1
|
Jiménez-Martín A, Sosnová Z, Soler D, Mallada B, González-Herrero H, Edalatmanesh S, Martín N, Écija D, Jelínek P, de la Torre B. Atomically Precise Control of Topological State Hybridization in Conjugated Polymers. ACS NANO 2024; 18:29902-29912. [PMID: 39404161 PMCID: PMC11526428 DOI: 10.1021/acsnano.4c10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Zdenka Sosnová
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Benjamin Mallada
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Héctor González-Herrero
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Departamento
de Física de la Materia Condensada, Universidad Autónoma, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma, E-28049 Madrid, Spain
| | - Shayan Edalatmanesh
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Nazario Martín
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - David Écija
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Pavel Jelínek
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| |
Collapse
|
2
|
Lou C, Guan Y, Cui X, Li Y, Zhou X, Yuan Q, Mei G, Jiao C, Huang K, Hou X, Cao L, Ji W, Novko D, Petek H, Feng M. Charge-transfer dipole low-frequency vibronic excitation at single-molecular scale. SCIENCE ADVANCES 2024; 10:eado3470. [PMID: 39441937 DOI: 10.1126/sciadv.ado3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Scanning tunneling microscopy (STM) vibronic spectroscopy, which has provided submolecular insights into electron-vibration (vibronic) coupling, faces challenges when probing the pivotal low-frequency vibronic excitations. Because of eigenstate broadening on solid substrates, resolving low-frequency vibronic states demands strong decoupling. This work designs a type II band alignment in STM junction to achieve effective charge-transfer state decoupling. This strategy enables the successful identification of the lowest-frequency Hg(ω1) (Raman-active Hg mode) vibronic excitation within single C60 molecules, which, despite being notably pronounced in electron transport of C60 single-molecule transistors, has remained hidden at submolecular level. Our results show that the observed Hg(ω1) excitation is "anchored" to all molecules, irrespective of local geometry, challenging common understanding of structural definition of vibronic excitation governed by Franck-Condon principle. Density functional theory calculations reveal existence of molecule-substrate interfacial charge-transfer dipole, which, although overlooked previously, drives the dominant Hg(ω1) excitation. This charge-transfer dipole is not specific but must be general at interfaces, influencing vibronic coupling in charge transport.
Collapse
Affiliation(s)
- Cancan Lou
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yurou Guan
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Xingxia Cui
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yafei Li
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xieyu Zhou
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Qing Yuan
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Guangqiang Mei
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Chengxiang Jiao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Kai Huang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xuefeng Hou
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Limin Cao
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
| | - Dino Novko
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| | - Hrvoje Petek
- Department of Physics and Astronomy and IQ Initiative, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Min Feng
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Department of Physics and Astronomy and IQ Initiative, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Institute for Advanced Study, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Li H, Felix LC, Li Q, Ruan Q, Yakobson BI, Hersam MC. Atomic-Resolution Vibrational Mapping of Bilayer Borophene. NANO LETTERS 2024; 24:10674-10680. [PMID: 39141815 DOI: 10.1021/acs.nanolett.4c03224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The successful synthesis of borophene beyond the monolayer limit has expanded the family of two-dimensional boron nanomaterials. While atomic-resolution topographic imaging has been previously reported, vibrational mapping has the potential to reveal deeper insight into the chemical bonding and electronic properties of bilayer borophene. Herein, inelastic electron tunneling spectroscopy (IETS) is used to resolve the low-energy vibrational and electronic properties of bilayer-α (BL-α) borophene on Ag(111) at the atomic scale. Using a carbon monoxide (CO)-functionalized scanning tunneling microscopy tip, the BL-α borophene IETS spectra reveal unique features compared to single-layer borophene and typical CO vibrations on metal surfaces. Distinct vibrational spectra are further observed for hollow and filled boron hexagons within the BL-α borophene unit cell, providing evidence for interlayer bonding between the constituent borophene layers. These experimental results are compared with density functional theory calculations to elucidate the interplay between the vibrational modes and electronic states in bilayer borophene.
Collapse
Affiliation(s)
- Hui Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Levi C Felix
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qiucheng Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qiyuan Ruan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 75005, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Luo Y, Sheng S, Pisarra M, Martin-Jimenez A, Martin F, Kern K, Garg M. Selective excitation of vibrations in a single molecule. Nat Commun 2024; 15:6983. [PMID: 39143046 PMCID: PMC11324655 DOI: 10.1038/s41467-024-51419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The capability to excite, probe, and manipulate vibrational modes is essential for understanding and controlling chemical reactions at the molecular level. Recent advancements in tip-enhanced Raman spectroscopies have enabled the probing of vibrational fingerprints in a single molecule with Ångström-scale spatial resolution. However, achieving controllable excitation of specific vibrational modes in individual molecules remains challenging. Here, we demonstrate the selective excitation and probing of vibrational modes in single deprotonated phthalocyanine molecules utilizing resonance Raman spectroscopy in a scanning tunneling microscope. Selective excitation is achieved by finely tuning the excitation wavelength of the laser to be resonant with the vibronic transitions between the molecular ground electronic state and the vibrational levels in the excited electronic state, resulting in the state-selective enhancement of the resonance Raman signal. Our approach contributes to setting the stage for steering chemical transformations in molecules on surfaces by selective excitation of molecular vibrations.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Shaoxiang Sheng
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michele Pisarra
- Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036, Rende, CS, Italy
- INFN-LNF, Gruppo Collegato di Cosenza, Via P. Bucci, Cubo 31C, 87036, Rende, CS, Italy
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Manish Garg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| |
Collapse
|
5
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
6
|
Alkorta M, Cizek R, Néel N, Frederiksen T, Kröger J. Impact of Single-Melamine Tautomerization on the Excitation of Molecular Vibrations in Inelastic Electron Tunneling Spectroscopy. NANO LETTERS 2024; 24:7195-7201. [PMID: 38748446 PMCID: PMC11194823 DOI: 10.1021/acs.nanolett.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/26/2024]
Abstract
Vibrational quanta of melamine and its tautomer are analyzed at the single-molecule level on Cu(100) with inelastic electron tunneling spectroscopy. The on-surface tautomerization gives rise to markedly different low-energy vibrational spectra of the isomers, as evidenced by a shift in mode energies and a variation in inelastic cross sections. Spatially resolved spectroscopy reveals the maximum signal strength on an orbital nodal plane, excluding resonant inelastic tunneling as the mechanism underlying the quantum excitations. Decreasing the probe-molecule separation down to the formation of a chemical bond between the melamine amino group and the Cu apex atom of the tip leads to a quenched vibrational spectrum with different excitation energies. Density functional and electron transport calculations reproduce the experimental findings and show that the shift in the quantum energies applies to internal molecular bending modes. The simulations moreover suggest that the bond formation represents an efficient manner of tautomerizing the molecule.
Collapse
Affiliation(s)
- Manex Alkorta
- Donostia
International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales (CFM) CSIC-UPV/EHU, E-20018 Donostia-San Sebastián, Spain
| | - Rebecca Cizek
- Institut
für Physik, Technische Universität
Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut
für Physik, Technische Universität
Ilmenau, D-98693 Ilmenau, Germany
| | - Thomas Frederiksen
- Donostia
International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Jörg Kröger
- Institut
für Physik, Technische Universität
Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
7
|
Liu X, Wei Y, Fu Q, Shen X. Effect of Bystander Hydrogen Atoms on Hydrogen Desorption on Single-Atom Alloy Surfaces: Insights from Simulated Temperature-Programmed Desorption Spectra. J Phys Chem Lett 2024:5130-5136. [PMID: 38709226 DOI: 10.1021/acs.jpclett.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Single-atom alloy (SAA) catalysts exhibit unique and excellent catalytic properties in heterogeneous hydrogenation/dehydrogenation reactions. A thorough understanding of the microscopic surface processes is essential to improve the catalytic performance. Here, from a new perspective of the temperature-programmed desorption (TPD) spectra of hydrogen (H) on two common SAA surfaces, Pt@Cu(111) and Pd@Cu(111), we reveal and confirm the key influence of H atoms attached to Pt/Pd dopants, i.e., the H atom bystander, on the desorption process of surface H atoms. It is found that only after considering the effect of the H atom bystander can the simulated TPD spectra well reproduce the experimentally observed higher desorption temperature on Pt@Cu(111) than on Pd@Cu(111) and the leftward shift of the TPD peak with increasing H atom coverage; otherwise, the features are inconsistent with experiments. Our work provides direct evidence for the effect of bystander H atoms from a simulation perspective.
Collapse
Affiliation(s)
- Xiaojing Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
- School of Future Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Yongxue Wei
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei 230026, PR China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, PR China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
8
|
Bi L, Jamnuch S, Chen A, Do A, Balto KP, Wang Z, Zhu Q, Wang Y, Zhang Y, Tao AR, Pascal TA, Figueroa JS, Li S. Molecular-Scale Visualization of Steric Effects of Ligand Binding to Reconstructed Au(111) Surfaces. J Am Chem Soc 2024; 146:11764-11772. [PMID: 38625675 PMCID: PMC11066864 DOI: 10.1021/jacs.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.
Collapse
Affiliation(s)
- Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Sasawat Jamnuch
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Amanda Chen
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Alexandria Do
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Krista P. Balto
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Zhe Wang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
| | - Yufei Wang
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Yanning Zhang
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 611731, China
| | - Andrea R. Tao
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Tod A. Pascal
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
- Department
of Nano and Chemical Engineering, University
of California, San Diego, California 92093-0448, United States
| | - Joshua S. Figueroa
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, California 92093-0418, United States
| |
Collapse
|
9
|
Bian K, Zheng W, Chen X, Zhang S, Stöhr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y. A scanning probe microscope compatible with quantum sensing at ambient conditions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053707. [PMID: 38819258 DOI: 10.1063/5.0202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
We designed and built up a new type of ambient scanning probe microscope (SPM), which is fully compatible with state-of-the-art quantum sensing technology based on the nitrogen-vacancy (NV) centers in diamond. We chose a qPlus-type tuning fork (Q up to ∼4400) as the current/force sensor of SPM for its high stiffness and stability under various environments, which yields atomic resolution under scanning tunneling microscopy mode and 1.2-nm resolution under atomic force microscopy mode. The tip of SPM can be used to directly image the topography of nanoscale targets on diamond surfaces for quantum sensing and to manipulate the electrostatic environment of NV centers to enhance their sensitivity up to a single proton spin. In addition, we also demonstrated scanning magnetometry and electrometry with a spatial resolution of ∼20 nm. Our new system not only paves the way for integrating atomic/molecular-scale color-center qubits onto SPM tips to produce quantum tips but also provides the possibility of fabricating color-center qubits with nanoscale or atomic precision.
Collapse
Affiliation(s)
- Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Wentian Zheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Xiakun Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Shichen Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Rainer Stöhr
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Andrej Denisenko
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Sen Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jörg Wrachtrup
- Third Institute of Physics, University of Stuttgart and Institute for Quantum Science and Technology (IQST), Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Meng Q, Zhang J, Zhang Y, Chu W, Mao W, Zhang Y, Yang J, Luo Y, Dong Z, Hou JG. Local heating and Raman thermometry in a single molecule. SCIENCE ADVANCES 2024; 10:eadl1015. [PMID: 38232173 DOI: 10.1126/sciadv.adl1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
Because of the nonequilibrium nature of thermal effects at the nanoscale, the characterization of local thermal effects within a single molecule is highly challenging. Here, we demonstrate a way to characterize the local thermal properties of a single fullerene (C60) molecule during current-induced heating processes through tip-enhanced anti-Stokes Raman spectroscopy. Although the measured vibron populations are far from equilibrium with the environment, we can still define an "effective temperature (Teff)" statistically via a Bose-Einstein distribution, suggesting a local equilibrium within the molecule. With increased current heating, Teff is found to rise up to about 1150 K until the C60 cage is decomposed. Such a decomposition temperature is similar to that reported for ensemble C60 samples, thus justifying the validity of our methodology. Moreover, the possible reaction pathway and product can be identified because of the chemical sensitivity of Raman spectroscopy. Our findings provide a practical method for noninvasively detecting the local heating effect inside a single molecule under nonequilibrium conditions.
Collapse
Affiliation(s)
- Qiushi Meng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Junxian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weizhe Chu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wenjie Mao
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhenchao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - J G Hou
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Simpson GJ, Persson M, Grill L. Adsorbate motors for unidirectional translation and transport. Nature 2023; 621:82-86. [PMID: 37673992 DOI: 10.1038/s41586-023-06384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Abstract
Artificial molecular motors are designed to transform external energy into useful work in the form of unidirectional motion1. They have been studied mainly in solution2-4, but also on solid surfaces5,6, which provide fixed reference points, allowing for tracking of their movement. However, these molecules require sophisticated design and synthesis, because the motor function must be imprinted into the chemical structure, and show reduced functionality on surfaces compared with in solution5-8. DNA walkers9,10, on the other hand, impart high directionality as they include the surface as part of the motor function, but they require chemical surface patterning and sequential solvent modification for motor activation. Here we show how efficient motors can operate at much smaller length scales on a homogeneous metal surface without any liquid. This is realized by combining a surface with a simple molecule, which, by itself, does not contain any motor unit. The motion, which is tracked at the single-molecule level, is triggered by intramolecular proton transfer with a corresponding modulation of the potential energy surface. Each molecule moves with 100 percent unidirectionality along an atomically defined straight line. Proof of the motor performing meaningful work is shown by controlled transport of single carbon monoxide molecules. This simplistic concept could form the basis for the controlled bottom-up assembly of nanostructures at the atomic scale.
Collapse
Affiliation(s)
- Grant J Simpson
- Department of Physical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | - Mats Persson
- Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Leonhard Grill
- Department of Physical Chemistry, Institute of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
12
|
Wu H, Li G, Hou J, Sotthewes K. Probing surface properties of organic molecular layers by scanning tunneling microscopy. Adv Colloid Interface Sci 2023; 318:102956. [PMID: 37393823 DOI: 10.1016/j.cis.2023.102956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
In view of the relevance of organic thin layers in many fields, the fundamentals, growth mechanisms, and dynamics of thin organic layers, in particular thiol-based self-assembled monolayers (SAMs) on Au(111) are systematically elaborated. From both theoretical and practical perspectives, dynamical and structural features of the SAMs are of great intrigue. Scanning tunneling microscopy (STM) is a remarkably powerful technique employed in the characterization of SAMs. Numerous research examples of investigation about the structural and dynamical properties of SAMs using STM, sometimes combined with other techniques, are listed in the review. Advanced options to enhance the time resolution of STM are discussed. Additionally, we elaborate on the extremely diverse dynamics of various SAMs, such as phase transitions and structural changes at the molecular level. In brief, the current review is expected to supply a better understanding and novel insights regarding the dynamical events happening in organic SAMs and how to characterize these processes.
Collapse
Affiliation(s)
- Hairong Wu
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Genglin Li
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jirui Hou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China; Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, the Netherlands.
| |
Collapse
|
13
|
Wu X, Néel N, Brandbyge M, Kröger J. Enhancement of Graphene Phonon Excitation by a Chemically Engineered Molecular Resonance. PHYSICAL REVIEW LETTERS 2023; 130:116201. [PMID: 37001107 DOI: 10.1103/physrevlett.130.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
The abstraction of pyrrolic hydrogen from a single phthalocyanine on graphene turns the molecule into a sensitive probe for graphene phonons. The inelastic electron transport measured with a scanning tunneling microscope across the molecular adsorbate and graphene becomes strongly enhanced for a graphene out-of-plane acoustic phonon mode. Supporting density functional and transport calculations elucidate the underlying physical mechanism. A molecular orbital resonance close to the Fermi energy controls the inelastic current while specific phonon modes of graphene are magnified due to their coupling to symmetry-equivalent vibrational quanta of the molecule.
Collapse
Affiliation(s)
- Xiaocui Wu
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Mads Brandbyge
- Center of Nanostructured Graphene, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
14
|
Srivastava G, Štacko P, Mendieta-Moreno JI, Edalatmanesh S, Kistemaker JCM, Heideman GH, Zoppi L, Parschau M, Feringa BL, Ernst KH. Driving a Third Generation Molecular Motor with Electrons Across a Surface. ACS NANO 2023; 17:3931-3938. [PMID: 36794964 DOI: 10.1021/acsnano.2c12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excitation of single molecules with electrons tunneling between a sharp metallic tip of a scanning tunneling microscope and a metal surface is one way to study and control dynamics of molecules on surfaces. Electron tunneling induced dynamics may lead to hopping, rotation, molecular switching, or chemical reactions. Molecular motors that convert rotation of subgroups into lateral movement on a surface can in principle also be driven by tunneling electrons. For such surface-bound motor molecules the efficiency of motor action with respect to electron dose is still not known. Here, the response of a molecular motor containing two rotor units in the form of overcrowded alkene groups to inelastic electron tunneling has been examined on a Cu(111) surface in ultrahigh vacuum at 5 K. Upon vibrational excitation, switching between different molecular conformations is observed, including conversion of enantiomeric states of chiral conformations. Tunneling at energies in the range of electronic excitations causes activation of motor action and movement across the surface. The expected unidirectional rotation of the two rotor units causes forward movements but with a low degree of translational directionality.
Collapse
Affiliation(s)
- Gitika Srivastava
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Peter Štacko
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jesús I Mendieta-Moreno
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Shayan Edalatmanesh
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jos C M Kistemaker
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - G Henrieke Heideman
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Laura Zoppi
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Manfred Parschau
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Karl-Heinz Ernst
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Traeger GA, Teichmann MH, Schröder B, Wenderoth M. Combining grating-coupled illumination and image recognition for stable and localized optical scanning tunneling microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023702. [PMID: 36859060 DOI: 10.1063/5.0123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Combining scanning tunneling microscopy (STM) and optical excitation has been a major objective in STM for the last 30 years to study light-matter interactions on the atomic scale. The combination with modern pulsed laser systems even made it possible to achieve a temporal resolution down to the femtosecond regime. A promising approach toward a truly localized optical excitation is featured by nanofocusing via an optical antenna spatially separated from the tunnel junction. Until now, these experiments have been limited by thermal instabilities introduced by the laser. This paper presents a versatile solution to this problem by actively coupling the laser and STM, bypassing the vibration-isolation without compromising it. We utilize optical image recognition to monitor the position of the tunneling junction and compensate for any movement of the microscope relative to the laser setup with up to 10 Hz by adjusting the beamline. Our setup stabilizes the focus position with high precision (<1 μm) on long timescales (>1 h) and allows for high resolution STM under intense optical excitation with femtosecond pulses.
Collapse
Affiliation(s)
- Georg A Traeger
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Lower Saxony, Germany
| | - Marlo H Teichmann
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Lower Saxony, Germany
| | - Benjamin Schröder
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Lower Saxony, Germany
| | - Martin Wenderoth
- IV. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Lower Saxony, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
17
|
Zhang D, Zuo L, Ye L, Chen ZH, Wang Y, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J Chem Phys 2023; 158:014106. [PMID: 36610957 DOI: 10.1063/5.0131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
Collapse
Affiliation(s)
- Daochi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Jaekel S, Durant E, Schied M, Persson M, Ostapko J, Kijak M, Waluk J, Grill L. Tautomerization of single asymmetric oxahemiporphycene molecules on Cu(111). Phys Chem Chem Phys 2023; 25:1096-1104. [PMID: 36530140 DOI: 10.1039/d2cp04746b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have studied 22-oxahemiporphycene molecules by a combination of scanning tunneling microscopy at low temperatures and density functional theory calculations. In contrast to other molecular switches with typically two switching states, these molecules can in principle exist in three different tautomers, due to their asymmetry and three inequivalent binding positions of a hydrogen atom in their macrocycle. Different tautomers are identified from the typical appearance on the surface and tunneling electrons can be used to tautomerize single molecules in a controllable way with the highest rates if the STM tip is placed close to the hydrogen binding positions in the cavity. Characteristic switching processes are explained by the different energy pathways upon adsorption on the surface. Upon applying higher bias voltages, deprotonation occurs instead of tautomerization, which becomes evident in the molecular appearance.
Collapse
Affiliation(s)
- Simon Jaekel
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Emile Durant
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Monika Schied
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| | - Mats Persson
- Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK
| | - Jakub Ostapko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Leonhard Grill
- Department of Physical Chemistry, University of Graz, Heinrichstraße 28, Graz, Austria.
| |
Collapse
|
19
|
An Y, Tang X, Wang W, Hao D, Zhao X, Wang M, Ye X, Shan X, Lu X. Spatially Resolved Stimulation for the Controlled Debromination in Single Molecules on a Surface. ACS NANO 2022; 16:18592-18600. [PMID: 36066020 DOI: 10.1021/acsnano.2c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A controlled chemical reaction on a specific bond in a single molecule is an inevitable step toward atomic engineering and fabrication. Here, we explored the debromination of a single 9,10-dibromoanthracene (DBA) molecule on a surface as stimulated by the voltage pulse through the tip of a scanning tunneling microscope (STM). A voltage threshold of about 2.2 V is obtained, and the nature of single-electron process is revealed. The spatially resolved debromination yield is obtained as a function of the pulse magnitude, which presents strong asymmetry for the two C-Br bonds. The optimal stimulation parameters including the pulse magnitude and the tip locations are suggested. The distinct dynamics in dissociation of the two bonds are illustrated by their energy diagrams and recoil paths, as derived by the first-principles density functional theory (DFT) calculation. The influence of the local electric field due to the STM tip on the dissociation of the C-Br bond has also been discussed. The study presents detailed practice for the controlled debromination in a single DBA molecule, which may lead to automated atomic engineering and fabrication of artificial nanostructures in the future.
Collapse
Affiliation(s)
- Yang An
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenyu Wang
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Hao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Muyu Wang
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xia Ye
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Center for Excellence in Topological Quantum Computation, Beijing, 100190, China
| |
Collapse
|
20
|
Cirera B, Wolf M, Kumagai T. Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy. ACS NANO 2022; 16:16443-16451. [PMID: 36197071 DOI: 10.1021/acsnano.2c05642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heating and cooling in current-carrying molecular junctions is a crucial issue in molecular electronics. The microscopic mechanism involves complex factors such as energy inputs, molecular properties, electrode materials, and molecule-electrode coupling. To gain an in-depth understanding, it is a desired experiment to assess vibrational population that represents the energy distribution stored within the molecule. Here, we demonstrate the direct observation of vibrational heating in a single C60 molecule by means of tip-enhanced Raman spectroscopy (TERS). The heating of respective vibrational modes is monitored by anti-Stokes Raman scattering in the TERS spectra. The precise control of the gap distance in the single-molecule junction allows us to reveal a qualitatively different heating mechanism in distinct electron transport regimes, namely, the tunneling and single-molecule point contact (SMPC) regimes. Strong Joule heating via inelastic electron-vibration scattering occurs in the SMPC regime, whereas optical heating is predominant in the tunneling regime. The strong Joule heating at the SMPC also leads to a pronounced red shift of the Raman peak position and line width broadening. Furthermore, by examining the SMPC with several types of contact surfaces, we show that the heating efficiency is related to the current density at the SMPC and the vibrational dissipation channels into the electrode.
Collapse
Affiliation(s)
- Borja Cirera
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195Berlin, Germany
| | - Martin Wolf
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195Berlin, Germany
| | - Takashi Kumagai
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195Berlin, Germany
- Center for Mesoscopic Sciences, Institute for Molecular Science, Okazaki444-8585, Japan
| |
Collapse
|
21
|
Liu S, Wolf M, Kumagai T. Nanoscale Heating of an Ultrathin Oxide Film Studied by Tip-Enhanced Raman Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 128:206803. [PMID: 35657872 DOI: 10.1103/physrevlett.128.206803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
We report on the nanoscale heating mechanism of an ultrathin ZnO film using low-temperature tip-enhanced Raman spectroscopy. Under the resonance condition, intense Stokes and anti-Stokes Raman scattering can be observed for the phonon modes of a two-monolayer (ML) ZnO on an Ag(111) surface, enabling us to monitor local heating at the nanoscale. It is revealed that the local heating originates mainly from inelastic electron tunneling through the electronic resonance when the bias voltage exceeds the conduction band edge of the 2-ML ZnO. When the bias voltage is lower than the conduction band edge, the local heating arises from two different contributions, namely direct optical excitation between the interface state and the conduction band of 2-ML ZnO or injection of photoexcited electrons from an Ag tip into the conduction band. These optical heating processes are promoted by localized surface plasmon excitation. Simultaneous mapping of tip-enhanced Raman spectroscopy and scanning tunneling spectroscopy for 2-ML ZnO including an atomic-scale defect demonstrates visualizing a correlation between the heating efficiency and the local density of states, which further allows us to analyze the local electron-phonon coupling strength with ∼2 nm spatial resolution.
Collapse
Affiliation(s)
- Shuyi Liu
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Wolf
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Takashi Kumagai
- Department of Physical Chemistry, Fritz-Haber Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
- Center for Mesoscopic Sciences, Institute for Molecular Science, Okazaki 444-8585, Japan
| |
Collapse
|
22
|
Whaley-Mayda L, Guha A, Tokmakoff A. Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy. J Chem Phys 2022; 156:174202. [DOI: 10.1063/5.0088435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence-encoded Infrared (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-molecule sensitivity in solution without near-field enhancement. This work explores the practical experimental factors that are required for successful FEIR measurements in both the single-molecule and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between molecules, we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-molecule experiments.
Collapse
Affiliation(s)
| | - Abhirup Guha
- The University of Chicago, United States of America
| | - Andrei Tokmakoff
- Department of Chemistry, University of Chicago, United States of America
| |
Collapse
|
23
|
Review of the use of nanodevices to detect single molecules. Anal Biochem 2022; 654:114645. [DOI: 10.1016/j.ab.2022.114645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
|
24
|
Direct imaging of single-molecule electrochemical reactions in solution. Nature 2021; 596:244-249. [PMID: 34381236 DOI: 10.1038/s41586-021-03715-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Chemical reactions tend to be conceptualized in terms of individual molecules transforming into products, but are usually observed in experiments that probe the average behaviour of the ensemble. Single-molecule methods move beyond ensemble averages and reveal the statistical distribution of reaction positions, pathways and dynamics1-3. This has been shown with optical traps and scanning probe microscopy manipulating and observing individual reactions at defined locations with high spatial resolution4,5, and with modern optical methods using ultrasensitive photodetectors3,6,7 that enable high-throughput single-molecule measurements. However, effective probing of single-molecule solution chemistry remains challenging. Here we demonstrate optical imaging of single-molecule electrochemical reactions7 in aqueous solution and its use for super-resolution microscopy. The method utilizes a chemiluminescent reaction involving a ruthenium complex electrochemically generated at an electrode8, which ensures minimal background signal. This allows us to directly capture single photons of the electrochemiluminescence of individual reactions, and to develop super-resolved electrochemiluminescence microscopy for imaging the adhesion dynamics of live cells with high spatiotemporal resolution. We anticipate that our method will advance the fundamental understanding of electrochemical reactions and prove useful for bioassays and cell-imaging applications.
Collapse
|
25
|
Ke Y, Erpenbeck A, Peskin U, Thoss M. Unraveling current-induced dissociation mechanisms in single-molecule junctions. J Chem Phys 2021; 154:234702. [PMID: 34241274 DOI: 10.1063/5.0053828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding current-induced bond rupture in single-molecule junctions is both of fundamental interest and a prerequisite for the design of molecular junctions, which are stable at higher-bias voltages. In this work, we use a fully quantum mechanical method based on the hierarchical quantum master equation approach to analyze the dissociation mechanisms in molecular junctions. Considering a wide range of transport regimes, from off-resonant to resonant, non-adiabatic to adiabatic transport, and weak to strong vibronic coupling, our systematic study identifies three dissociation mechanisms. In the weak and intermediate vibronic coupling regime, the dominant dissociation mechanism is stepwise vibrational ladder climbing. For strong vibronic coupling, dissociation is induced via multi-quantum vibrational excitations triggered either by a single electronic transition at high bias voltages or by multiple electronic transitions at low biases. Furthermore, the influence of vibrational relaxation on the dissociation dynamics is analyzed and strategies for improving the stability of molecular junctions are discussed.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - André Erpenbeck
- School of Chemistry, The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Peskin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Michael Thoss
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
26
|
Bian K, Gerber C, Heinrich AJ, Müller DJ, Scheuring S, Jiang Y. Scanning probe microscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00033-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Wang Y, Wemhoff PI, Lewandowski M, Nilius N. Electron stimulated desorption of vanadyl-groups from vanadium oxide thin films on Ru(0001) probed with STM. Phys Chem Chem Phys 2021; 23:8439-8445. [PMID: 33876007 DOI: 10.1039/d0cp06419j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low-temperature scanning tunnelling microscopy (STM) is employed to study electron-stimulated desorption of vanadyl groups from an ultrathin vanadium oxide film. The vanadia patches are prepared by reactive vapour deposition of V onto a Ru(0001) surface and comprise a highly ordered network of six and twelve membered V-O rings, some of them terminated by upright V[double bond, length as m-dash]O groups. The vanadyl units can be desorbed via electron injection from the STM tip in a reliable fashion. From hundreds of individual experiments, desorption rates are determined as a function of bias voltage and tunnelling current. Data analysis reveals a distinct threshold behaviour with bias onsets at +3.3 V and -2.6 V for positive and negative polarity, respectively. The desorption rate varies quadratically (cubically) with the tunnelling current at positive (negative) sample bias, indicating that V[double bond, length as m-dash]O desorption is a many-electron process. Based on our findings, a mechanism for desorption is proposed that includes resonant tunnelling into anti-bonding or out of bonding orbitals, followed by vibrational ladder climbing in the binding potential of the V[double bond, length as m-dash]O ad-system. The underlying electronic states can be identified directly in the STM conductance spectra taken on the oxide surface.
Collapse
Affiliation(s)
- Ying Wang
- Carl von Ossietzky Universität Oldenburg, Institut für Physik, D-26111 Oldenburg, Germany.
| | | | | | | |
Collapse
|
28
|
Mier C, Verlhac B, Garnier L, Robles R, Limot L, Lorente N, Choi DJ. Superconducting Scanning Tunneling Microscope Tip to Reveal Sub-millielectronvolt Magnetic Energy Variations on Surfaces. J Phys Chem Lett 2021; 12:2983-2989. [PMID: 33730501 DOI: 10.1021/acs.jpclett.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining the complex ordering ability of molecules with their local magnetic properties is a little-explored technique to tailor spin structures on surfaces. However, revealing the molecular geometry can be demanding. Nickelocene (Nc) molecules present a large spin-flip excitation leading to clear changes of conductance at the excitation-threshold bias. Using a superconducting tip, we have the energy resolution to detect small shifts of the Nc spin-flip excitation thresholds, permitting us to reveal the different individual environments of Nc molecules in an ordered layer. This knowledge allows us to reveal the adsorption configuration of a complex molecular structure formed by Nc molecules in different orientations and positions. As a consequence, we infer that Nc layers present a strong noncollinear magnetic-moment arrangement.
Collapse
Affiliation(s)
- Cristina Mier
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Benjamin Verlhac
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Léo Garnier
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Laurent Limot
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Deung-Jang Choi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
29
|
Li L, Mahapatra S, Liu D, Lu Z, Jiang N. On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS NANO 2021; 15:3578-3585. [PMID: 33606498 DOI: 10.1021/acsnano.0c08148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
On-surface synthesis via covalent coupling of adsorbed precursor molecules on metal surfaces has emerged as a promising strategy for the design and fabrication of novel organic nanoarchitectures with unique properties and potential applications in nanoelectronics, optoelectronics, spintronics, catalysis, etc. Surface-chemistry-driven molecular engineering (i.e., bond cleavage, linkage, and rearrangement) by means of thermal activation, light irradiation, and tip manipulation plays critical roles in various on-surface synthetic processes, as exemplified by the work from the Ernst group in a prior issue of ACS Nano. In this Perspective, we highlight recent advances in and discuss the outlook for on-surface syntheses and molecular engineering of carbon-based nanoarchitectures.
Collapse
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dairong Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zhongyi Lu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
30
|
Wang RP, Yang B, Fu Q, Zhang Y, Zhu R, Dong XR, Zhang Y, Wang B, Yang JL, Luo Y, Dong ZC, Hou JG. Raman Detection of Bond Breaking and Making of a Chemisorbed Up-Standing Single Molecule at Single-Bond Level. J Phys Chem Lett 2021; 12:1961-1968. [PMID: 33591760 DOI: 10.1021/acs.jpclett.1c00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Probing bond breaking and making as well as related structural changes at the single-molecule level is of paramount importance for understanding the mechanism of chemical reactions. In this work, we report in situ tracking of bond breaking and making of an up-standing melamine molecule chemisorbed on Cu(100) by subnanometer resolved tip-enhanced Raman spectroscopy (TERS). We demonstrate a vertical detection depth of about 4 Å with spectral sensitivity at the single chemical-bond level, which allows us not only to justify the up-standing configuration involving a dehydrogenation process at the bottom upon chemisorption, but also to specify the breaking of top N-H bonds and the transformation to its tautomer during photon-induced hydrogen transfer reactions. Our results indicate the chemical and structural sensitivity of TERS for single-molecule recognition beyond flat-lying planar molecules, providing new opportunities for probing the microscopic mechanism of molecular adsorption and surface reactions at the chemical-bond level.
Collapse
Affiliation(s)
- Rui-Pu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ben Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Ru Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Long Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Chao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J G Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Schultz JF, Mahapatra S, Li L, Jiang N. The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1313-1340. [PMID: 32419485 DOI: 10.1177/0003702820932229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fundamental understanding of chemistry and physical properties at the nanoscale enables the rational design of interface-based systems. Surface interactions underlie numerous technologies ranging from catalysis to organic thin films to biological systems. Since surface environments are especially prone to heterogeneity, it becomes crucial to characterize these systems with spatial resolution sufficient to localize individual active sites or defects. Spectroscopy presents as a powerful means to understand these interactions, but typical light-based techniques lack sufficient spatial resolution. This review describes the growing number of applications for the nanoscale spectroscopic technique, tip-enhanced Raman spectroscopy (TERS), with a focus on developments in areas that involve measurements in new environmental conditions, such as liquid, electrochemical, and ultrahigh vacuum. The expansion into unique environments enables the ability to spectroscopically define chemistry at the spatial limit. Through the confinement and enhancement of light at the apex of a plasmonic scanning probe microscopy tip, TERS is able to yield vibrational fingerprint information of molecules and materials with nanoscale resolution, providing insight into highly localized chemical effects.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Sayantan Mahapatra
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Linfei Li
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Nan Jiang
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
33
|
Role of molecule-electrode coupling strength in inducing inelastic transmission spectra of Hf@C28. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Kuhness D, Pal J, Yang HJ, Mammen N, Honkala K, Häkkinen H, Schneider WD, Heyde M, Freund HJ. Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001). Top Catal 2020. [DOI: 10.1007/s11244-020-01290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe adsorption behavior of single CO molecules at 4 K bound to Au adatoms on a Ag(001) metal surface is studied with scanning tunneling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). In contrast to earlier observations two different binding configurations are observed—one on top of a Au adatom and the other one adsorbed laterally to Au on Ag(001). Moreover, IETS reveals different low-energy vibrational energies for the two binding sites as compared to the one for a single CO molecule bound to Ag(001). Density functional theory (DFT) calculations of the adsorption energies, the diffusion barriers, and the vibrational frequencies of the CO molecule on the different binding sites rationalize the experimental findings.
Collapse
|
35
|
Derr JB, Tamayo J, Clark JA, Morales M, Mayther MF, Espinoza EM, Rybicka-Jasińska K, Vullev VI. Multifaceted aspects of charge transfer. Phys Chem Chem Phys 2020; 22:21583-21629. [PMID: 32785306 PMCID: PMC7544685 DOI: 10.1039/d0cp01556c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.
Collapse
Affiliation(s)
- James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Shiveshwarkar P, Brzozowski R, Zhdanov A, Shi S, Eswara P, Pyayt A. Innovative optofluidics and microscopy-based rapid analysis of pathogens. BIOMEDICAL OPTICS EXPRESS 2020; 11:5060-5069. [PMID: 33014600 PMCID: PMC7510850 DOI: 10.1364/boe.396345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The timely knowledge and prescription of the most suitable antibiotic to treat bacterial infections is critical for the recovery of patients battling life-threatening bacterial infections. Unfortunately, current standard-of-care approaches relies on the empiric prescription of an antibiotic, as determination of the most effective antibiotic requires multiple time-consuming steps. These steps often include culturing of the bacterium responsible for infection and subsequent antibiotic susceptibility testing. Here we introduce an optofluidic technology that allows us to capture bacterial cells efficiently and rapidly from different biological samples and use the captured cells for rapid antibiotic selection thereby bypassing the need to culture the bacterium.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave, ENB118, Tampa, FL 33620, USA
| | - Priyanka Shiveshwarkar
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave, ENB118, Tampa, FL 33620, USA
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E, Fowler Ave. ISA 2015, Tampa, FL 33620, USA
| | - Arseny Zhdanov
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave, ENB118, Tampa, FL 33620, USA
| | - Shulin Shi
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave, ENB118, Tampa, FL 33620, USA
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E, Fowler Ave. ISA 2015, Tampa, FL 33620, USA
| | - Anna Pyayt
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Ave, ENB118, Tampa, FL 33620, USA
| |
Collapse
|
37
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
38
|
Lansakara TI, Morris HS, Singh P, Kohen A, Tivanski AV. Rigid Double-Stranded DNA Linkers for Single Molecule Enzyme-Drug Interaction Measurements Using Molecular Recognition Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4174-4183. [PMID: 32233509 DOI: 10.1021/acs.langmuir.9b03495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-molecule studies can reveal the distribution of states and interactions between ligand-enzyme complexes not accessible for most studies that measure a large ensemble average response of many molecules. Furthermore, in some biological applications, the information regarding the outliers, not the average of measured properties, can be more important. The high spatial and force resolution provided by atomic force microscopy (AFM) under physiological conditions has been utilized in this study to quantify the force-distance relations of enzyme-drug interactions. Different immobilization techniques of the protein to a surface and the drug to AFM tip were quantitatively compared to improve the accuracy and precision of the measurement. Protein that is directly bound to the surface, forming a monolayer, was compared to enzyme molecules bound to the surface with rigid double-stranded (ds) DNA spacers. These surfaces immobilization techniques were studied with the drug bound directly to the AFM tip and drug bound via flexible poly(ethylene glycol) and rigid dsDNA linkers. The activity of the enzyme was found to be not significantly altered by immobilization methods relative to its activity in solution. The findings indicate that the approach for studying drug-enzyme interaction based on rigid dsDNA linker on the surface and either flexible or rigid linker on the tip affords straightforward, highly specific, reproducible, and accurate force measurements with a potential for single-molecule level studies. The method could facilitate in-depth examination of a broad spectrum of biological targets and potential drugs.
Collapse
Affiliation(s)
| | - Holly S Morris
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
39
|
Wallum A, Nguyen HA, Gruebele M. Excited-State Imaging of Single Particles on the Subnanometer Scale. Annu Rev Phys Chem 2020; 71:415-433. [DOI: 10.1146/annurev-physchem-071119-040108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.
Collapse
Affiliation(s)
- Alison Wallum
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huy A. Nguyen
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
40
|
Reecht G, Krane N, Lotze C, Zhang L, Briseno AL, Franke KJ. Vibrational Excitation Mechanism in Tunneling Spectroscopy beyond the Franck-Condon Model. PHYSICAL REVIEW LETTERS 2020; 124:116804. [PMID: 32242680 DOI: 10.1103/physrevlett.124.116804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Vibronic spectra of molecules are typically described within the Franck-Condon model. Here, we show that highly resolved vibronic spectra of large organic molecules on a single layer of MoS_{2} on Au(111) show spatial variations in their intensities, which cannot be captured within this picture. We explain that vibrationally mediated perturbations of the molecular wave functions need to be included into the Franck-Condon model. Our simple model calculations reproduce the experimental spectra at arbitrary position of the scanning tunneling microscope's tip over the molecule in great detail.
Collapse
Affiliation(s)
- Gaël Reecht
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Nils Krane
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Lotze
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Lei Zhang
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Alejandro L Briseno
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Katharina J Franke
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
41
|
Hou XY, Zhang F, Tu XH, Gu YD, Zhang MD, Gong J, Tu YB, Wang BT, Lv WG, Weng HM, Ren ZA, Chen GF, Zhu XD, Hao N, Shan L. Inelastic Electron Tunneling in 2H-Ta_{x}Nb_{1-x}Se_{2} Evidenced by Scanning Tunneling Spectroscopy. PHYSICAL REVIEW LETTERS 2020; 124:106403. [PMID: 32216384 DOI: 10.1103/physrevlett.124.106403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
We report a detailed study of tunneling spectra measured on 2H-Ta_{x}Nb_{1-x}Se_{2} (x=0∼0.1) single crystals using a low-temperature scanning tunneling microscope. The prominent gaplike feature, which has not been understood for a long time, was found to be accompanied by some "in-gap" fine structures. By investigating the second-derivative spectra and their temperature and magnetic field dependencies, we were able to prove that inelastic electron tunneling is the origin of these features and obtain the Eliashberg function of 2H-Ta_{x}Nb_{1-x}Se_{2} at an atomic scale, providing a potential way to study the local Eliashberg function and the phonon spectra of the related transition-metal dichalcogenides.
Collapse
Affiliation(s)
- Xing-Yuan Hou
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Hai Tu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Dong Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Meng-Di Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Bing Tu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Bao-Tian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Gang Lv
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Ming Weng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-An Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Gen-Fu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-De Zhu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ning Hao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Shan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Yadalam HK, Mukamel S, Harbola U. Energy, Particle, and Photon Fluxes in Molecular Junctions. J Phys Chem Lett 2020; 11:1762-1766. [PMID: 32046490 DOI: 10.1021/acs.jpclett.0c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electroluminescence from a current-carrying molecular junction at steady state is simulated. (Charge) particle conservation and energy conservation are satisfied by a perturbative expansion in the radiation/matter coupling. Our approach makes it possible to adopt standard tools of traditional (equilibrium) spectroscopy to study signals from open systems such as molecular junctions. The nonperturbative analysis of spontaneous light emission signals coincides with the perturbative approach for weak molecule-field coupling.
Collapse
Affiliation(s)
- Hari Kumar Yadalam
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92614, United States
| | - Upendra Harbola
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Yadalam HK, Mitra S, Harbola U. Spontaneous Light Emission from Molecular Junctions: Theoretical Analysis of Upconversion Signal. J Phys Chem A 2019; 123:10594-10598. [PMID: 31718183 DOI: 10.1021/acs.jpca.9b09917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spontaneous light emission from a current-carrying molecular junction is analyzed. There are two leading processes, fluorescence and electroluminescence, as defined using Liouville space diagrams within the perturbative method, that contribute to the light emission from junctions. This allows us to identify a general mechanism that explains the origin of the so-called upconversion electroluminescence (UCEL) signal, which has been observed in a variety of molecular junctions [Umera et al. Chem. Phys. Lett. 2007, 448, 232; Dong et al. Nat. Photonics 2010, 4, 50]. Here, we show that a double-peak signal, one at energy less than the applied bias and the other at higher energy (UCEL), is generated due to overlap between two processes: one is electron transfer to create the required excited state, and the other is radiative relaxation of the excited state. The lifetimes induced by the lead interactions play a crucial role in determining the required overlap between these processes. Our analysis shows that, unlike the higher-energy signal, the lower-energy peak is sensitive to the applied bias and does not correspond to any optical resonance in the junction. The signal at higher energy is enhanced as the temperature is increased. We demonstrate our findings using nonperturbative analytic results for a model system.
Collapse
Affiliation(s)
- Hari Kumar Yadalam
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 India
| | - Souvik Mitra
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 India
| | - Upendra Harbola
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 India
| |
Collapse
|
44
|
Pazoki S, Dougherty DB. Suppression of dynamic disorder in fullerenes at metal-organic interfaces. J Chem Phys 2019; 151:214706. [DOI: 10.1063/1.5123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sara Pazoki
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Daniel B. Dougherty
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27607, USA
| |
Collapse
|
45
|
Peronio A, Okabayashi N, Griesbeck F, Giessibl F. Radio frequency filter for an enhanced resolution of inelastic electron tunneling spectroscopy in a combined scanning tunneling- and atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:123104. [PMID: 31893785 DOI: 10.1063/1.5119888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The combination of inelastic electron tunneling spectroscopy (IETS), also used for IET spectrum based on scanning tunneling microscopy with atomic force microscopy (AFM) enables us to measure the vibrational energies of a single molecule along with the force exerted by the tip of a microscope, which deepens our understanding on the interaction between the tip and the molecule on a surface. The resolution of IETS is a crucial factor in determining the vibrational energies of a molecule. However, radio frequency (RF) noise from the environment significantly deteriorates the resolution. We introduce an RF noise filtering technique, which enables high resolution IETS while maintaining uncompromised AFM performance, demonstrated by vibrational measurements of a CO molecule on a copper surface.
Collapse
Affiliation(s)
- Angelo Peronio
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Norio Okabayashi
- Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Ishikawa, Japan
| | - Florian Griesbeck
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| | - Franz Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
46
|
Kalla M, Chebrolu NR, Chatterjee A. Magneto-transport properties of a single molecular transistor in the presence of electron-electron and electron-phonon interactions and quantum dissipation. Sci Rep 2019; 9:16510. [PMID: 31712611 PMCID: PMC6848168 DOI: 10.1038/s41598-019-53008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022] Open
Abstract
A single molecular transistor is considered in the presence of electron-electron interaction, electron-phonon interaction, an external magnetic field and dissipation. The quantum transport properties of the system are investigated using the Anderson-Holstein Hamiltonian together with the Caldeira-Leggett model that takes care of the damping effect. The phonons are first removed from the theory by averaging the Hamiltonian with respect to a coherent phonon state and the resultant electronic Hamiltonian is finally solved with the help of the Green function technique due to Keldysh. The spectral function, spin-polarized current densities, differential conductance and spin polarization current are determined.
Collapse
Affiliation(s)
- Manasa Kalla
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | | | - Ashok Chatterjee
- School of Physics, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
47
|
Jang S, Shin T, Abbas HG, Hahn JR, Kang HS. Orientation-specific switching of inelastic electron tunneling in an oxygen-pyridine complex adsorbed onto an Ag(110) surface. J Chem Phys 2019; 151:114703. [PMID: 31542022 DOI: 10.1063/1.5110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here, we report the development of a molecular rotary switch (a "stator-rotor" consisting of a single oxygen molecule as a stator and a single pyridine molecule as a rotor) on a silver surface. The pyridine molecule was bonded to the oxygen molecule and was found to rotate to enable "ON" or "OFF" vibrational conductance through the oxygen molecule. Four stable sites around the oxygen molecule were observed, and vibration conductance turned on and off depending on the site at which the pyridine molecule bonded. The spatially resolved mapping of the vibrational change revealed two locations of maximal vibration intensity, separated by ∼3 Å. These positions acted as two conducting channels. The two distinct vibrational energy levels were associated with the switching process. Adsorption-induced electron transfer between the silver layers and the molecules enhanced the local interactions between the molecules. The two vibration modes were excited by resonant tunneling despite substantial interactions between the molecules, which resulted in a decrease in tunneling conductance. An independent pathway exists for the vibrational excitation process by tunneling electrons and intermolecular interactions.
Collapse
Affiliation(s)
- Sanghoon Jang
- Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Taeho Shin
- Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Hafiz Ghulam Abbas
- Department of Nanoscience and Technology, Chonbuk National University, Jeonju 54896, South Korea
| | - Jae R Hahn
- Department of Chemistry and Bioactive Material Sciences, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 54896, South Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials Engineering, College of Engineering, Jeonju University, Jeonju 55069, South Korea
| |
Collapse
|
48
|
Two-dimensional polymer knits together and unravels in an electric field. Nature 2019; 572:448-449. [DOI: 10.1038/d41586-019-02452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Benjalal Y, Bonvoisin J, Bouju X. Unraveling the molecular conformations of a single ruthenium complex adsorbed on the Ag(111) surface by calculations. Phys Chem Chem Phys 2019; 21:10022-10027. [PMID: 31041976 DOI: 10.1039/c9cp01244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tris(dibenzoylmethanato)ruthenium (Ru(dbm)3) molecule has recently been characterized by scanning tunneling microscopy (STM) experiments upon adsorption on Ag(111). The adsorbed Ru(dbm)3 molecule shows two conformations with respect to the [11[combining macron]0] direction of the substrate, one with a three-lobed feature and the other one with a bi-lobed structure. For each of these structures, the molecule can take two geometries (states). Molecular mechanics calculations in a semi-empirical framework and STM calculated images reveal that these states on the substrate originate from the enantiomer of the Ru(dbm)3 molecule in the case of three-lobed structure and from the rotation of the two phenyls in the top dbm moities for the bi-lobed form.
Collapse
Affiliation(s)
- Youness Benjalal
- Université Sultan Moulay Slimane, Faculté polydisciplinaire, Département de chimie, Béni Mellal, Morocco.
| | | | | |
Collapse
|
50
|
Mejía L, Franco I. Force-conductance spectroscopy of a single-molecule reaction. Chem Sci 2019; 10:3249-3256. [PMID: 30996909 PMCID: PMC6429593 DOI: 10.1039/c8sc04830d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/24/2019] [Indexed: 01/23/2023] Open
Abstract
We demonstrate how simultaneous measurements of conductance and force can be used to monitor the step-by-step progress of a mechanically-activated cis-to-trans isomerization single-molecule reaction, including events that cannot be distinguished using force or conductance alone. To do so, we simulated the force-conductance profile of cyclopropane oligomers connected to graphene nanoribbon electrodes that undergo a cis-to-trans isomerization during mechanical elongation. This was done using a combination of classical molecular dynamics simulation of the pulling using a reactive force field, and Landauer transport computations of the conductance with nonequilibrium Green's function methods. The isomerization events can be distinguished in both force and conductance profiles. However, the conductance profile during the mechanical elongation distinguishes between reaction intermediates that cannot be resolved using force. In turn, the force signals non-reactive deformations in the molecular backbone which are not visible in the conductance profile. These observations are shown to be robust to the choice of electrode and Hamiltonian model. The computations exemplify the potential of the integration of covalent mechanochemistry with molecular conductance to investigate chemical reactivity at the single-entity limit.
Collapse
Affiliation(s)
- Leopoldo Mejía
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , USA .
| | - Ignacio Franco
- Department of Chemistry , University of Rochester , Rochester , New York 14627-0216 , USA .
- Department of Physics , University of Rochester , Rochester , New York 14627-0216 , USA
| |
Collapse
|