungos, Centro de Parasitologia e MicologiaInstituto Adolfo Lutz (IAL)São PauloBrasil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão GênicaInstituto Carlos ChagasFiocruz ParanáCuritibaBrazil
- Research Center in Infectious DiseasesDivision of Infectious Disease and Immunity CHU de Quebec Research CenterDepartment of MicrobiologyInfectious Disease and ImmunologyFaculty of MedicineUniversity LavalQuebec CityQuebecCanada
| | - Hernando Del Portillo
- ISGlobal, Barcelona Institute for Global HealthHospital Clínic‐Universitatde BarcelonaBarcelonaSpain
- IGTP Institut d'Investigació Germans Trias i PujolBadalona (Barcelona)Spain
- ICREA Institució Catalana de Recerca i Estudis Avanc¸ats (ICREA)BarcelonaSpain
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of Science (WIS)RehovotIsrael
| | - Igor Correia de Almeida
- Department of Biological SciencesBorder Biomedical Research CenterThe University of Texas at El PasoEl PasoTexasUSA
| | - Sergio Schenkman
- Departamento de MicrobiologiaImunologia e Parasitologia, UNIFESPSão PauloBrazil
| | - Martin Olivier
- The Research Institute of the McGill University Health CentreMcGill UniversityMontréalQuébecCanada
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasLaboratório de Imunologia Celular e Bioquímica de Fungos e ProtozoáriosDepartamento de Ciências FarmacêuticasInstituto de Ciências AmbientaisQuímicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
35
|
Muir D, Vargas G, Torres JR, Ávila-Agüero ML. Acute Chagas Disease Presenting as Preseptal Cellulitis. Pediatr Ann 2023; 52:e394-e397. [PMID: 37820707 DOI: 10.3928/19382359-20230829-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Chagas disease, also known as American trypanosomiasis, is caused by Trypanosoma cruzi, a parasite transmitted by hematophagous triatomine insects (subfamily Triatominae) belonging to the Reduviidae family, order Hemiptera. Infection occurs through contact with the feces of the infected vector at the site of its bite or on intact mucosa. [Pediatr Ann. 2023;52(10):e394-e397.].
Collapse
|
36
|
Pardo-Rodriguez D, Lasso P, Santamaría-Torres M, Cala MP, Puerta CJ, Méndez Arteaga JJ, Robles J, Cuervo C. Clethra fimbriata hexanic extract triggers alteration in the energy metabolism in epimastigotes of Trypanosoma cruzi. Front Mol Biosci 2023; 10:1206074. [PMID: 37818099 PMCID: PMC10561390 DOI: 10.3389/fmolb.2023.1206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima, Colombia
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J. Puerta
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Jorge Robles
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
37
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
38
|
Ferreira JM, dos Santos BRC, de Moura EL, dos Santos ACM, Vencioneck Dutra JC, Figueiredo EVMDS, de Lima Filho JL. Narrowing the Relationship between Human CCR5 Gene Polymorphisms and Chagas Disease: Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:1677. [PMID: 37629534 PMCID: PMC10455882 DOI: 10.3390/life13081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Our aim was to carry out a qualitative and quantitative synthesis of the influence of CCR5 genetic variants on Chagas disease (CD) through a systematic review. A total of 1197 articles were analyzed, and eleven were included in the review. A meta-analysis was conducted along with principal component analyses (PCAs). The polymorphisms found were analyzed using the SNP2TFBS tool to identify possible variants that influence the interaction with gene binding sites. Eleven studied variants were identified: rs2856758, rs2734648, rs1799987, rs1799988, rs41469351, rs1800023, rs1800024, Δ32/rs333, rs3176763, rs3087253 and rs11575815. The studies analyzed were published between 2001 and 2019, conducted in Argentina, Brazil, Spain, Colombia and Venezuela, and included Argentine, Brazilian, Colombian, Peruvian and Venezuelan patients. Eight polymorphisms were subjected to the meta-analysis, of which six were associated with the development of the cardiac form of CD: rs1799987-G/G and G/A in the dominance model and G/G in the recessiveness model; rs2856758-A/G in the codominance model; rs2734648-T/T and T/G in the dominance model; rs1799988-T/T in both the codominance and recessiveness models; rs1800023-G allele and the G/G genotype in the codominance and recessiveness models, and the G/G and G/A genotypes in the dominance model; and rs1800024-T allele. The PCA analyses were able to indicate the relationships between the alleles and the genotypes of the polymorphisms. The SNP2TFBS tool identified rs1800023 as an influencer of the Spi1 transcription factor (p < 0.05). A correlation was established between the alleles associated with the cardiac form of CD in this review, members of the C haplotype of the gene (HHC-TGTG), and the cardiac form of CD.
Collapse
Affiliation(s)
- Jean Moisés Ferreira
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Barbara Rayssa Correia dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Ana Caroline Melo dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Jean Carlos Vencioneck Dutra
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Elaine Virgínia Martins de Sousa Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
39
|
Pérez-Molina JA, Crespillo-Andújar C, Trigo E, Chamorro S, Arsuaga M, Olavarrieta L, Navia B, Martín O, Monge-Maillo B, Norman FF, Lanza VF, Serrano-Villar S. Chagas disease is related to structural changes of the gut microbiota in adults with chronic infection (TRIPOBIOME Study). PLoS Negl Trop Dis 2023; 17:e0011490. [PMID: 37478160 PMCID: PMC10395948 DOI: 10.1371/journal.pntd.0011490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The implications of the gut microbial communities in the immune response against parasites and gut motility could explain the differences in clinical manifestations and treatment responses found in patients with chronic Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS In this pilot prospective cross-sectional study, we included 80 participants: 29 with indeterminate CD (ICD), 16 with cardiac CD (CCD), 15 with digestive CD (DCD), and 20 controls without CD. Stool was collected at the baseline visit and faecal microbial community structure DNA was analyzed by whole genome sequencing. We also performed a comprehensive dietary analysis. Ninety per cent (72/80) of subjects were of Bolivian origin with a median age of 47 years (IQR 39-54) and 48.3% (29/60) had received benznidazole treatment. There were no substantial differences in dietary habits between patients with CD and controls. We identified that the presence or absence of CD explained 5% of the observed microbiota variability. Subjects with CD exhibited consistent enrichment of Parabacteroides spp, while for Enterococcus hirae, Lactobacillus buchneri and Megamonas spp, the effect was less clear once excluded the outliers values. Sex, type of visceral involvement and previous treatment with benznidazole did not appear to have a confounding effect on gut microbiota structure. We also found that patients with DCD showed consistent Prevotella spp enrichment. CONCLUSIONS We found a detectable effect of Chagas disease on overall microbiota structure with several potential disease biomarkers, which warrants further research in this field. The analysis of bacterial diversity could prove to be a viable target to improve the prognosis of this prevalent and neglected disease.
Collapse
Affiliation(s)
- José A Pérez-Molina
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Clara Crespillo-Andújar
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Trigo
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Imported Diseases and International Health Referral Unit. High Level Isolation Unit. La Paz- Carlos III University Hospital, Madrid, Spain
| | - Sandra Chamorro
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Arsuaga
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Imported Diseases and International Health Referral Unit. High Level Isolation Unit. La Paz- Carlos III University Hospital, Madrid, Spain
| | - Leticia Olavarrieta
- Translational Genomics Unit. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Beatriz Navia
- Department of Nutrition and Food Science, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Research Group VALORNUT-UCM (920030), Universidad Complutense de Madrid, Madrid, Spain
| | - Oihane Martín
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Begoña Monge-Maillo
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca F Norman
- National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Val F Lanza
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Bioinformatics Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sergio Serrano-Villar
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
40
|
Jidling C, Gedon D, Schön TB, Oliveira CDL, Cardoso CS, Ferreira AM, Giatti L, Barreto SM, Sabino EC, Ribeiro ALP, Ribeiro AH. Screening for Chagas disease from the electrocardiogram using a deep neural network. PLoS Negl Trop Dis 2023; 17:e0011118. [PMID: 37399207 PMCID: PMC10361500 DOI: 10.1371/journal.pntd.0011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/21/2023] [Accepted: 05/25/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Worldwide, it is estimated that over 6 million people are infected with Chagas disease (ChD). It is a neglected disease that can lead to severe heart conditions in its chronic phase. While early treatment can avoid complications, the early-stage detection rate is low. We explore the use of deep neural networks to detect ChD from electrocardiograms (ECGs) to aid in the early detection of the disease. METHODS We employ a convolutional neural network model that uses 12-lead ECG data to compute the probability of a ChD diagnosis. Our model is developed using two datasets which jointly comprise over two million entries from Brazilian patients: The SaMi-Trop study focusing on ChD patients, enriched with data from the CODE study from the general population. The model's performance is evaluated on two external datasets: the REDS-II, a study focused on ChD with 631 patients, and the ELSA-Brasil study, with 13,739 civil servant patients. FINDINGS Evaluating our model, we obtain an AUC-ROC of 0.80 (CI 95% 0.79-0.82) for the validation set (samples from CODE and SaMi-Trop), and in external validation datasets: 0.68 (CI 95% 0.63-0.71) for REDS-II and 0.59 (CI 95% 0.56-0.63) for ELSA-Brasil. In the latter, we report a sensitivity of 0.52 (CI 95% 0.47-0.57) and 0.36 (CI 95% 0.30-0.42) and a specificity of 0.77 (CI 95% 0.72-0.81) and 0.76 (CI 95% 0.75-0.77), respectively. Additionally, when considering only patients with Chagas cardiomyopathy as positive, the model achieved an AUC-ROC of 0.82 (CI 95% 0.77-0.86) for REDS-II and 0.77 (CI 95% 0.68-0.85) for ELSA-Brasil. INTERPRETATION The neural network detects chronic Chagas cardiomyopathy (CCC) from ECG-with weaker performance for early-stage cases. Future work should focus on curating large higher-quality datasets. The CODE dataset, our largest development dataset includes self-reported and therefore less reliable labels, limiting performance for non-CCC patients. Our findings can improve ChD detection and treatment, particularly in high-prevalence areas.
Collapse
Affiliation(s)
- Carl Jidling
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Daniel Gedon
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Thomas B. Schön
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | | | - Clareci Silva Cardoso
- Preventive Medicine, School of Medicine, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Ariela Mota Ferreira
- Graduate Program in Health Sciences, Universidade Estadual de Montes Claros, Montes Claros, Brazil
| | - Luana Giatti
- Preventive Medicine, School of Medicine, Clinical Hospital/EBSERH, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sandhi Maria Barreto
- Preventive Medicine, School of Medicine, Clinical Hospital/EBSERH, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio L. P. Ribeiro
- Department of Internal Medicine, Faculdade de Medicina, Telehealth Center, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio H. Ribeiro
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Kiehl WM, Hodo CL, Hamer GL, Hamer SA, Wilkerson GK. Exclusion of Horizontal and Vertical Transmission as Major Sources of Trypanosoma Cruzi Infections in a Breeding Colony of Rhesus Macaques ( Macaca Mulatta). Comp Med 2023; 73:229-241. [PMID: 37268411 PMCID: PMC10290485 DOI: 10.30802/aalas-cm-23-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2023]
Abstract
The vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and animals. This parasite is endemic to the southern United States where outdoor-housed NHP at biomedical facilities are at risk of infection. In addi- tion to the direct morbidity caused by T. cruzi, infected animals are of limited biomedical research use because infections can produce confounding pathophysiologic changes even in animals with no clinical disease. In part due to concerns for direct T. cruzi transmission between animals, infected NHP at some institutions have been culled, removed, or otherwise isolated from uninfected animal populations. However, data that document horizontal or vertical transmission in captive NHP in the United States are not available. To evaluate the potential for inter-animal transmission and to identify environmental factors that affect the distribution of new infections in NHPs, we conducted a retrospective epidemiologic study of a rhesus macaque ( Macaca mulatta ) breeding colony in south Texas. We used archived biologic samples and husbandry records to identify the time and location of macaque seroconversion. These data were used to perform a spatial analysis of how geographic location and animal associations affected the spread of disease and to infer the importance of horizontal or vertical routes of transmission. The majority of T. cruzi infections were spatially clustered, suggesting that environmental factors promoted vector exposure in various areas of the facility. Although we cannot not rule out horizontal transmission, our data suggest that horizontal transmission was not a critical route for spread for the disease. Vertical transmission was not a contributing factor in this colony. In conclusion, our findings suggest that local triatome vectors were the major source of T. cruzi infections in captive macaques in our colony. Therefore, limiting contact with vectors, rather than segregation of infected macaques, is a key strategy for disease prevention at institutions that house macaques outdoors in the southern United States.
Collapse
Affiliation(s)
- Whitney M Kiehl
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Carolyn L Hodo
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Departments of Veterinary Integrative Biosciences
| | | | | | - Gregory K Wilkerson
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Department of Clinal Sciences, North Carolina State University, Raleigh, North Carolina;,
| |
Collapse
|
42
|
Arce-Fonseca M, Gutiérrez-Ocejo RA, Rosales-Encina JL, Aranda-Fraustro A, Cabrera-Mata JJ, Rodríguez-Morales O. Nitazoxanide: A Drug Repositioning Compound with Potential Use in Chagas Disease in a Murine Model. Pharmaceuticals (Basel) 2023; 16:826. [PMID: 37375773 DOI: 10.3390/ph16060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is the most serious parasitosis in the western hemisphere. Benznidazole and nifurtimox, the only two trypanocidal drugs, are expensive, difficult to obtain, and have severe side effects. Nitazoxanide has shown to be effective against protozoa, bacteria, and viruses. This study aimed to evaluate the nitazoxanide efficacy against the Mexican T. cruzi Ninoa strain in mice. Infected animals were orally treated for 30 days with nitazoxanide (100 mg/kg) or benznidazole (10 mg/kg). The clinical, immunological, and histopathological conditions of the mice were evaluated. Nitazoxanide- or benznidazole-treated mice had longer survival and less parasitemia than those without treatment. Antibody production in the nitazoxanide-treated mice was of the IgG1-type and not of the IgG2-type as in the benznidazole-treated mice. Nitazoxanide-treated mice had significantly high IFN-γ levels compared to the other infected groups. Serious histological damage could be prevented with nitazoxanide treatment compared to without treatment. In conclusion, nitazoxanide decreased parasitemia levels, indirectly induced the production of IgG antibodies, and partially prevented histopathological damage; however, it did not show therapeutic superiority compared to benznidazole in any of the evaluated aspects. Therefore, the repositioning of nitazoxanide as an alternative treatment against ChD could be considered, since it did not trigger adverse effects that worsened the pathological condition of the infected mice.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Rodolfo Andrés Gutiérrez-Ocejo
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Insituto Politécnico Nacional, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico
| | - Alberto Aranda-Fraustro
- Department of Pathology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Juan José Cabrera-Mata
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
43
|
Cesar G, Natale MA, Albareda MC, Alvarez MG, Lococo B, De Rissio AM, Fernandez M, Castro Eiro MD, Bertocchi G, White BE, Zabaleta F, Viotti R, Tarleton RL, Laucella SA. B-Cell Responses in Chronic Chagas Disease: Waning of Trypanosoma cruzi-Specific Antibody-Secreting Cells Following Successful Etiological Treatment. J Infect Dis 2023; 227:1322-1332. [PMID: 36571148 PMCID: PMC10226662 DOI: 10.1093/infdis/jiac495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND A drawback in the treatment of chronic Chagas disease (American trypanosomiasis) is the long time required to achieve complete loss of serological reactivity, the standard for determining treatment efficacy. METHODS Antibody-secreting cells and memory B cells specific for Trypanosoma cruzi and their degree of differentiation were evaluated in adult and pediatric study participants with chronic Chagas disease before and after etiological treatment. RESULTS T. cruzi-specific antibody-secreting cells disappeared from the circulation in benznidazole or nifurtimox-treated participants with declining parasite-specific antibody levels after treatment, whereas B cells in most participants with unaltered antibody levels were low before treatment and did not change after treatment. The timing of the decay in parasite-specific antibody-secreting B cells was similar to that in parasite-specific antibodies, as measured by a Luminex-based assay, but preceded the decay in antibody levels detected by conventional serology. The phenotype of total B cells returned to a noninfection profile after successful treatment. CONCLUSIONS T. cruzi-specific antibodies in the circulation of chronically T. cruzi-infected study participants likely derive from both antigen-driven plasmablasts, which disappear after successful treatment, and long-lived plasma cells, which persist and account for the low frequency and long course to complete seronegative conversion in successfully treated participants.
Collapse
Affiliation(s)
- G Cesar
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M A Natale
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M C Albareda
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M G Alvarez
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - B Lococo
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - A M De Rissio
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M Fernandez
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - M D Castro Eiro
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
| | - G Bertocchi
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - B E White
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - F Zabaleta
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - R Viotti
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - R L Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - S A Laucella
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben,”Buenos Aires, Argentina
- Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| |
Collapse
|
44
|
Kann S, Mendoza GAC, Hartmann M, Frickmann H, Kreienbrock L. Chagas Disease: Medical and ECG Related Findings in an Indigenous Population in Colombia. Trop Med Infect Dis 2023; 8:297. [PMID: 37368715 DOI: 10.3390/tropicalmed8060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Chagas Disease (CD) is highly prevalent among the indigenous populations in the Sierra Nevada de Santa Marta, Colombia. Villages examined show prevalence rates ranging from 43.6% up to 67.4%. In the present study, associated medical conditions were assessed with a particular focus on ECG alterations. CD diagnosis was based on a rapid test, two different ELISAs, and a specific and highly sensitive Chagas real-time PCR. In both CD positive and CD negative patients, relations of the status and medical (physical examination-based, questionnaire-based) and/or electrocardiogram-based findings were investigated. As expected, CD-associated symptoms and complaints were predominantly found in CD-positive patients. Interestingly, ECG-findings were found to show the potential of leading to early CD diagnosis because ECG alterations were already seen in early stagechanges of the disease. In conclusion, although the observed ECG changes are unspecific, they should be considered as an indicator for a CD screening and, in case of positive results, an associated early treatment of the disease.
Collapse
Affiliation(s)
| | | | - Maria Hartmann
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital, 20359 Hamburg, Germany
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health in the Human-Animal-Environment Interface, University for Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
45
|
Timm BL, da Gama ANS, Batista MM, Batista DDGJ, Boykin DW, De Koning HP, Correia Soeiro MDN. Arylimidamides Have Potential for Chemoprophylaxis against Blood-Transmitted Chagas Disease. Pathogens 2023; 12:pathogens12050701. [PMID: 37242371 DOI: 10.3390/pathogens12050701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) affects over 6 million people worldwide and can be transmitted iatrogenically. Crystal violet (CV) was previously used for pathogen reduction but has harmful side-effects. In the present study, three arylimidamides (AIAs) and CV were used to sterilize mice blood samples experimentally contaminated with bloodstream trypomastigotes (BT) of Trypanosoma cruzi, at non hemolytic doses. All AIAs were not toxic to mouse blood cells until the highest tested concentration (96 µM). The previous treatment of BT with the AIAs impaired the infection establishment of cardiac cell cultures. In vivo assays showed that pre-incubation of mouse blood samples with the AIAs and CV (96 µM) significantly suppressed the parasitemia peak, but only the AIA DB1831 gave ≥90% animal survival, while vehicle treated samples reached 0%. Our findings support further studies regarding the potential use of AIAs for blood bank purposes.
Collapse
Affiliation(s)
- Bruno Lisboa Timm
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, UK
| | | |
Collapse
|
46
|
Rodríguez-Morales O, Mendoza-Téllez EJ, Morales-Salinas E, Arce-Fonseca M. Effectiveness of Nitazoxanide and Electrolyzed Oxiding Water in Treating Chagas Disease in a Canine Model. Pharmaceutics 2023; 15:pharmaceutics15051479. [PMID: 37242721 DOI: 10.3390/pharmaceutics15051479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, and affects seven million people in Latin America. Side effects and the limited efficacy of current treatment have led to new drug research. The objective of this work was to evaluate the effectiveness of nitazoxanide (NTZ) and electrolyzed oxidizing water (EOW) in a canine model of experimental CD. Náhuatl dogs were infected with the T. cruzi H8 strain and NTZ- or EOW-treated orally for 10 days. Seronegativity was shown at 12 months post-infection (mpi) in the NTZ-, EOW-, and benznidazole (BNZ)-treated groups. The NTZ and BNZ groups had high levels of IFN-γ, TNF-α, IL-6, IL-12B, and IL-1β at 1.5 mpi and low levels of IL-10. Electrocardiographic studies showed alterations from 3 mpi and worsening at 12 mpi; NTZ treatment produced fewer cardiac pathomorphological changes compared to EOW, similar to BNZ treatment. There was no cardiomegaly in any group. In conclusion, although NTZ and EOW did not prevent changes in cardiac conductivity, they were able to avoid the severity of heart damage in the chronic phase of CD. NTZ induced a favorable proinflammatory immune response after infection, being a better option than EOW as a possible treatment for CD after BNZ.
Collapse
Affiliation(s)
- Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Jocelin Mendoza-Téllez
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Elizabeth Morales-Salinas
- Department of Pathology of Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco Universidad, Coyoacán, Mexico City 04510, Mexico
| | - Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology of Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| |
Collapse
|
47
|
Pardo-Rodriguez D, Cifuentes-López A, Bravo-Espejo J, Romero I, Robles J, Cuervo C, Mejía SM, Tellez J. Lupeol Acetate and α-Amyrin Terpenes Activity against Trypanosoma cruzi: Insights into Toxicity and Potential Mechanisms of Action. Trop Med Infect Dis 2023; 8:tropicalmed8050263. [PMID: 37235311 DOI: 10.3390/tropicalmed8050263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 μg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 μg/mL). CONCLUSIONS The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima 730006299, Colombia
| | | | - Juan Bravo-Espejo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ibeth Romero
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| | - Jorge Robles
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Sol M Mejía
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Jair Tellez
- Escuela de Pregrados, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede, De La Paz 202010, Colombia
| |
Collapse
|
48
|
Rokhsar JL, Raynor B, Sheen J, Goldstein ND, Levy MZ, Castillo-Neyra R. Modeling the impact of xenointoxication in dogs to halt Trypanosoma cruzi transmission. PLoS Comput Biol 2023; 19:e1011115. [PMID: 37155680 PMCID: PMC10194993 DOI: 10.1371/journal.pcbi.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Chagas disease, a vector-borne parasitic disease caused by Trypanosoma cruzi, affects millions in the Americas. Dogs are important reservoirs of the parasite. Under laboratory conditions, canine treatment with the systemic insecticide fluralaner demonstrated efficacy in killing Triatoma infestans and T. brasiliensis, T. cruzi vectors, when they feed on dogs. This form of pest control is called xenointoxication. However, T. cruzi can also be transmitted orally when mammals ingest infected bugs, so there is potential for dogs to become infected upon consuming infected bugs killed by the treatment. Xenointoxication thereby has two contrasting effects on dogs: decreasing the number of insects feeding on the dogs but increasing opportunities for exposure to T. cruzi via oral transmission to dogs ingesting infected insects. OBJECTIVE Examine the potential for increased infection rates of T. cruzi in dogs following xenointoxication. DESIGN/METHODS We built a deterministic mathematical model, based on the Ross-MacDonald malaria model, to investigate the net effect of fluralaner treatment on the prevalence of T. cruzi infection in dogs in different epidemiologic scenarios. We drew upon published data on the change in percentage of bugs killed that fed on treated dogs over days post treatment. Parameters were adjusted to mimic three scenarios of T. cruzi transmission: high and low disease prevalence and domestic vectors, and low disease prevalence and sylvatic vectors. RESULTS In regions with high endemic disease prevalence in dogs and domestic vectors, prevalence of infected dogs initially increases but subsequently declines before eventually rising back to the initial equilibrium following one fluralaner treatment. In regions of low prevalence and domestic or sylvatic vectors, however, treatment seems to be detrimental. In these regions our models suggest a potential for a rise in dog prevalence, due to oral transmission from dead infected bugs. CONCLUSION Xenointoxication could be a beneficial and novel One Health intervention in regions with high prevalence of T. cruzi and domestic vectors. In regions with low prevalence and domestic or sylvatic vectors, there is potential harm. Field trials should be carefully designed to closely follow treated dogs and include early stopping rules if incidence among treated dogs exceeds that of controls.
Collapse
Affiliation(s)
- Jennifer L. Rokhsar
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America
- ORISE Fellow, Emerging Leaders in Data Science and Technologies Program Fellowship, National Institute of Allergy and Infectious Diseases (NIAID), NIH, United States of America
| | - Brinkley Raynor
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Justin Sheen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Neal D. Goldstein
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael Z. Levy
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ricardo Castillo-Neyra
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- One Health Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
49
|
Won MM, Krüger T, Engstler M, Burleigh BA. The Intracellular Amastigote of Trypanosoma cruzi Maintains an Actively Beating Flagellum. mBio 2023; 14:e0355622. [PMID: 36840555 PMCID: PMC10128032 DOI: 10.1128/mbio.03556-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Throughout its complex life cycle, the uniflagellate parasitic protist, Trypanosoma cruzi, adapts to different host environments by transitioning between elongated motile extracellular stages and a nonmotile intracellular amastigote stage that replicates in the cytoplasm of mammalian host cells. Intracellular T. cruzi amastigotes retain a short flagellum that extends beyond the opening of the flagellar pocket with access to the extracellular milieu. Contrary to the long-held view that the T. cruzi amastigote flagellum is inert, we report that this organelle is motile and displays quasiperiodic beating inside mammalian host cells. Kymograph analysis determined an average flagellar beat frequency of ~0.7 Hz for intracellular amastigotes and similar beat frequencies for extracellular amastigotes following their isolation from host cells. Inhibitor studies reveal that flagellar motility in T. cruzi amastigotes is critically dependent on parasite mitochondrial oxidative phosphorylation. These novel observations reveal that flagellar motility is an intrinsic property of T. cruzi amastigotes and suggest that this organelle may play an active role in the parasite infection process. IMPORTANCE Understanding the interplay between intracellular pathogens and their hosts is vital to the development of new treatments and preventive strategies. The intracellular "amastigote" stage of the Chagas disease parasite, Trypanosoma cruzi, is a critical but understudied parasitic life stage. Previous work established that cytosolically localized T. cruzi amastigotes engage physically and selectively with host mitochondria using their short, single flagellum. The current study was initiated to examine the dynamics of the parasite flagellum-host mitochondrial interaction through live confocal imaging and led to the unexpected discovery that the T. cruzi amastigote flagellum is motile.
Collapse
Affiliation(s)
- Madalyn M. Won
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Timothy Krüger
- Department of Cell and Developmental Biology, Biozentrum, University of Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biozentrum, University of Würzburg, Germany
| | - Barbara A. Burleigh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Krishnan A, Wu K, Girgis L, Pamphlett R, Tomlinson S, Muthiah K. A mitochondrial cytopathy presenting with persistent troponin elevation: case report. Eur Heart J Case Rep 2023; 7:ytad132. [PMID: 37123645 PMCID: PMC10141452 DOI: 10.1093/ehjcr/ytad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023]
Abstract
Background Mitochondrial diseases represent an important potential cause of cardiomyopathy and should be considered in patients presenting with multisystem manifestations. Timely diagnosis of a mitochondrial disorder is needed as it can have reproductive implications for the offspring of the proband. Case Summary We describe a case of undifferentiated rising and persistent troponin elevation in a 70-year-old female with only mild heart failure symptoms and signs. An eventual diagnosis of a mitochondrial cytopathy was made after genetic testing, striated muscle, and endomyocardial biopsy. Multidisciplinary involvement was vital in securing the ultimate diagnosis and is a key lesson from this case. On follow up, with institution of heart failure therapy including cardiac resynchronisation device therapy there was improvement in exercise tolerance and symptoms. Discussion For discussion is the investigation of undifferentiated cardiomyopathies and consideration of mitochondrial disorders as an important diagnosis to exclude prior to diagnosis as an idiopathic cardiomyopathy.
Collapse
Affiliation(s)
- Anish Krishnan
- Corresponding author. Tel: +61 2 8382 1111, Fax: +61 2 9369 4155,
| | - Kathy Wu
- St Vincent’s Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, Australia
- Discipline of Genomic Medicine, University of Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Laila Girgis
- St Vincent’s Hospital, Sydney, Australia
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Roger Pamphlett
- Sydney Medical School, Brain and Mind Centre, The University of Sydney, Sydney, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Susan Tomlinson
- St Vincent’s Hospital, Sydney, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, Australia
| | | |
Collapse
|