1
|
Sverrisdóttir S, Faulstich FM. Exploring Ground and Excited States Via Single Reference Coupled-Cluster Theory and Algebraic Geometry. J Chem Theory Comput 2024; 20:8517-8528. [PMID: 39288220 PMCID: PMC11465470 DOI: 10.1021/acs.jctc.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The exploration of the root structure of coupled cluster (CC) equations holds both foundational and practical significance for computational quantum chemistry. This study provides insight into the intricate root structures of these nonlinear equations at both the CCD and CCSD level of theory. We utilize computational techniques from algebraic geometry, specifically the monodromy and parametric homotopy continuation methods, to calculate the full solution set. We compare the computed CC roots against various established theoretical upper bounds, shedding light on the accuracy and efficiency of these bounds. We hereby focus on the dissociation processes of four-electron systems such as (H2)2 in both D2h and D∞h configurations, H4 symmetrically distorted on a circle, and lithium hydride. We moreover investigate the ability of single-reference CC solutions to approximate excited state energies. We find that multiple CC roots describe energies of excited states with high accuracy. Our investigations reveal that for systems like lithium hydride, CC not only provides high-accuracy approximations to several excited state energies but also to the states themselves.
Collapse
Affiliation(s)
- Svala Sverrisdóttir
- Department
of Mathematics, The University of California, Berkeley, California 94720, United States
| | - Fabian M. Faulstich
- Department
of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
2
|
Windom ZW, Claudino D, Bartlett RJ. A new "gold standard": Perturbative triples corrections in unitary coupled cluster theory and prospects for quantum computing. J Chem Phys 2024; 160:214113. [PMID: 38832905 DOI: 10.1063/5.0202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
A major difficulty in quantum simulation is the adequate treatment of a large collection of entangled particles, synonymous with electron correlation in electronic structure theory, with coupled cluster (CC) theory being the leading framework for dealing with this problem. Augmenting computationally affordable low-rank approximations in CC theory with a perturbative account of higher-rank excitations is a tractable and effective way of accounting for the missing electron correlation in those approximations. This is perhaps best exemplified by the "gold standard" CCSD(T) method, which bolsters the baseline CCSD with the effects of triple excitations using considerations from many-body perturbation theory (MBPT). Despite this established success, such a synergy between MBPT and the unitary analog of CC theory (UCC) has not been explored. In this work, we propose a similar approach wherein converged UCCSD amplitudes are leveraged to evaluate energy corrections associated with triple excitations, leading to the UCCSD[T] method. In terms of quantum computing, this correction represents an entirely classical post-processing step that improves the energy estimate by accounting for triple excitation effects without necessitating new quantum algorithm developments or increasing demand for quantum resources. The rationale behind this choice is shown to be rigorous by studying the properties of finite-order UCC energy functionals, and our efforts do not support the addition of the fifth-order contributions as in the (T) correction. We assess the performance of these approaches on a collection of small molecules and demonstrate the benefits of harnessing the inherent synergy between MBPT and UCC theories.
Collapse
Affiliation(s)
- Zachary W Windom
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Claudino
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
3
|
Gałyńska M, Boguslawski K. Benchmarking Ionization Potentials from pCCD Tailored Coupled Cluster Models. J Chem Theory Comput 2024; 20:4182-4195. [PMID: 38752491 PMCID: PMC11137826 DOI: 10.1021/acs.jctc.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The ionization potential (IP) is an important parameter providing essential insights into the reactivity of chemical systems. IPs are also crucial for designing, optimizing, and understanding the functionality of modern technological devices. We recently showed that limiting the CC ansatz to the seniority-zero sector proves insufficient in predicting reliable and accurate ionization potentials within an IP equation-of-motion coupled-cluster formalism. Specifically, the absence of dynamical correlation in the seniority-zero pair coupled cluster doubles (pCCD) model led to unacceptably significant errors of approximately 1.5 eV. In this work, we aim to explore the impact of dynamical correlation and the choice of the molecular orbital basis (canonical vs localized) in CC-type methods targeting 230 ionized states in 70 molecules, comprising small organic molecules, medium-sized organic acceptors, and nucleobases. We focus on pCCD-based approaches as well as the conventional IP-EOM-CCD and IP-EOM-CCSD. Their performance is compared to the CCSD(T) or CCSDT equivalent and experimental reference data. Our statistical analysis reveals that all investigated frozen-pair coupled cluster methods exhibit similar performance, with differences in errors typically within chemical accuracy (1 kcal/mol or 0.05 eV). Notably, the effect of the molecular orbital basis, such as canonical Hartree-Fock or natural pCCD-optimized orbitals, on the IPs is marginal if dynamical correlation is accounted for. Our study suggests that triple excitations are crucial in achieving chemical accuracy in IPs when modeling electron detachment processes with pCCD-based methods.
Collapse
Affiliation(s)
- Marta Gałyńska
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics,
Astronomy, and Informatics, Nicolaus Copernicus
University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
4
|
Faulstich FM, Kristiansen HE, Csirik MA, Kvaal S, Pedersen TB, Laestadius A. S-Diagnostic─An a Posteriori Error Assessment for Single-Reference Coupled-Cluster Methods. J Phys Chem A 2023; 127:9106-9120. [PMID: 37874274 DOI: 10.1021/acs.jpca.3c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We propose a novel a posteriori error assessment for the single-reference coupled-cluster (SRCC) method called the S-diagnostic. We provide a derivation of the S-diagnostic that is rooted in the mathematical analysis of different SRCC variants. We numerically scrutinized the S-diagnostic, testing its performance for (1) geometry optimizations, (2) electronic correlation simulations of systems with varying numerical difficulty, and (3) the square-planar copper complexes [CuCl4]2-, [Cu(NH3)4]2+, and [Cu(H2O)4]2+. Throughout the numerical investigations, the S-diagnostic is compared to other SRCC diagnostic procedures, that is, the T1, D1, max T2, and D2 diagnostics as well as different indices of multideterminantal and multireference character in coupled-cluster theory. Our numerical investigations show that the S-diagnostic outperforms the T1, D1, max T2 and D2 diagnostics and is comparable to the indices of multideterminantal and multireference character in coupled-cluster theory in their individual fields of applicability. The experiments investigating the performance of the S-diagnostic for geometry optimizations using SRCC reveal that the S-diagnostic correlates well with different error measures at a high level of statistical relevance. The experiments investigating the performance of the S-diagnostic for electronic correlation simulations show that the S-diagnostic correctly predicts strong multireference regimes. The S-diagnostic, moreover, correctly detects the successful SRCC computations for [CuCl4]2-, [Cu(NH3)4]2+, and [Cu(H2O)4]2+, which have been known to be misdiagnosed by T1 and D1 diagnostics in the past. This shows that the S-diagnostic is a promising candidate for an a posteriori diagnostic for SRCC calculations.
Collapse
Affiliation(s)
- Fabian M Faulstich
- Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Håkon E Kristiansen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Mihaly A Csirik
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo 0315, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo 0130, Norway
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Thomas Bondo Pedersen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo 0315, Norway
- Department of Computer Science, Oslo Metropolitan University, Oslo 0130, Norway
| |
Collapse
|
5
|
Kim Y, Krylov AI. Two Algorithms for Excited-State Quantum Solvers: Theory and Application to EOM-UCCSD. J Phys Chem A 2023; 127:6552-6566. [PMID: 37505075 DOI: 10.1021/acs.jpca.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Near-term quantum devices promise to revolutionize quantum chemistry, but simulations using the current noisy intermediate-scale quantum (NISQ) devices are not practical due to their high susceptibility to errors. This motivated the design of NISQ algorithms leveraging classical and quantum resources. While several developments have shown promising results for ground-state simulations, extending the algorithms to excited states remains challenging. This paper presents two cost-efficient excited-state algorithms inspired by the classical Davidson algorithm. We implemented the Davidson method into the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-UCC) excited-state method adapted for quantum hardware. The circuit strategies for generating desired excited states are discussed, implemented, and tested. We demonstrate the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of targeting a small number of excited states of the desired character.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
6
|
Mamache S, Gałyńska M, Boguslawski K. Benchmarking ionization potentials using the simple pCCD model. Phys Chem Chem Phys 2023. [PMID: 37378457 DOI: 10.1039/d3cp01963b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The electron-detachment energy is measured by the ionization potential (IP). As a result, it is a fundamental, observable and important molecular electronic signature in photoelectron spectroscopy. A precise theoretical prediction of electron-detachment energies or ionization potentials is essential for organic optoelectronic systems like transistors, solar cells, or light-emitting diodes. In this work, we benchmark the performance of the recently presented IP variant of the equation-of-motion pair coupled cluster doubles (IP-EOM-pCCD) model to determine IPs. Specifically, the predicted ionization energies are compared to experimental results and higher-order coupled cluster theories based on statistically assessing 201 electron-detached states of 41 organic molecules for three different molecular orbital basis sets and two sets of particle-hole operators. While IP-EOM-pCCD features a reasonable spread and skewness of ionization energies, its mean error and standard deviation differ by up to 1.5 eV from reference data. Our study, thus, highlights the importance of dynamical correlation to reliably predict IPs from a pCCD reference function in small organic molecules.
Collapse
Affiliation(s)
- Saddem Mamache
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Marta Gałyńska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
7
|
Chen Y, Zhang L, E W, Car R. Hybrid Auxiliary Field Quantum Monte Carlo for Molecular Systems. J Chem Theory Comput 2023. [PMID: 37071815 PMCID: PMC10373495 DOI: 10.1021/acs.jctc.3c00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
We propose a quantum Monte Carlo approach to solve the many-body Schrödinger equation for the electronic ground state. The method combines optimization from variational Monte Carlo and propagation from auxiliary field quantum Monte Carlo in a way that significantly alleviates the sign problem. In application to molecular systems, we obtain highly accurate results for configurations dominated by either dynamic or static electronic correlation.
Collapse
Affiliation(s)
- Yixiao Chen
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| | - Linfeng Zhang
- AI for Science Institute, Beijing 100080, People's Republic of China
- DP Technology, Beijing 100080, People's Republic of China
| | - Weinan E
- AI for Science Institute, Beijing 100080, People's Republic of China
- Center for Machine Learning Research, School of Mathematical Sciences, Peking University, Beijing 100084, People's Republic of China
| | - Roberto Car
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Nakashima H, Nakatsuji H. Solving the Schrödinger equation of a planar model H4 molecule. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Castaldo D, Jahangiri S, Delgado A, Corni S. Quantum Simulation of Molecules in Solution. J Chem Theory Comput 2022; 18:7457-7469. [PMID: 36351289 PMCID: PMC9754316 DOI: 10.1021/acs.jctc.2c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Quantum chemical calculations on quantum computers have been focused mostly on simulating molecules in the gas phase. Molecules in liquid solution are, however, most relevant for chemistry. Continuum solvation models represent a good compromise between computational affordability and accuracy in describing solvation effects within a quantum chemical description of solute molecules. In this work, we extend the variational quantum eigensolver to simulate solvated systems using the polarizable continuum model. To account for the state dependent solute-solvent interaction we generalize the variational quantum eigensolver algorithm to treat non-linear molecular Hamiltonians. We show that including solvation effects does not impact the algorithmic efficiency. Numerical results of noiseless simulations for molecular systems with up to 12 spin-orbitals (qubits) are presented. Furthermore, calculations performed on a simulated noisy quantum hardware (IBM Q, Mumbai) yield computed solvation free energies in fair agreement with the classical calculations.
Collapse
Affiliation(s)
- Davide Castaldo
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via Marzolo 1, Padova35131, Italy
| | | | | | - Stefano Corni
- Dipartimento
di Scienze Chimiche, Università degli
studi di Padova, Via Marzolo 1, Padova35131, Italy
- Istituto
Nanoscienze—CNR, via Campi 213/A, Modena41125, Italy
- Padua
Quantum Technologies Research Center, Università
di Padova, Padova35131, Italy
| |
Collapse
|
10
|
Kosar N, Ayub K, Gilani MA, Muhammad S, Mahmood T. Benchmark Density Functional Theory Approach for the Calculation of Bond Dissociation Energies of the M-O 2 Bond: A Key Step in Water Splitting Reactions. ACS OMEGA 2022; 7:20800-20808. [PMID: 35935283 PMCID: PMC9348009 DOI: 10.1021/acsomega.2c01331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
A very fascinating aspect in quantum chemical research is to determine the accurate and cost-effective methods for the calculation of electronic and structural properties through a benchmark study. The current study focuses on the performance evaluation of density functional theory methods for the accurate measurement of bond dissociation energies (BDEs) of chemically important M-O2 bonds in water splitting reactions. The BDE measurement has got noteworthy attention due to its importance in all areas of chemistry. For BDE measurements of M-O2 bonds in five metal complexes with oxygen molecules, 14 density functionals (DFs) are chosen from seven classes of DFs with two series of mixed basis sets. A combination of pseudopotential and Pople basis sets [LANL2DZ & 6-31G(d) and SDD & 6-31+G(d)] are used as a series of mixed basis sets. The B3LYP-GD3BJ functional with LANL2DZ & 6-31G(d) gives outstanding results due to low deviations, error, and the best Pearson's correlation (R) between the experimental and theoretical data. Our study suggested an efficient, low-cost, precise, and accurate B3LYP-GD3BJ/LANL2DZ & 6-31G(d) level of theory for BDE of the M-O2 bond, which may be useful for chemists working in the field of energy generation and utilization.
Collapse
Affiliation(s)
- Naveen Kosar
- Department
of Chemistry, University of Management and
Technology (UMT), C11,
Johar Town, Lahore 54770, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department
of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54600, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
11
|
Elayan IA, Gupta R, Hollett JW. ΔNO and the complexities of electron correlation in simple hydrogen clusters. J Chem Phys 2022; 156:094102. [DOI: 10.1063/5.0073227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Keller E, Tsatsoulis T, Reuter K, Margraf JT. Regularized second-order correlation methods for extended systems. J Chem Phys 2022; 156:024106. [PMID: 35032995 DOI: 10.1063/5.0078119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Second-order Møller-Plesset perturbation theory (MP2) constitutes the simplest form of many-body wavefunction theory and often provides a good compromise between efficiency and accuracy. There are, however, well-known limitations to this approach. In particular, MP2 is known to fail or diverge for some prototypical condensed matter systems like the homogeneous electron gas (HEG) and to overestimate dispersion-driven interactions in strongly polarizable systems. In this paper, we explore how the issues of MP2 for metallic, polarizable, and strongly correlated periodic systems can be ameliorated through regularization. To this end, two regularized second-order methods (including a new, size-extensive Brillouin-Wigner approach) are applied to the HEG, the one-dimensional Hubbard model, and the graphene-water interaction. We find that regularization consistently leads to improvements over the MP2 baseline and that different regularizers are appropriate for the various systems.
Collapse
Affiliation(s)
- Elisabeth Keller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Theodoros Tsatsoulis
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Johannes T Margraf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
13
|
Oliveira AP, Alencar A, Jalbert G, Rocha AB. Electron-molecule collisions with explicit rovibrational resolution at MRCI level and using even tempered basis sets. J Chem Phys 2021; 155:194110. [PMID: 34800958 DOI: 10.1063/5.0066256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A method for calculating the generalized oscillator strengths (GOSs) and differential cross section (DCS) with vibration and rotation resolution is presented. The importance of accounting for the rotational contribution is to be emphasized since it has not previously been considered in GOS calculations. Although largely neglected due to its small effect on various properties, the rotational resolution proved to be fundamental in the study of certain phenomena, such as the interference between rotational states in a molecule. As the general goal of this work is to obtain theoretical values comparable to high resolution experiments, special care was taken on the calculation of the electronic part of the scattering amplitude, particularly in what concerns the choice of the atomic basis set. Accordingly, even-tempered basis sets have proved to lead to good results. The helium atom was taken as a model system for this aspect of the problem. Then, GOS and DCS, for explicit vibrational and rotational transitions, were calculated for hydrogen and nitrogen molecules. For higher accuracy, a non-Franck-Condon approach was used to obtain transitions involving vibrational states. The resultant values have shown good agreement with the available experimental data.
Collapse
Affiliation(s)
- A P Oliveira
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Amanda Alencar
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Física, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - Ginette Jalbert
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Física, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| | - A B Rocha
- Universidade Federal do Rio de Janeiro, UFRJ, Instituto de Química, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
14
|
Marie A, Kossoski F, Loos PF. Variational coupled cluster for ground and excited states. J Chem Phys 2021; 155:104105. [PMID: 34525834 DOI: 10.1063/5.0060698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes that are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations that may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC and we compare it with its (projected) traditional version in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear H4 molecule and the continuous deformation of the square H4 molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of variational pCCD (VpCCD) and traditional pCCD is gauged against their configuration interaction (CI) equivalent, known as doubly occupied CI, for reference Slater determinants made of ground- or excited-state Hartree-Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
Kossoski F, Marie A, Scemama A, Caffarel M, Loos PF. Excited States from State-Specific Orbital-Optimized Pair Coupled Cluster. J Chem Theory Comput 2021; 17:4756-4768. [PMID: 34310140 PMCID: PMC8359009 DOI: 10.1021/acs.jctc.1c00348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 01/31/2023]
Abstract
The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly occupied configuration interaction (DOCI), but with a polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states by exploring the symmetric dissociation of the linear H4 molecule. When ground-state Hartree-Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by 1 or 2 orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly excited states, without having to resort to the equation-of-motion (EOM) formalism. In our Δoo-pCCD model, excitation energies are extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly excited states of CH+, BH, nitroxyl, nitrosomethane, and formaldehyde, we found that Δoo-pCCD provides quite accurate excitation energies, with root-mean-square deviations (with respect to full configuration interaction results) lower than those of CC3 and comparable to those of EOM-CCSDT, two methods with a much higher computational cost.
Collapse
Affiliation(s)
- Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques
(UMR 5626), Université de Toulouse,
CNRS, UPS, 31062 Toulouse, France
| | - Antoine Marie
- Laboratoire de Chimie et Physique Quantiques
(UMR 5626), Université de Toulouse,
CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques
(UMR 5626), Université de Toulouse,
CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques
(UMR 5626), Université de Toulouse,
CNRS, UPS, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques
(UMR 5626), Université de Toulouse,
CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
16
|
Tirimbò G, Baumeier B. Ab initio modeling of excitons: from perfect crystals to biomaterials. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1912638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Gianluca Tirimbò
- Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Affiliation(s)
- Hugh G. A. Burton
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
18
|
Lang RA, Ryabinkin IG, Izmaylov AF. Unitary Transformation of the Electronic Hamiltonian with an Exact Quadratic Truncation of the Baker-Campbell-Hausdorff Expansion. J Chem Theory Comput 2020; 17:66-78. [DOI: 10.1021/acs.jctc.0c00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Robert A. Lang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ilya G. Ryabinkin
- OTI Lumionics Inc., 100 College Street #351, Toronto, Ontario M5G 1L5, Canada
| | - Artur F. Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
19
|
Filip MA, Thom AJW. A stochastic approach to unitary coupled cluster. J Chem Phys 2020; 153:214106. [DOI: 10.1063/5.0026141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Werner HJ, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M. The Molpro quantum chemistry package. J Chem Phys 2020; 152:144107. [PMID: 32295355 DOI: 10.1063/5.0005081] [Citation(s) in RCA: 531] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peter J Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R Manby
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joshua A Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Klaus Doll
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Heßelmann
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Tatiana Korona
- Faculty of Chemistry, University of Warsaw, L. Pasteura 1 St., 02-093 Warsaw, Poland
| | - David A Kreplin
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
21
|
Sokolov IO, Barkoutsos PK, Ollitrault PJ, Greenberg D, Rice J, Pistoia M, Tavernelli I. Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? J Chem Phys 2020; 152:124107. [PMID: 32241157 DOI: 10.1063/1.5141835] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Coupled Cluster (CC) method is used to compute the electronic correlation energy in atoms and molecules and often leads to highly accurate results. However, due to its single-reference nature, standard CC in its projected form fails to describe quantum states characterized by strong electronic correlations and multi-reference projective methods become necessary. On the other hand, quantum algorithms for the solution of many-electron problems have also emerged recently. The quantum unitary variant of CC (UCC) with singles and doubles (q-UCCSD) is a popular wavefunction Ansatz for the variational quantum eigensolver algorithm. The variational nature of this approach can lead to significant advantages compared to its classical equivalent in the projected form, in particular, for the description of strong electronic correlation. However, due to the large number of gate operations required in q-UCCSD, approximations need to be introduced in order to make this approach implementable in a state-of-the-art quantum computer. In this work, we evaluate several variants of the standard q-UCCSD Ansatz in which only a subset of excitations is included. In particular, we investigate the singlet and pair q-UCCD approaches combined with orbital optimization. We show that these approaches can capture the dissociation/distortion profiles of challenging systems, such as H4, H2O, and N2 molecules, as well as the one-dimensional periodic Fermi-Hubbard chain. These results promote the future use of q-UCC methods for the solution of challenging electronic structure problems in quantum chemistry.
Collapse
Affiliation(s)
- Igor O Sokolov
- Zurich Research Laboratory, IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | | | - Pauline J Ollitrault
- Zurich Research Laboratory, IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Donny Greenberg
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Julia Rice
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - Marco Pistoia
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Ivano Tavernelli
- Zurich Research Laboratory, IBM Research GmbH, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
22
|
Hodecker M, Rehn DR, Dreuw A. Hermitian second-order methods for excited electronic states: Unitary coupled cluster in comparison with algebraic-diagrammatic construction schemes. J Chem Phys 2020; 152:094106. [PMID: 33480727 DOI: 10.1063/1.5142354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Employing an intermediate state representation (ISR) approach, Hermitian second-order methods for the calculation of electronic excitation energies are presented and compared in detail. These comprise the algebraic-diagrammatic construction scheme for the polarization propagator, a hybrid second-order ISR scheme based on traditional coupled-cluster theory as well as two similar approaches based on a unitary coupled-cluster (UCC) ansatz. Although in a strict perturbation-theoretical framework all prove to be identical, differences emerge when the corresponding converged cluster amplitudes are used and depending on how the similarity-transformed UCC Hamiltonian is evaluated. The resulting excitation energies, however, do not significantly differ for systems well described by means of perturbation theory.
Collapse
Affiliation(s)
- Manuel Hodecker
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Dirk R Rehn
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Hait D, Tubman NM, Levine DS, Whaley KB, Head-Gordon M. What Levels of Coupled Cluster Theory Are Appropriate for Transition Metal Systems? A Study Using Near-Exact Quantum Chemical Values for 3d Transition Metal Binary Compounds. J Chem Theory Comput 2019; 15:5370-5385. [PMID: 31465217 DOI: 10.1021/acs.jctc.9b00674] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metal compounds are traditionally considered to be challenging for standard quantum chemistry approximations like coupled cluster (CC) theory, which are usually employed to validate lower level methods like density functional theory (DFT). To explore this issue, we present a database of bond dissociation energies (BDEs) for 74 spin states of 69 diatomic species containing a 3d transition metal atom and a main group element, in the moderately sized def2-SVP basis. The presented BDEs appear to have an (estimated) 3σ error less than 1 kJ/mol relative to the exact solutions to the nonrelativistic Born-Oppenheimer Hamiltonian. These benchmark values were used to assess the performance of a wide range of standard single reference CC models, as the results should be beneficial for understanding the limitations of these models for transition metal systems. We find that interactions between metals and monovalent ligands like hydride and fluoride are well described by CCSDT. Similarly, CCSDTQ appears to be adequate for bonds between metals and nominally divalent ligands like oxide and sulfide. However, interactions with polyvalent ligands like nitride and carbide are more challenging, with even CCSDTQ(P)Λ yielding errors on the scale of a few kJ/mol. We also find that many perturbative and iterative approximations to higher order terms either yield disappointing results or actually worsen the performance relative to the baseline low level CC method, indicating that complexity does not always guarantee accuracy.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Norman M Tubman
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Quantum Artificial Intelligence Lab. (QuAIL), Exploration Technology Directorate , NASA Ames Research Center , Moffett Field , California 94035 , United States
| | - Daniel S Levine
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - K Birgitta Whaley
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
24
|
Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NPD, Sim S, Veis L, Aspuru-Guzik A. Quantum Chemistry in the Age of Quantum Computing. Chem Rev 2019; 119:10856-10915. [PMID: 31469277 DOI: 10.1021/acs.chemrev.8b00803] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Practical challenges in simulating quantum systems on classical computers have been widely recognized in the quantum physics and quantum chemistry communities over the past century. Although many approximation methods have been introduced, the complexity of quantum mechanics remains hard to appease. The advent of quantum computation brings new pathways to navigate this challenging and complex landscape. By manipulating quantum states of matter and taking advantage of their unique features such as superposition and entanglement, quantum computers promise to efficiently deliver accurate results for many important problems in quantum chemistry, such as the electronic structure of molecules. In the past two decades, significant advances have been made in developing algorithms and physical hardware for quantum computing, heralding a revolution in simulation of quantum systems. This Review provides an overview of the algorithms and results that are relevant for quantum chemistry. The intended audience is both quantum chemists who seek to learn more about quantum computing and quantum computing researchers who would like to explore applications in quantum chemistry.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan Romero
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Jonathan P Olson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Matthias Degroote
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada
| | - Peter D Johnson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Mária Kieferová
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Physics and Astronomy , Macquarie University , Sydney , NSW 2109 , Australia.,Institute for Quantum Computing and Department of Physics and Astronomy , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Ian D Kivlichan
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Tim Menke
- Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States.,Research Laboratory of Electronics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.,Department of Physics , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Borja Peropadre
- Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Nicolas P D Sawaya
- Intel Laboratories , Intel Corporation , Santa Clara , California 95054 United States
| | - Sukin Sim
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic v.v.i. , Doleǰskova 3 , 18223 Prague 8, Czech Republic
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.,Zapata Computing Inc. , Cambridge , Massachusetts 02139 , United States.,Department of Chemistry , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Department of Computer Science , University of Toronto , Toronto , Ontario M5G 1Z8 , Canada.,Canadian Institute for Advanced Research , Toronto , Ontario M5G 1Z8 , Canada.,Vector Institute for Artificial Intelligence , Toronto , Ontario M5S 1M1 , Canada
| |
Collapse
|
25
|
Lee J, Malone FD, Morales MA. An auxiliary-Field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree-Fock trial wavefunctions. J Chem Phys 2019. [DOI: 10.1063/1.5109572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- College of Chemistry, University of California, Berkeley, California 94720, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
26
|
Alcoba DR, Torre A, Lain L, Massaccesi GE, Oña OB, Ríos E. Unrestricted treatment for the direct variational determination of the two-electron reduced density matrix for doubly occupied-configuration-interaction wave functions. J Chem Phys 2019; 150:164106. [PMID: 31042927 DOI: 10.1063/1.5092182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work extends to the unrestricted orbital approach the procedure described in our previous report [Alcoba et al., J. Chem. Phys. 148, 024105 (2018)] for determining variationally the two-electron reduced density matrix arising from doubly occupied-configuration-interaction wave functions by imposing two- and three-index N-representability conditions. An analysis of the numerical results obtained in selected systems, from both restricted and unrestricted treatments, allows one to assess the performance of these methodologies as well as to show the influence of the P, Q, G, T1, and T2 positivity conditions. We highlight the satisfactory results obtained within the unrestricted scheme.
Collapse
Affiliation(s)
- Diego R Alcoba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco. Apdo. 644, E-48080 Bilbao, Spain
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco. Apdo. 644, E-48080 Bilbao, Spain
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires. Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas. Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Elías Ríos
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas. Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| |
Collapse
|
27
|
Hait D, Rettig A, Head-Gordon M. Well-behaved versus ill-behaved density functionals for single bond dissociation: Separating success from disaster functional by functional for stretched H2. J Chem Phys 2019; 150:094115. [DOI: 10.1063/1.5080122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Peng R, Copan AV, Sokolov AY. Simulating X-ray Absorption Spectra with Linear-Response Density Cumulant Theory. J Phys Chem A 2019; 123:1840-1850. [DOI: 10.1021/acs.jpca.8b12259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruojing Peng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andreas V. Copan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
29
|
Lee J, Small DW, Head-Gordon M. Open-shell coupled-cluster valence-bond theory augmented with an independent amplitude approximation for three-pair correlations: Application to a model oxygen-evolving complex and single molecular magnet. J Chem Phys 2018; 149:244121. [DOI: 10.1063/1.5052667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Tsuchimochi T, Ten-No SL. Orbital-invariant spin-extended approximate coupled-cluster for multi-reference systems. J Chem Phys 2018; 149:044109. [PMID: 30068163 DOI: 10.1063/1.5036542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an approximate treatment of spin-extended coupled-cluster (ECC) based on the spin-projection of the broken-symmetry coupled-cluster (CC) ansatz. ECC completely eliminates the spin-contamination of unrestricted CC and is therefore expected to provide better descriptions of dynamical and static correlation effects, but introduces two distinct problems. The first issue is the emergence of non-terminating amplitude equations, which are caused by the de-excitation effects inherent in symmetry projection operators. In this study, we take a minimalist approach and truncate the Taylor series of the exponential ansatz at a certain order such that the approximation safely recovers the traditional CC without spin-projection. The second issue is that the nonlinear equations of ECC become underdetermined, although consistent, yielding an infinitude of solutions. This problem arises because of the redundancies in the excitation manifold, as is common in other multi-reference approaches. We remove the linear dependencies in ECC by employing an orthogonal projection manifold. We also propose an efficient solver for our method, in which the components are usually sparse but not diagonal-dominant. It is shown that our approach is rigorously orbital-invariant and provides more accurate results than its configuration interaction and linearized CC analogues for chemical systems.
Collapse
Affiliation(s)
- Takashi Tsuchimochi
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo 657-0025, Japan
| | - Seiichiro L Ten-No
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo 657-0025, Japan
| |
Collapse
|
31
|
Copan AV, Sokolov AY. Linear-Response Density Cumulant Theory for Excited Electronic States. J Chem Theory Comput 2018; 14:4097-4108. [DOI: 10.1021/acs.jctc.8b00326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas V. Copan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
32
|
Black JA, Knowles PJ. Quasi-variational coupled-cluster theory: Performance of perturbative treatments of connected triple excitations. J Chem Phys 2018; 148:194102. [DOI: 10.1063/1.5006037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Joshua A. Black
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Peter J. Knowles
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
33
|
Harsha G, Shiozaki T, Scuseria GE. On the difference between variational and unitary coupled cluster theories. J Chem Phys 2018; 148:044107. [DOI: 10.1063/1.5011033] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gaurav Harsha
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Gustavo E. Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
34
|
Qiu Y, Henderson TM, Zhao J, Scuseria GE. Projected coupled cluster theory. J Chem Phys 2017; 147:064111. [DOI: 10.1063/1.4991020] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Yiheng Qiu
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | - Thomas M. Henderson
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
| | - Jinmo Zhao
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | - Gustavo E. Scuseria
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
35
|
Ramos-Cordoba E, Matito E. Local Descriptors of Dynamic and Nondynamic Correlation. J Chem Theory Comput 2017; 13:2705-2711. [DOI: 10.1021/acs.jctc.7b00293] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eloy Ramos-Cordoba
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi Spain
| | - Eduard Matito
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
36
|
Qiu Y, Henderson TM, Scuseria GE. Projected Hartree-Fock theory as a polynomial of particle-hole excitations and its combination with variational coupled cluster theory. J Chem Phys 2017. [DOI: 10.1063/1.4983065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yiheng Qiu
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | - Thomas M. Henderson
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
| | - Gustavo E. Scuseria
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
37
|
Gomez JA, Henderson TM, Scuseria GE. Attenuated coupled cluster: a heuristic polynomial similarity transformation incorporating spin symmetry projection into traditional coupled cluster theory. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1302610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- John A. Gomez
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Thomas M. Henderson
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Gustavo E. Scuseria
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| |
Collapse
|
38
|
Lee J, Small DW, Epifanovsky E, Head-Gordon M. Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes. J Chem Theory Comput 2017; 13:602-615. [DOI: 10.1021/acs.jctc.6b01092] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Evgeny Epifanovsky
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Gomez JA, Degroote M, Zhao J, Qiu Y, Scuseria GE. Spin polynomial similarity transformation for repulsive Hamiltonians: interpolating between coupled cluster and spin-projected unrestricted Hartree–Fock. Phys Chem Chem Phys 2017; 19:22385-22394. [DOI: 10.1039/c7cp04075j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our overarching goal is to be able to describe both weak and strong correlation with a single, computationally affordable method without sacrificing important qualities of the wavefunction, e.g. symmetries of the Hamiltonian.
Collapse
Affiliation(s)
- John A. Gomez
- Department of Chemistry
- Rice University
- Houston
- USA
- Applied Physics Program
| | | | - Jinmo Zhao
- Department of Chemistry
- Rice University
- Houston
- USA
| | - Yiheng Qiu
- Department of Chemistry
- Rice University
- Houston
- USA
| | | |
Collapse
|
40
|
Gomez JA, Henderson TM, Scuseria GE. Recoupling the singlet- and triplet-pairing channels in single-reference coupled cluster theory. J Chem Phys 2016; 145:134103. [DOI: 10.1063/1.4963870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- John A. Gomez
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Thomas M. Henderson
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Gustavo E. Scuseria
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
41
|
Neuscamman E. Improved Optimization for the Cluster Jastrow Antisymmetric Geminal Power and Tests on Triple-Bond Dissociations. J Chem Theory Comput 2016; 12:3149-59. [DOI: 10.1021/acs.jctc.6b00288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Neuscamman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Ramos-Cordoba E, Lopez X, Piris M, Matito E. H4: A challenging system for natural orbital functional approximations. J Chem Phys 2016; 143:164112. [PMID: 26520503 DOI: 10.1063/1.4934799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of D(2h) to D(4h) symmetry in H4 molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurgence of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work, we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H4 D(4h)/D(2h) potential energy surface (PES). Thus far, the wrongful behavior of single-reference methods at the D(2h)-D(4h) transition of H4 has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches, it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actually interpair nondynamic correlation is the key to a cusp-free qualitatively correct description of H4 PES. By introducing interpair nondynamic correlation, PNOF6 is shown to avoid cusps and provide the correct smooth PES features at distances close to the equilibrium, total and local spin properties along with the correct electron delocalization, as reflected by natural orbitals and multicenter delocalization indices.
Collapse
Affiliation(s)
- Eloy Ramos-Cordoba
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Mario Piris
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Eduard Matito
- Faculty of Chemistry, University of the Basque Country UPV/EHU, and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
43
|
Kedziora GS, Barr SA, Berry R, Moller JC, Breitzman TD. Bond breaking in stretched molecules: multi-reference methods versus density functional theory. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1822-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Ellis BH, Aggarwal S, Chakraborty A. Development of the Multicomponent Coupled-Cluster Theory for Investigation of Multiexcitonic Interactions. J Chem Theory Comput 2015; 12:188-200. [DOI: 10.1021/acs.jctc.5b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin H. Ellis
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Somil Aggarwal
- Jamesville-DeWitt
High School, DeWitt, New York 13214, United States
| | - Arindam Chakraborty
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
45
|
Garza AJ, Bulik IW, Alencar AGS, Sun J, Perdew JP, Scuseria GE. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1123315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | - Jianwei Sun
- Department of Physics, Temple University, Philadelphia, PA, USA
| | - John P. Perdew
- Department of Physics, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Gustavo E. Scuseria
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| |
Collapse
|
46
|
Kong J, Proynov E. Density Functional Model for Nondynamic and Strong Correlation. J Chem Theory Comput 2015; 12:133-43. [DOI: 10.1021/acs.jctc.5b00801] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Kong
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| | - Emil Proynov
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| |
Collapse
|
47
|
Burton HGA, Thom AJW. Holomorphic Hartree–Fock Theory: An Inherently Multireference Approach. J Chem Theory Comput 2015; 12:167-73. [DOI: 10.1021/acs.jctc.5b01005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hugh G. A. Burton
- University Chemical
Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- University Chemical
Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
48
|
Tsuchimochi T. Spin-flip configuration interaction singles with exact spin-projection: Theory and applications to strongly correlated systems. J Chem Phys 2015; 143:144114. [DOI: 10.1063/1.4933113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Takashi Tsuchimochi
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
49
|
Bulik IW, Henderson TM, Scuseria GE. Can Single-Reference Coupled Cluster Theory Describe Static Correlation? J Chem Theory Comput 2015; 11:3171-9. [DOI: 10.1021/acs.jctc.5b00422] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ireneusz W. Bulik
- Department
of Chemistry, Rice University, Houston, Texas 77005-1892, United States
| | - Thomas M. Henderson
- Department
of Chemistry, Rice University, Houston, Texas 77005-1892, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, United States
| | - Gustavo E. Scuseria
- Department
of Chemistry, Rice University, Houston, Texas 77005-1892, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, United States
| |
Collapse
|
50
|
Sokolov AY, Schaefer HF, Kutzelnigg W. Density cumulant functional theory from a unitary transformation: N-representability, three-particle correlation effects, and application to O4(+). J Chem Phys 2015; 141:074111. [PMID: 25149779 DOI: 10.1063/1.4892946] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new approach to density cumulant functional theory is developed that derives density cumulant N-representability conditions from an approximate Fock space unitary transformation. We present explicit equations for the third- and fourth-order two-particle cumulant N-representability, as well as the second-order contributions that depend on the connected three-particle density cumulant. These conditions are used to formulate the ODC-13 method and the non-iterative (λ3) correction that employ an incomplete description of the fourth-order two-particle cumulant N-representability and the second-order three-particle correlation effects, respectively. We perform an analysis of the ODC-13 N-representability description for the dissociation of H2 and apply the ODC-13 method and the (λ3) correction to diatomic molecules with multiple bond character and the symmetry-breaking tetraoxygen cation (O4(+)). For the O4(+) molecule, the vibrational frequencies of the ODC-13(λ3) method do not exhibit spatial symmetry breaking and are in a good agreement with the recent infrared photodissociation experiment. We report the O4(+) equilibrium structure, harmonic frequencies, and dissociation energy computed using ODC-13(λ3) with a diffuse, core-correlated aug-cc-pCVTZ basis set.
Collapse
Affiliation(s)
- Alexander Yu Sokolov
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Werner Kutzelnigg
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|