1
|
Kang J, Zajforoushan Moghaddam S, Thormann E. Self-Cross-Linkable Chitosan-Alginate Complexes Inspired by Mussel Glue Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15499-15506. [PMID: 37870990 DOI: 10.1021/acs.langmuir.3c01750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, mussel-inspired chemistry, based on catechol-amine reactions, was adopted to develop self-cross-linkable chitosan-alginate (Chi-Alg) complexes. To do so, the biopolymers were each substituted with ∼20% catechol groups (ChiC and AlgC), and then four complex combinations (Chi-Alg, ChiC-Alg, Chi-AlgC, ChiC-AlgC) were prepared at the surface and in bulk solution. Based on QCM-D and lap shear adhesion tests, the complex with catechol only on Chi (ChiC-Alg) did not show a significant variation from the control complex (Chi-Alg). Conversely, the complexes with catechol on alginate (Chi-AlgC and ChiC-AlgC) rendered a self-cross-linking property and enhanced cohesive properties.
Collapse
Affiliation(s)
- Junjie Kang
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Herrera SE, Agazzi ML, Apuzzo E, Cortez ML, Marmisollé WA, Tagliazucchi M, Azzaroni O. Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. SOFT MATTER 2023; 19:2013-2041. [PMID: 36811333 DOI: 10.1039/d2sm01507b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
Collapse
Affiliation(s)
- Santiago E Herrera
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Maximiliano L Agazzi
- Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), (UNRC, CONICET), Ruta Nacional 36 KM 601, 5800 Río Cuarto, Argentina.
| | - Eugenia Apuzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| | - Mario Tagliazucchi
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, CONICET. Facultad de Ciencias Exactas y Naturales. Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), (UNLP, CONICET), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Chen S, Zhang P, Wang ZG. Complexation between Oppositely Charged Polyelectrolytes in Dilute Solution: Effects of Charge Asymmetry. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| |
Collapse
|
4
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Coelho F, Botelho C, Paris JL, Marques EF, Silva BF. Influence of the media ionic strength on the formation and in vitro biological performance of polycation-DNA complexes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Gallops CE, Ziebarth JD, Wang Y. Coarse-grained Simulations of the Impact of Chain Length and Stiffness on the Formation and Aggregation of Polyelectrolyte Complexes. MACROMOL THEOR SIMUL 2020; 29:2000015. [PMID: 36117803 PMCID: PMC9480279 DOI: 10.1002/mats.202000015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 09/05/2024]
Abstract
Polyelectrolyte complexes formed from nucleic acids and synthetic polycations have been studied because of their potential in gene delivery. Coarse-grained molecular dynamics simulations are performed to examine the impact of chain length and polyanion stiffness on polyplex formation and aggregation. Polyplexes containing single polyanion chain fall into three structural regimes depending on polyanion stiffness: flexible polyanions form collapsed complexes, semiflexible polyanions form various morphologies including toroids and hairpins, and stiff polyanions form rod-like structures. Polyplex size generally decreases as polycation length increases. Aggregation (i.e., formation of complexes containing multiple polyanions) is observed in some simulations containing multiple polyanions and an excess of short polycations. Aggregation is observed to only occur for semiflexible and stiff polyanions and is promoted by shorter polycation lengths. Simulations of short, stiff polyanions condensed by long polycations are used as a model for siRNA gene delivery complexes. These simulations show multiple polyanions are spaced out along the polycation with polyanion-polyanion interactions, usually limited to overlapping chain ends. These structures differ from aggregates of longer polyanions in which the polyanions are packed together in parallel, forming bundles.
Collapse
Affiliation(s)
- Caleb E. Gallops
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Jesse D. Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
7
|
Angelescu DG. Coarse-grained simulation studies on the adsorption of polyelectrolyte complexes upon lipid membranes. Phys Chem Chem Phys 2019; 21:12446-12459. [DOI: 10.1039/c9cp01448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conformations of a polyelectrolyte complex irreversibly bound to a zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
8
|
Xu X, Kanduč M, Wu J, Dzubiella J. Potential of mean force and transient states in polyelectrolyte pair complexation. J Chem Phys 2017; 145:034901. [PMID: 27448900 DOI: 10.1063/1.4958675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pair association between two polyelectrolytes (PEs) of the same size but opposite charge is systematically studied in terms of the potential of mean force (PMF) along their center-of-mass reaction coordinate via coarse-grained, implicit-solvent, explicit-salt computer simulations. The focus is set on the onset and the intermediate transient stages of complexation. At conditions above the counterion-condensation threshold, the PE association process exhibits a distinct sliding-rod-like behavior where the polymer chains approach each other by first stretching out at a critical distance close to their contour length, then "shaking hand" and sliding along each other in a parallel fashion, before eventually folding into a neutral complex. The essential part of the PMF for highly charged PEs can be very well described by a simple theory based on sliding charged "Debye-Hückel" rods with renormalized charges in addition to an explicit entropy contribution owing to the release of condensed counterions. Interestingly, at the onset of complex formation, the mean force between the PE chains is found to be discontinuous, reflecting a bimodal structural behavior that arises from the coexistence of interconnected-rod and isolated-coil states. These two microstates of the PE complex are balanced by subtle counterion release effects and separated by a free-energy barrier due to unfavorable stretching entropy.
Collapse
Affiliation(s)
- Xiao Xu
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Matej Kanduč
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Joachim Dzubiella
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
9
|
Xiao J, Li Y, Huang Q. Application of Monte Carlo simulation in addressing key issues of complex coacervation formed by polyelectrolytes and oppositely charged colloids. Adv Colloid Interface Sci 2017; 239:31-45. [PMID: 27265512 DOI: 10.1016/j.cis.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
This paper reviews the recent advance of Monte Carlo (MC) simulation in addressing key issues of complex coacervation between polyelectrolytes and oppositely charged colloids. Readers were first supplied with a brief overview of current knowledge and experimental strategies in the study of complex coacervation. In the next section, the general MC simulation procedures as well as representative strategies applied in complex coacervation were summarized. The unique contributions of MC simulation in either capturing delicate features, easing the experimental trials or proving the concept were then elucidated through the following aspects: i) identify phase boundary and decouple interaction contributions; ii) clarify composition distribution and internal structure; iii) predict the influences of physicochemical conditions on complex coacervation; iv) delineate the mechanisms for "binding on the wrong side of the isoelectric point". Finally, current challenges as well as prospects of MC simulation in complex coacervation are also discussed. The ultimate goal of this review is to provide readers with basic guideline for synergistic design of experiments in combination with MC simulation, and deliver convincing interpretation and reliable prediction for the structure and behavior in polyelectrolyte-macroion complex coacervation.
Collapse
|
10
|
Pandey AP, Sawant KK. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:904-918. [DOI: 10.1016/j.msec.2016.07.066] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022]
|
11
|
Peng B, Muthukumar M. Modeling competitive substitution in a polyelectrolyte complex. J Chem Phys 2016; 143:243133. [PMID: 26723618 DOI: 10.1063/1.4936256] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution.
Collapse
Affiliation(s)
- B Peng
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - M Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
12
|
Affiliation(s)
| | - Matthew V. Tirrell
- Institute for Molecular Engineering; The University of Chicago; Chicago IL USA
| |
Collapse
|
13
|
Zhou J, Barz M, Schmid F. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes. J Chem Phys 2016; 144:164902. [DOI: 10.1063/1.4947255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jiajia Zhou
- School of Chemistry & Environment, Center of Soft Matter Physics and Its Applications, Beihang University, Xueyuan Road 37, Beijing 100191, China
- Komet 331, Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 9, D55099 Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D55099 Mainz, Germany
| | - Friederike Schmid
- Komet 331, Institute of Physics, Johannes Gutenberg-University Mainz, Staudingerweg 9, D55099 Mainz, Germany
| |
Collapse
|
14
|
Angelescu DG, Linse P. Branched-linear polyion complexes at variable charge densities. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:355101. [PMID: 26249029 DOI: 10.1088/0953-8984/27/35/355101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural behavior of complexes formed by a charged and branched copolymer and an oppositely charged and linear polyion was examined by Monte Carlo simulations employing a coarse-grained bead-spring model. The fractional bead charge and the branching density were systematically varied; the former between 0e and 1e and the latter such that both the comb-polymer and the bottle-brush limits were included. The number of beads of the main chain of the branched copolymer and of the linear polyion was always kept constant and equal, and a single side-chain length was used. Our analysis involved characterization of the complex as well as investigation of size, shape, and flexibility of the charged moieties. An interplay between Coulomb interaction and side-chain repulsion governed the structure of the polyion complex. At strong Coulomb interaction, the complexes underwent a gradual transition from a globular structure at low branching density to an extended one at high branching density. As the electrostatic coupling was decreased, the transition was smoothened and shifted to lower branching density, and, eventually, a behavior similar to that found for neutral branched polymer was observed. Structural analogies and dissimilarities with uncharged branched polymers in poor solutions are discussed.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, Institute of Physical Chemistry Ilie Murgulescu, Splaiul Independentei 202, 060021 Bucharest, Romania
| | | |
Collapse
|
15
|
Audus DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ, Hawker CJ, Fredrickson GH. Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. SOFT MATTER 2015; 11:1214-25. [PMID: 25567551 DOI: 10.1039/c4sm02299h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanostructured, responsive hydrogels formed due to electrostatic interactions have promise for applications such as drug delivery and tissue mimics. These physically cross-linked hydrogels are composed of an aqueous solution of oppositely charged triblocks with charged end-blocks and neutral, hydrophilic mid-blocks. Due to their electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks. The structure of this system was determined using a new, efficient embedded fluctuation (EF) model in conjunction with self-consistent field theory. The calculations using the EF model were validated against unapproximated field-theoretic simulations with complex Langevin sampling and were found consistent with small angle X-ray scattering (SAXS) measurements on an experimental system. Using both the EF model and SAXS, phase diagrams were generated as a function of end-block fraction and polymer concentration. Several structures were observed including a body-centered cubic sphere phase, a hexagonally packed cylinder phase, and a lamellar phase. Finally, the EF model was used to explore how parameters that directly relate to polymer chemistry can be tuned to modify the resulting phase diagram, which is of practical interest for the development of new hydrogels.
Collapse
Affiliation(s)
- Debra J Audus
- Materials Research Laboratory, University of California, Santa Barbara, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bordi F, Chronopoulou L, Palocci C, Bomboi F, Di Martino A, Cifani N, Pompili B, Ascenzioni F, Sennato S. Chitosan–DNA complexes: Effect of molecular parameters on the efficiency of delivery. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Angelescu DG, Linse P. Branched-linear polyion complexes investigated by Monte Carlo simulations. SOFT MATTER 2014; 10:6047-6058. [PMID: 24999910 DOI: 10.1039/c4sm01055h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complexes formed by one charged and branched copolymer with an oppositely charged and linear polyion have been investigated by Monte Carlo simulations. A coarse-grained description has been used, in which the main chain of the branched polyion and the linear polyion possess the same absolute charge and charge density. The spatial extension and other structural properties, such as bond-angle orientational correlation function, asphericity, and scaling analysis of formed complexes, at varying branching density and side-chain length of the branched polyion, have been explored. In particular, the balance between cohesive Coulomb attraction and side-chain repulsions resulted in two main structures of a polyion complex. These structures are (i) a globular polyion core surrounded by side chains appearing at low branching density and (ii) an extended polyion core with side chains still being expelled at high branching density. The globule-to-extended transition occurred at a crossover branching density being practically independent of the side chain length.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | | |
Collapse
|
18
|
Molecular Dynamics Simulations of Polyplexes and Lipoplexes Employed in Gene Delivery. INTRACELLULAR DELIVERY II 2014. [DOI: 10.1007/978-94-017-8896-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Amaduzzi F, Bomboi F, Bonincontro A, Bordi F, Casciardi S, Chronopoulou L, Diociaiuti M, Mura F, Palocci C, Sennato S. Chitosan-DNA complexes: charge inversion and DNA condensation. Colloids Surf B Biointerfaces 2013; 114:1-10. [PMID: 24161501 DOI: 10.1016/j.colsurfb.2013.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/21/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
The design of biocompatible polyelectrolyte complexes is a promising strategy for in vivo delivery of biologically active macromolecules. Particularly, the condensation of DNA by polycations received considerable attention for its potential in gene delivery applications, where the development of safe and effective non-viral vectors remains a central challenge. Among polymeric polycations, Chitosan has recently emerged as a very interesting material for these applications. In this study, we compare the observed aggregation behavior of Chitosan-DNA complexes with the predictions of existing models for the complexation of oppositely charged polyelectrolytes. By using different and complementary microscopy approaches (AFM, FESEM and TEM), light scattering and electrophoretic mobility techniques, we characterized the structures of the complexes formed at different charge ratios and Chitosan molecular weight. In good agreement with theoretical predictions, a reentrant condensation, accompanied by charge inversion, is clearly observed as the polycation/DNA charge ratio is increased. In fact, the aggregates reach their maximum size in correspondence of a value of the charge ratio where their measured net charge inverts its sign. This value does not correspond to the stoichiometric 1:1 charge ratio, but is inversely correlated with the polycation length. Distinctive "tadpole-like" aggregates are observed in excess polycation, while only globular aggregates are found in excess DNA. Close to the isoelectric point, elongated fiber-like structures appear. Within the framework of the models discussed, different apparently uncorrelated observations reported in the literature find a systematic interpretation. These results suggest that these models are useful tools to guide the design of new and more efficient polycation-based vectors for a more effective delivery of genetic material.
Collapse
Affiliation(s)
- Francesca Amaduzzi
- Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy
| | - Francesca Bomboi
- Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy
| | - Adalberto Bonincontro
- Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy
| | - Federico Bordi
- Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy; CNR-IPCF UOS Roma, c/o Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy.
| | - Stefano Casciardi
- Dipartimento di Igiene del Lavoro, ISPESL, 00040 Monte Porzio Catone, Italy
| | - Laura Chronopoulou
- Dipartimento di Chimica, Sapienza Università di Roma, P.zzle A. Moro, 5, 00185 Roma, Italy
| | - Marco Diociaiuti
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161 Roma, Italy
| | - Francesco Mura
- Dipartimento di Scienze di Base Applicate all'Ingegneria, Sapienza Università di Roma, Via A. Scarpa, 14, 00183 Roma, Italy
| | - Cleofe Palocci
- Dipartimento di Chimica, Sapienza Università di Roma, P.zzle A. Moro, 5, 00185 Roma, Italy
| | - Simona Sennato
- Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy; CNR-IPCF UOS Roma, c/o Dipartimento di Fisica, Sapienza Università di Roma, P.zzle A. Moro, 2, 00185 Roma, Italy
| |
Collapse
|
20
|
Dias R, Rosa M, Pais AC, Miguel M, Lindman B. DNA-Surfactant Interactions. Compaction, Condensation, Decompaction and Phase Separation. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Shovsky A, Varga I, Makuška R, Claesson PM. Adsorption and solution properties of bottle-brush polyelectrolyte complexes: effect of molecular weight and stoichiometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6618-6631. [PMID: 22471950 DOI: 10.1021/la300365q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Polyelectrolyte complexes (PECs) self-assembled from bottle-brush polyelectrolytes, having a cationic main chain and uncharged side chains, and linear anionic sodium polystyrenesulfonate (NaPSS) have been investigated with emphasis on (i) the charge density and side chain density of the bottle-brush polyelectrolyte, (ii) the molecular weight of NaPSS, and (iii) the charge stoichiometry of the mixture. Light scattering and electrophoretic mobility data demonstrate that small molecular complexes are formed when the PEO45 side chain density is sufficiently high to provide steric stabilization and prevent PEC aggregation. The adsorption of PECs on negatively charged silicon oxynitride was investigated using dual polarization interferometry, and the time evolution of the adsorbed amount and thickness was determined. Cationic, uncharged, and negatively charged complexes all adsorb to negatively charged silicon oxynitride, and maximum adsorption is achieved for positively charged complexes containing small amounts of PSS. The adsorbed amount and the kinetics of adsorption are reduced with increasing PSS content, and for any given stoichiometry with increasing PSS molecular weight. These findings are discussed in terms of the PEC structure and the ability of anionic polyelectrolytes to leave the PECs during adsorption.
Collapse
Affiliation(s)
- Alexander Shovsky
- School of Chemical Science and Engineering, Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Lazutin AA, Semenov AN, Vasilevskaya VV. Polyelectrolyte Complexes Consisting of Macromolecules With Varied Stiffness: Computer Simulation. MACROMOL THEOR SIMUL 2012. [DOI: 10.1002/mats.201100097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Sun C, Tang T, Uludağ H. Molecular Dynamics Simulations of PEI Mediated DNA Aggregation. Biomacromolecules 2011; 12:3698-707. [DOI: 10.1021/bm2009476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chongbo Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8
| | - Hasan Uludağ
- Department of Chemical and Materials
Engineering, University of Alberta, Edmonton,
AB, Canada T6G 2G6
- Department
of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V2
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2N8
| |
Collapse
|
24
|
Gucht JVD, Spruijt E, Lemmers M, Cohen Stuart MA. Polyelectrolyte complexes: Bulk phases and colloidal systems. J Colloid Interface Sci 2011; 361:407-22. [DOI: 10.1016/j.jcis.2011.05.080] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/17/2022]
|
25
|
Dias RS, Linse P, Pais AACC. Stepwise disproportionation in polyelectrolyte complexes. J Comput Chem 2011; 32:2697-707. [DOI: 10.1002/jcc.21851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
|
26
|
Characterization of the water-soluble comb–linear interpolyelectrolyte nanoaggregates by Monte Carlo simulations and fluorescence probe techniques. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2406-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Gaspar VM, Sousa F, Queiroz JA, Correia IJ. Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications. NANOTECHNOLOGY 2011; 22:015101. [PMID: 21135452 DOI: 10.1088/0957-4484/22/1/015101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The encapsulation of DNA inside nanoparticles meant for gene delivery applications is a challenging process where several parameters need to be modulated in order to design nanocapsules with specific tailored characteristics. The purpose of this study was to investigate and improve the formulation parameters of plasmid DNA (pDNA) loaded in chitosan nanocapsules using tripolyphosphate (TPP) as polyanionic crosslinker. Nanocapsule morphology and encapsulation efficiency were analyzed as a function of chitosan degree of deacetylation and chitosan-TPP ratio. The manipulation of these parameters influenced not only the particle size but also the encapsulation and release of pDNA. Consequently the transfection efficiency of the nanoparticulated systems was also enhanced with the optimization of the particle characteristics. Overall, the differently formulated nanoparticulated systems possess singular properties that can be employed according to the desired gene delivery application.
Collapse
Affiliation(s)
- V M Gaspar
- CICS-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|
28
|
Ziebarth J, Wang Y. Coarse-grained molecular dynamics simulations of DNA condensation by block copolymer and formation of core-corona structures. J Phys Chem B 2010; 114:6225-32. [PMID: 20411959 DOI: 10.1021/jp908327q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coarse-grained molecular dynamics simulations are used to study the condensation of single polyanion chains with block copolymers composed of cationic and neutral blocks. The simulations are an effort to model complexes formed with DNA and cationic copolymers such as polyethylenimine-g-polyethylene glycol which have been used in gene delivery. The simulations reveal that increases in the cationic block length of the copolymer result in greater condensation of the polyanion. The ability of the complexes to form core-corona structures, with the neutral blocks of the copolymers forming a corona around a dense core formed from the charged beads, is investigated. The core-corona structure is shown to be dependent on both condensation of the polyanion chain and the length of the neutral block of the copolymer. Increasing the length of the cationic and neutral blocks of the copolymer both result in improvement in the core-corona structure. The internal structure of the complex core is shown to be a function of the architecture of the copolymer. Complexes formed from linear diblock copolymers have homogeneous cores with similarly arranged cationic and anionic beads; however, complexes formed with star-shaped copolymers have a layered core structure, with anionic beads found in the center of the cores.
Collapse
Affiliation(s)
- Jesse Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | | |
Collapse
|
29
|
Dias RS, Pais AACC. Polyelectrolyte condensation in bulk, at surfaces, and under confinement. Adv Colloid Interface Sci 2010; 158:48-62. [PMID: 20347064 DOI: 10.1016/j.cis.2010.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/05/2010] [Accepted: 02/14/2010] [Indexed: 11/18/2022]
Abstract
In this review we discuss recent results from computer simulations based on coarse-grained polyion models representing aqueous solutions of polyelectrolytes. The focus will be directed to the conformation of the polyions and, in particular, their condensation in bulk, induced by multivalent ions and oppositely charged polyelectrolytes, at responsive surfaces and under confinement.
Collapse
Affiliation(s)
- R S Dias
- Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | | |
Collapse
|
30
|
Kłos JS, Sommer JU. Simulations of Terminally Charged Dendrimers with Flexible Spacer Chains and Explicit Counterions. Macromolecules 2010. [DOI: 10.1021/ma1003997] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- J. S. Kłos
- Leibniz Institute of Polymer Research Dresden e. V., 01069 Dresden, Germany
- Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - J.-U. Sommer
- Leibniz Institute of Polymer Research Dresden e. V., 01069 Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
31
|
Cherstvy AG. Collapse of Highly Charged Polyelectrolytes Triggered by Attractive Dipole−Dipole and Correlation-Induced Electrostatic Interactions. J Phys Chem B 2010; 114:5241-9. [PMID: 20359231 DOI: 10.1021/jp910960r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- A. G. Cherstvy
- IFF-2, Institut für Festköperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany, and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straβe 38, D-01187 Dresden, Germany
| |
Collapse
|
32
|
Ziebarth J, Wang Y. Molecular dynamics simulations of DNA-polycation complex formation. Biophys J 2009; 97:1971-83. [PMID: 19804728 DOI: 10.1016/j.bpj.2009.03.069] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 03/06/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022] Open
Abstract
Complexes formed from DNA and polycations are of interest because of their potential use in gene therapy; however, there remains a lack of understanding of the structure and formation of DNA-polycation complexes at atomic scale. In this work, molecular dynamics simulations of the DNA duplex d(CGCGAATTCGCG) in the presence of polycation chains are carried out to shed light on the specific atomic interaction that result in complex formation. The structures of complexes formed from DNA with polyethylenimine, which is considered one of the most promising DNA vector candidates, and a second polycation, poly-L-lysine, are compared. After an initial separation of approximately 50 A, the DNA and polycation come together and form a stable complex within 10 ns. The DNA does not undergo any major structural changes on complexation and remains in the B-form. In the formed complex, the charged amine groups of the polycation mainly interact with DNA phosphate groups, with polycation intrusion into the major and minor grooves dependent on the identity and charge state of the polycation. The ability of the polycation to effectively neutralize the charge of the DNA phosphate groups and the resulting influence on the DNA helix interaction are discussed.
Collapse
Affiliation(s)
- Jesse Ziebarth
- Department of Chemistry, The University of Memphis, Memphis, Tennessee, USA
| | | |
Collapse
|
33
|
Jesudason CG, Lyubartsev AP, Laaksonen A. Conformational characteristics of single flexible polyelectrolyte chain. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:341-350. [PMID: 19946724 DOI: 10.1140/epje/i2009-10532-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 07/13/2009] [Accepted: 10/08/2009] [Indexed: 05/28/2023]
Abstract
The behaviour of a flexible anionic chain of 150 univalent and negatively charged beads connected by a harmonic-like potential with each other in the presence of an equal number of positive and free counterions, is studied in molecular dynamics simulations with Langevin thermostat in a wide range of temperatures. Simulations were carried out for several values of the bending parameter, corresponding to fully flexible polyion, moderately and strongly stiff polyion as well as for the case when bend conformation is preferable to the straight one. We have found that in all cases three regimes can be distinguished, which can be characterized as "random coil", observed at high temperatures; "extended conformation" observed at moderate temperatures (of the order of 1 in reduced units), and compact "globular conformation" attained at low temperatures. While the transition between high-temperature random and extended conformations is gradual, the transition from the extended coil to the globular state, taking place at a temperature of about 0.2 in reduced units, is of abrupt character resembling a phase transition.
Collapse
Affiliation(s)
- C G Jesudason
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, West Malaysia, Malaysia.
| | | | | |
Collapse
|
34
|
Hoda N, Larson RG. Explicit- and Implicit-Solvent Molecular Dynamics Simulations of Complex Formation between Polycations and Polyanions. Macromolecules 2009. [DOI: 10.1021/ma901632c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nazish Hoda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Ronald G. Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
35
|
Jorge AF, Sarraguça JMG, Dias RS, Pais AACC. Polyelectrolyte compaction by pH-responsive agents. Phys Chem Chem Phys 2009; 11:10890-8. [DOI: 10.1039/b914159f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Oskolkov NN, Potemkin II. Complexation in Asymmetric Solutions of Oppositely Charged Polyelectrolytes: Phase Diagram. Macromolecules 2007. [DOI: 10.1021/ma0709304] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolay N. Oskolkov
- Physics Department, Moscow State University, Moscow 119992, Russian Federation; Department of Polymer Science, University of Ulm, Ulm 89069, Germany
| | - Igor I. Potemkin
- Physics Department, Moscow State University, Moscow 119992, Russian Federation; Department of Polymer Science, University of Ulm, Ulm 89069, Germany
| |
Collapse
|
37
|
Abstract
The interaction between composite colloidal particles composed of a spherical core and grafted AB-diblock polyampholytes (diblock copolymers with oppositely charged blocks) are investigated by using a coarse-grained model solved with Monte Carlo simulations. The B block is end-grafted onto the core of the colloid and its linear charge density is varied, whereas the linear charge density of the A block is fixed. The brush structure of a single colloid, the mean force between two colloids, and the structure of solutions of such colloids have been determined for different linear charge densities of the B blocks and block lengths. Many features of the present system are controlled by the charge of the B blocks. In the limit of uncharged B blocks, (i) the grafted chains are stretched and form an extended polyelectrolyte brush, (ii) a strong repulsive force is operating between two colloids, (iii) and the solution is thermodynamic stable and displays strong spatial correlation among the colloids. In the limit where the charges of the two types of blocks exactly compensate each other, (i) the chains are collapsed and form a polyelectrolyte complex surrounding the cores, (ii) an attractive force appears between two colloids, and (iii) strong colloid clustering appears in the solution. These features become more pronounced as the length of the polymer blocks is increased, and a phase instability occurs at sufficiently long chains. A comparison with properties for other related colloidal particles is also provided.
Collapse
Affiliation(s)
- Per Linse
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
38
|
Majtyka M, Kłos J. Monte Carlo simulations of a charged dendrimer with explicit counterions and salt ions. Phys Chem Chem Phys 2007; 9:2284-92. [PMID: 17487326 DOI: 10.1039/b616575c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Static properties of a dendrimer with generation g = 5 with positively charged terminal groups in an athermal solvent are studied by lattice Monte Carlo simulations using the cooperative motion algorithm as the tossing scheme. The calculations are performed both for a salt-free system with neutralizing counterions and for a small amount of added monovalent and divalent salt. The full Coulomb potential and the excluded volume interactions between ions and beads are taken explicitly into account with the reduced temperature tau, the number of salt cations (anions) n(s), and salt valence z(s) as the simulation parameters. The bahaviour of the systems is analyzed by the mean effective charge per end-bead <Q>, Coulomb mean energy <E>, mean-square radius of gyration <R(g)(2)>, pair correlation functions g(alphabeta), and charge density rho(ch). The simulations show that for n(s)> or = 0 and decreasing tau: (a) there is encapsulation in the dendrimer and condensation onto the terminal groups of anions accompanied by a monotonic decrease in <Q> and <E> and by subsequent swelling and shrinking of the molecule; (b) encapsulation, condensation and shrinking are the most significant and swelling weaker for |z(s)| = 2; (c) penetration of salt cations into the dendrimer is minor when compared to that of anions; (d) rho(ch) is reduced and becomes negative close to the center of mass of the dendrimer and on its periphery; (e) for the considered n(s) > 0, unlike divalent salt ions the monovalent ones cause slight effects when compared to the salt-free case.
Collapse
Affiliation(s)
- M Majtyka
- Max-Planck-Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany
| | | |
Collapse
|
39
|
Trejo-Ramos MA, Tristán F, Menchaca JL, Pérez E, Chávez-Páez M. Structure of polyelectrolyte complexes by Brownian dynamics simulation: Effects of the bond length asymmetry of the polyelectrolytes. J Chem Phys 2007; 126:014901. [PMID: 17212513 DOI: 10.1063/1.2424986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Brownian dynamics simulations were performed to study the structure of polyelectrolyte complexes formed by two flexible, oppositely charged polyelectrolyte chains. The distribution of monomers in the complex as well as the radius of gyration and structure factor of complexes and individual polyelectrolytes are reported. These structural properties were calculated for polyelectrolyte chains with equal number of monomers, keeping constant the bond length of the negative chain and increasing the bond length of the positive chain. This introduces an asymmetry in the length of the chains that modulates the final structure of the complexes. In the symmetric case the distribution of positive and negative monomers in the complex are identical, producing clusters that are locally and globally neutral. Deviations from the symmetric case lead to nonuniform, asymmetric monomer distributions, producing net charge oscillations inside the complex and large changes in the radius of gyration of the complex and individual chains. From the radius of gyration of the polyelectrolyte chains it is shown that the positive chain is much more folded than the negative chain when the chains are asymmetric, which is also confirmed through the scaling behavior of the structure factors.
Collapse
Affiliation(s)
- Miguel A Trejo-Ramos
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, Mexico
| | | | | | | | | |
Collapse
|
40
|
Sarraguça JMG, Dias RS, Pais AACC. Coil-globule coexistence and compaction of DNA chains. J Biol Phys 2006; 32:421-34. [PMID: 19669448 DOI: 10.1007/s10867-006-9026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022] Open
Abstract
In this work we discuss different factors governing coil-globule coexistence in the compaction process of DNA. We initially analyse the role played by fluctuations in the degree of binding of an external compacting agent in the conformational behavior of the chain backbone. The analysis relies both on Monte Carlo simulation results and simple statistical approaches. Compacting agents of various binding characteristics are taken into consideration and the degree of charge neutralization upon the chain is related to conformational indicators. Selected model systems comprising stiff chains in the presence of multivalent ions are employed to assess intrinsic single-chain conformational fluctuation, in the presence of external agents but not resulting from differences in binding. It is shown that trends found for a variety of compacting agents, including the extension of the coil-globule coexistence regions, can be rationalised on the basis of this analysis.
Collapse
Affiliation(s)
- J M G Sarraguça
- Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | | | | |
Collapse
|
41
|
Cherstvy AG, Winkler RG. Complexation of semiflexible chains with oppositely charged cylinder. J Chem Phys 2006; 120:9394-400. [PMID: 15267879 DOI: 10.1063/1.1707015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the complexation of long thin semiflexible polymer chains with an oppositely charged cylinder. Starting from the linear Poisson-Boltzmann equation, we calculate the electrostatic potential and the energy of such a charge distribution. We find that sufficiently flexible chains prefer to wrap around the cylinder in a helical manner, when their charge density is smaller than that of the cylinder. The optimal value of the helical pitch is found by minimization of the sum of electrostatic and bending energies. The dependence of the pitch on the number of chains, their rigidity, and salt concentration in solution is analyzed. We discuss our results in the light of recent experiments on DNA complexation with cylindrical dendronized polymers.
Collapse
Affiliation(s)
- Andrey G Cherstvy
- Institut für Festkörperforschung, Theorie-II, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | |
Collapse
|
42
|
Wang Z, Rubinstein M. Regimes of Conformational Transitions of a Diblock Polyampholyte. Macromolecules 2006. [DOI: 10.1021/ma0607517] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zuowei Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
43
|
Gus’kova OA, Pavlov AS, Khalatur PG. Complexes based on rigid-chain polyelectrolytes: Computer simulation. POLYMER SCIENCE SERIES A 2006. [DOI: 10.1134/s0965545x06070145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Ou Z, Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys 2006; 124:154902. [PMID: 16674260 DOI: 10.1063/1.2178803] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.
Collapse
Affiliation(s)
- Zhaoyang Ou
- Department of Polymer Science and Engineering, Materials Research Science and Engineering Center, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
45
|
Rydén J, Ullner M, Linse P. Monte Carlo simulations of oppositely charged macroions in solution. J Chem Phys 2005; 123:34909. [PMID: 16080765 DOI: 10.1063/1.1949191] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions. The relation to the similar cluster formation and phase instability occurring in solutions containing oppositely charged polymers is also discussed.
Collapse
Affiliation(s)
- Jens Rydén
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
46
|
Dias RS, Pais AA, Miguel MG, Lindman B. DNA and surfactants in bulk and at interfaces. Colloids Surf A Physicochem Eng Asp 2004. [DOI: 10.1016/j.colsurfa.2004.07.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Akinchina A, Shusharina NP, Linse P. Diblock polyampholytes grafted onto spherical particles: Monte Carlo simulation and lattice mean-field theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:10351-10360. [PMID: 15518535 DOI: 10.1021/la0490386] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spherical brushes composed of diblock polyampholytes (diblock copolymers with oppositely charged blocks) grafted onto solid spherical particles in aqueous solution are investigated by using the primitive model solved with Monte Carlo simulations and by lattice mean-field theory. Polyampholyte chains of two compositions are considered: a copolymer with a long and a short block, A100B10, and a copolymer with two blocks of equal length, A50B50. The B block is end-grafted onto the surface, and its charge is varied, whereas the charge of the A block is fixed. Single-chain properties, radial and lateral spatial distributions of different types, and structure factors are analyzed. The brush structure strongly depends on the charge of the B block. In the limit of an uncharged B block, the chains are stretched and form an extended polyelectrolyte brush. In the other limit with the charges of the blocks compensating each other, the chains are collapsed and form a polyelectrolyte complex surrounding the particles. At intermediate charge conditions, a polyelectrolyte brush and a polyelectrolyte complex coexist and constitute two substructures of the spherical brush. The differences of the brush structures formed by the A100B10 and A50B50 polyampholytes are also analyzed. Finally, a comparison of the predictions of the two theoretical approaches is made.
Collapse
Affiliation(s)
- Anna Akinchina
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
48
|
Hayashi Y, Ullner M, Linse P. Oppositely Charged Polyelectrolytes. Complex Formation and Effects of Chain Asymmetry. J Phys Chem B 2004. [DOI: 10.1021/jp048267y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshikatsu Hayashi
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Magnus Ullner
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Per Linse
- Physical Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
49
|
Skepö M. Competition between a Macroion and a Polyelectrolyte in Complexation with an Oppositely Charged Polyelectrolyte. J Phys Chem B 2004. [DOI: 10.1021/jp036789s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Skepö
- Health and Society, Malmö University, S-205 06 Malmö, Sweden
| |
Collapse
|
50
|
Klos J, Pakula T. Lattice Monte Carlo simulations of three-dimensional charged polymer chains. J Chem Phys 2004; 120:2496-501. [PMID: 15268392 DOI: 10.1063/1.1637872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The configurational properties of strongly charged polyelectrolytes accompanied by neutralizing counterions in dilute solutions are simulated using the cooperative motion algorithm on the face-centered-cubic lattice. The full Coulomb potential and the excluded volume condition between different ions/beads are taken into account and the reduced temperature T* is considered the main, variable parameter. The calculations that have been carried out for solutions of both single and several chains indicate a few regions of their behavior: (1) for T*--> infinity, it corresponds to that of neutral, self-avoiding polymers under good solvent conditions; (2) for T* approximately 1, due to the electrostatic interactions being effectively stronger, the chains are more outstretched compared to their size at other temperatures; (3) for T* well below one, the counterion condensation becomes more and more dominant, which gradually leads to strongly collapsed chains; and (4) at the lowest temperatures the chains and counterions assume low-energy configurations in the form of neutral, compact aggregates.
Collapse
Affiliation(s)
- J Klos
- Max-Planck-Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany.
| | | |
Collapse
|