1
|
Spatial Distribution of Tsetse Flies and Trypanosome Infection Status in a Vector Genetic Transition Zone in Northern Uganda. J Parasitol Res 2022; 2022:9142551. [PMID: 35692442 PMCID: PMC9177332 DOI: 10.1155/2022/9142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Background Tsetse flies are vectors of the genus Trypanosoma that cause African trypanosomiasis, a serious parasitic disease of people and animals. Reliable data on the vector distribution and the trypanosome species they carry is pertinent for planning sustainable control strategies. This study was carried out to estimate the spatial distribution, apparent density, and trypanosome infection rates of tsetse flies in two districts that fall within a vector genetic transition zone in northern Uganda. Materials and Methods Capturing of tsetse flies was done using biconical traps deployed in eight villages in Oyam and Otuke, two districts that fall within the vector genetic transition zone in northern Uganda. Trapped tsetse flies were sexed and morphologically identified to species level and subsequently analyzed for detection of trypanosome DNA. Trypanosome DNA was detected using a nested PCR protocol based on primers amplifying the internal transcribed spacer (ITS) region of ribosomal DNA. Results A total of 717 flies (406 females; 311 males) were caught, all belonging to the Glossina fuscipes fuscipes species. The overall average flies/trap/day (FTD) was 2.20 ± 0.3527 (mean ± SE). Out of the 477 (201 male; 276 females) flies analyzed, 7.13% (34/477) were positive for one or more trypanosome species. Three species of bovine trypanosomes were detected, namely, Trypanosoma vivax, 61.76% (21/34), T. congolense, 26.47% (9/34), and T. brucei brucei, 5.88% (2/34), and two cases of mixed infection of T. congolense and T. brucei brucei, 5.88% (2/34). The infection rate was not significantly associated with the sex of the fly (generalized linear model (GLM), χ2 = 0.051, p = 0.821, df = 1, n = 477) and district of origin (χ2 = 0.611, p = 0.434, df = 1, n = 477). However, trypanosome infection was highly significantly associated with the fly's age based on wing fray category (χ2 = 7.56, p = 0.006, df = 1, n = 477), being higher among the very old than the young. Conclusion The relatively high tsetse density and trypanosome infection rate indicate that the transition zone is a high-risk area for perpetuating animal trypanosomiasis. Therefore, appropriate mitigation measures should be instituted targeting tsetse and other biting flies that may play a role as disease vectors, given the predominance of T. vivax in the tsetse samples.
Collapse
|
2
|
Opiro R, Opoke R, Angwech H, Nakafu E, Oloya FA, Openy G, Njahira M, Macharia M, Echodu R, Malinga GM, Opiyo EA. Apparent density, trypanosome infection rates and host preference of tsetse flies in the sleeping sickness endemic focus of northwestern Uganda. BMC Vet Res 2021; 17:365. [PMID: 34839816 PMCID: PMC8628410 DOI: 10.1186/s12917-021-03071-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. Methodology We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. Results We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly’s age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). Conclusion We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.
Collapse
Affiliation(s)
- Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda.
| | - Robert Opoke
- Department of Biology, Faculty of Science, Muni University, P.O Box 725, Arua, Uganda
| | - Harriet Angwech
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Esther Nakafu
- Department of Molecular Biology, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Francis A Oloya
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Geoffrey Openy
- Department of Biosystems Engineering, Faculty of Agriculture and Environment, Gulu University, P. O Box 166, Gulu, Uganda
| | - Moses Njahira
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, P. O Box 30709, Nairobi, Kenya
| | - Mercy Macharia
- Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, P. O Box 30709, Nairobi, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| | - Geoffrey M Malinga
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda.,Department of Forestry, Biodiversity and Tourism, Makerere University, PO Box 7062, Kampala, Uganda
| | - Elizabeth A Opiyo
- Department of Biology, Faculty of Science, Gulu University, P.O Box 166, Gulu, Uganda
| |
Collapse
|
3
|
Okeyo WA, Saarman NP, Mengual M, Dion K, Bateta R, Mireji PO, Okoth S, Ouma JO, Ouma C, Ochieng J, Murilla G, Aksoy S, Caccone A. Temporal genetic differentiation in Glossina pallidipes tsetse fly populations in Kenya. Parasit Vectors 2017; 10:471. [PMID: 29017572 PMCID: PMC5635580 DOI: 10.1186/s13071-017-2415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 10/01/2017] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G. pallidipes flies at 13 microsatellite markers to evaluate levels of temporal genetic variation in two regions that have been subjected to intensive eradication campaigns from the 1960s to the 1980s. One of the regions, Nguruman Escarpment, has been subject to habitat alteration due to human activities, while the other, Ruma National Park, has not. In addition, Nguruman Escarpment is impacted by the movement of grazing animals into the area from neighboring regions during the drought season. We collected our samples from three geographically close sampling sites for each of the two regions. Samples were collected between the years 2003 and 2015, spanning ~96 tsetse fly generations. RESULTS We established that allelic richness averaged 3.49 and 3.63, and temporal Ne estimates averaged 594 in Nguruman Escarpment and 1120 in Ruma National Park. This suggests that genetic diversity is similar to what was found in previous studies of G. pallidipes in Uganda and Kenya, implying that we could not detect a reduction in genetic diversity following the extensive control efforts during the 1960s to the 1980s. However, we did find differences in temporal patterns of genetic variation between the two regions, indicated by clustering analysis, pairwise FST, and Fisher's exact tests for changes in allele and genotype frequencies. In Nguruman Escarpment, findings indicated differentiation among samples collected in different years, and evidence of local genetic bottlenecks in two locations previous to 2003, and between 2009 and 2015. In contrast, there was no consistent evidence of differentiation among samples collected in different years, and no evidence of local genetic bottlenecks in Ruma National Park. CONCLUSION Our findings suggest that, despite extensive control measures especially between the 1960s and the 1980s, tsetse flies in these regions persist with levels of genetic diversity similar to that found in populations that did not experience extensive control measures. Our findings also indicate temporal genetic differentiation in Nguruman Escarpment detected at a scale of > 80 generations, and no similar temporal differentiation in Ruma National Park. The different level of temporal differentiation between the two regions indicates that genetic drift is stronger in Nugruman Escarpment, for as-yet unknown reasons, which may include differences in land management. This suggests land management may have an impact on G. pallidipes population genetics, and reinforces the importance of long term monitoring of vector populations in estimates of parameters needed to model and plan effective species-specific control measures.
Collapse
Affiliation(s)
- Winnie A. Okeyo
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Norah P. Saarman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Michael Mengual
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Kirstin Dion
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| | - Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Paul O. Mireji
- Yale School of Public Health, Yale University, New Haven, CT USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Johnson O. Ouma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
- Africa Technical Research Center, Vector Health International, Arusha, Tanzania
| | - Collins Ouma
- Department of Biomedical Science and Technology, School of Public Health and Community Development, Maseno University, Kisumu, Maseno Kenya
| | - Joel Ochieng
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Nairobi, Kikuyu Kenya
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT USA
| | - Adalgisa Caccone
- Yale School of Public Health, Yale University, New Haven, CT USA
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT USA
| |
Collapse
|
4
|
Opiro R, Saarman NP, Echodu R, Opiyo EA, Dion K, Halyard A, Aksoy S, Caccone A. Evidence of temporal stability in allelic and mitochondrial haplotype diversity in populations of Glossina fuscipes fuscipes (Diptera: Glossinidae) in northern Uganda. Parasit Vectors 2016; 9:258. [PMID: 27141947 PMCID: PMC4855780 DOI: 10.1186/s13071-016-1522-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/20/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Glossina fuscipes fuscipes is a tsetse species of high economic importance in Uganda where it is responsible for transmitting animal African trypanosomiasis (AAT) and both the chronic and acute forms of human African trypanosomiasis (HAT). We used genotype data from 17 microsatellites and a mitochondrial DNA marker to assess temporal changes in gene frequency for samples collected between the periods ranging from 2008 to 2014 in nine localities spanning regions known to harbor the two forms of HAT in northern Uganda. RESULTS Our findings suggest that the majority of the studied populations in both HAT foci are genetically stable across the time span sampled. Pairwise estimates of differentiation using standardized FST and Jost's DEST between time points sampled for each site were generally low and ranged between 0.0019 and 0.1312 for both sets of indices. We observed the highest values of FST and DEST between time points sampled from Kitgum (KT), Karuma (KR), Moyo (MY) and Pader (PD), and the possible reasons for this are discussed. Effective population size (Ne) estimates using Waple's temporal method ranged from 103 (95% CI: 73-138) in Kitgum to 962 (95% CI: 669-1309) in Oculoi (OC). Additionally, evidence of a bottleneck event was detected in only one population at one time point sampled; Aminakwach (AM-27) from December 2014 (P < 0.03889). CONCLUSION Findings suggest general temporal stability of tsetse vectors in foci of both forms of HAT in northern Uganda. Genetic stability and the moderate effective population sizes imply that a re-emergence of vectors from local residual populations missed by control efforts is an important risk. This underscores the need for more sensitive sampling and monitoring to detect residual populations following control activities.
Collapse
Affiliation(s)
- Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda.
| | - Norah P Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Elizabeth A Opiyo
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alexis Halyard
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Serap Aksoy
- Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|