1
|
Wahyutama IS, Larsson HR. Simulating Real-Time Molecular Electron Dynamics Efficiently Using the Time-Dependent Density Matrix Renormalization Group. J Chem Theory Comput 2024; 20:9814-9831. [PMID: 39533900 PMCID: PMC11603620 DOI: 10.1021/acs.jctc.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Compared to ground-state electronic structure optimizations, accurate simulations of molecular real-time electron dynamics are usually much more difficult to perform. To simulate electron dynamics, the time-dependent density matrix renormalization group (TDDMRG) has been shown to offer an attractive compromise between accuracy and cost. However, many simulation parameters significantly affect the quality and efficiency of a TDDMRG simulation. So far, it is unclear whether common wisdom from ground-state DMRG carries over to the TDDMRG, and a guideline on how to choose these parameters is missing. Here, in order to establish such a guideline, we investigate the convergence behavior of the main TDDMRG simulation parameters, such as time integrator, the choice of orbitals, and the choice of matrix-product-state representation for complex-valued nonsinglet states. In addition, we propose a method to select orbitals that are tailored to optimize the dynamics. Lastly, we showcase the TDDMRG by applying it to charge migration ionization dynamics in furfural, where we reveal a rapid conversion from an ionized state with a σ character to one with a π character within less than a femtosecond.
Collapse
Affiliation(s)
- Imam S Wahyutama
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Henrik R Larsson
- Department of Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
2
|
Schwickert D, Przystawik A, Diaman D, Kip D, Marangos JP, Laarmann T. Coupled Electron-Nuclear Dynamics Induced and Monitored with Femtosecond Soft X-ray Pulses in the Amino Acid Glycine. J Phys Chem A 2024; 128:989-995. [PMID: 38315166 PMCID: PMC10875660 DOI: 10.1021/acs.jpca.3c06517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
The coupling of electronic and nuclear motion in polyatomic molecules is at the heart of attochemistry. The molecular properties, transient structures, and reaction mechanism of these many-body quantum objects are defined on the level of electrons and ions by molecular wave functions and their coherent superposition, respectively. In the present contribution, we monitor nonadiabatic quantum wave packet dynamics during molecular charge motion by reconstructing both the oscillatory charge density distribution and the characteristic time-dependent nuclear configuration coordinate from time-resolved Auger electron spectroscopic data recorded in previous studies on glycine molecules [Schwickert et al. Sci. Adv. 2022, 8, eabn6848]. The electronic and nuclear motion on the femtosecond time scale was induced and probed in kinematically complete soft X-ray experiments at the FLASH free-electron laser facility. The detailed analysis of amplitude, instantaneous phase, and instantaneous frequency of the propagating many-body wave packet during its lifecycle provides unprecedented insight into dynamical processes beyond the Born-Oppenheimer approximation. We are confident that the refined experimental data evaluation helps to develop new theoretical tools to describe time-dependent molecular wave functions in complicated but ubiquitous non-Born-Oppenheimer photochemical conditions.
Collapse
Affiliation(s)
- David Schwickert
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Andreas Przystawik
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Dian Diaman
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
| | - Detlef Kip
- Faculty
of Electrical Engineering, Helmut Schmidt
University, Holstenhofweg
85, Hamburg 22043, Germany
| | - Jon P. Marangos
- Department
of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Tim Laarmann
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg 22607, Germany
- The
Hamburg Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
3
|
Hamer KA, Folorunso AS, Lopata K, Schafer KJ, Gaarde MB, Mauger F. Tracking Charge Migration with Frequency-Matched Strobo-Spectroscopy. J Phys Chem A 2024; 128:20-27. [PMID: 38165105 PMCID: PMC10788909 DOI: 10.1021/acs.jpca.3c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
We present frequency-matched strobo-spectroscopy (FMSS) of charge migration (CM) in bromobutadiyne, simulated with time-dependent density functional theory. CM + FMSS is a pump-probe scheme that uses a frequency-matched high harmonic generation (HHG)-driving laser as an independent probe step, following the creation of a localized hole on the bromine atom that induces CM dynamics. We show that the delay-dependent harmonic yield tracks the phase of the CM dynamics through its sensitivity to the amount of electron density on the bromine end of the molecule. FMSS takes advantage of the intrinsic attosecond time resolution of the HHG process in which different harmonics are emitted at different times and thus probe different locations of the electron hole. Finally, we show that the CM-induced modulation of the HHG signal is dominated by the recombination step of the HHG process, with a negligible contribution from the ionization step.
Collapse
Affiliation(s)
- Kyle A. Hamer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Aderonke S. Folorunso
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth J. Schafer
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Mette B. Gaarde
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - François Mauger
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Belles E, Rabilloud F, Kuleff AI, Despré V. Size Effect in Correlation-Driven Charge Migration in Correlation Bands of Alkyne Chains. J Phys Chem A 2024; 128:163-169. [PMID: 38150589 DOI: 10.1021/acs.jpca.3c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Correlation-driven charge migration initiated by inner-valence ionization leading to the population of the correlation bands of alkyne chains containing between 4 and 12 carbon atoms is explored through ab initio simulations. Scaling laws are observed, both for the time scale of the charge migration and for the slope of the density of states of the correlation bands. These can be used for predicting the relaxation time scale in much larger systems from the same molecular family and for finding promising candidates for the development of an attochemistry scheme taking advantages of the specificity of the dynamics in the correlation bands of molecules.
Collapse
Affiliation(s)
- Enguerran Belles
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Victor Despré
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| |
Collapse
|
5
|
Gu Y, Gu B, Sun S, Yong H, Chernyak VY, Mukamel S. Manipulating Attosecond Charge Migration in Molecules by Optical Cavities. J Am Chem Soc 2023. [PMID: 37390450 DOI: 10.1021/jacs.3c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The ultrafast electronic charge dynamics in molecules upon photoionization while the nuclear motions are frozen is known as charge migration. In a theoretical study of the quantum dynamics of photoionized 5-bromo-1-pentene, we show that the charge migration process can be induced and enhanced by placing the molecule in an optical cavity, and can be monitored by time-resolved photoelectron spectroscopy. The collective nature of the polaritonic charge migration process is investigated. We find that, unlike spectroscopy, molecular charge dynamics in a cavity is local and does not show many-molecule collective effects. The same conclusion applies to cavity polaritonic chemistry.
Collapse
Affiliation(s)
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou 310030, Zhejiang, China
| | | | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
6
|
Vester J, Despré V, Kuleff AI. The role of symmetric vibrational modes in the decoherence of correlation-driven charge migration. J Chem Phys 2023; 158:104305. [PMID: 36922132 DOI: 10.1063/5.0136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Due to the electron correlation, the fast removal of an electron from a molecule may create a coherent superposition of cationic states and in this way initiate pure electronic dynamics in which the hole-charge left by the ionization migrates throughout the system on an ultrashort time scale. The coupling to the nuclear motion introduces a decoherence that eventually traps the charge, and crucial questions in the field of attochemistry include how long the electronic coherence lasts and which nuclear degrees of freedom are mostly responsible for the decoherence. Here, we report full-dimensional quantum calculations of the concerted electron-nuclear dynamics following outer-valence ionization of propynamide, which reveal that the pure electronic coherences last only 2-3 fs before being destroyed by the nuclear motion. Our analysis shows that the normal modes that are mostly responsible for the fast electronic decoherence are the symmetric in-plane modes. All other modes have little or no effect on the charge migration. This information can be useful to guide the development of reduced dimensionality models for larger systems or the search for molecules with long coherence times.
Collapse
Affiliation(s)
- J Vester
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - V Despré
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - A I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Chordiya K, Despré V, Nagyillés B, Zeller F, Diveki Z, Kuleff AI, Kahaly MU. Photo-ionization initiated differential ultrafast charge migration: impacts of molecular symmetries and tautomeric forms. Phys Chem Chem Phys 2023; 25:4472-4480. [PMID: 36317562 DOI: 10.1039/d2cp02681c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photo-ionization induced ultrafast electron dynamics is considered as a precursor for the slower nuclear dynamics associated with molecular dissociation. Here, using the ab initio multielectron wave-packet propagation method, we study the overall many-electron dynamics, triggered by ionizing the outer-valence orbitals of different tautomers for a prototype molecule with more than one symmetry element. From the time evolution of the initially created averaged hole density of each system, we identify distinctly different charge dynamics responses in the tautomers. We observe that the keto form shows a charge migration direction away from the nitrogen bonded with hydrogen, while in enol-U - away from oxygen bonded to hydrogen. Additionally, the dynamics following the ionization of molecular orbitals with different symmetries reveals that a' orbitals show a fast and highly delocalized charge density in comparison to a'' symmetry. These observations indicate why different tautomers respond differently to an XUV ionization, and might explain the subsequent different fragmentation pathways. An experimental schematics allowing the detection and reconstruction of such charge dynamics is also proposed. Although the present study uses a simple, prototypical bio-relevant molecule, it reveals the explicit role of molecular symmetry and tautomerism in the ionization-triggered charge migration that controls many ultrafast physical, chemical, and biological processes, making tautomeric forms a promising tool of molecular design for desired charge migration.
Collapse
Affiliation(s)
- Kalyani Chordiya
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | - Victor Despré
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Balázs Nagyillés
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| | - Felix Zeller
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Zsolt Diveki
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary.
| | - Alexander I Kuleff
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Heidelberg, Germany.
| | - Mousumi Upadhyay Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, H-6728, Hungary. .,Institute of Physics, University of Szeged, Dóm tér 9, H-6720, Szeged, Hungary
| |
Collapse
|
8
|
Tremblay JC, Blanc A, Krause P, Giri S, Dixit G. Probing Electronic Symmetry Reduction during Charge Migration via Time-Resolved X-Ray Diffraction. Chemphyschem 2023; 24:e202200463. [PMID: 36166371 DOI: 10.1002/cphc.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 01/19/2023]
Abstract
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.
Collapse
Affiliation(s)
| | - Ambre Blanc
- CNRS-Université de Lorraine, LPCT, 57070, Metz, France
| | - Pascal Krause
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Sucharita Giri
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Ayuso D, Ordonez AF, Smirnova O. Ultrafast chirality: the road to efficient chiral measurements. Phys Chem Chem Phys 2022; 24:26962-26991. [PMID: 36342056 PMCID: PMC9673685 DOI: 10.1039/d2cp01009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 08/20/2023]
Abstract
Today we are witnessing the electric-dipole revolution in chiral measurements. Here we reflect on its lessons and outcomes, such as the perspective on chiral measurements using the complementary principles of "chiral reagent" and "chiral observer", the hierarchy of scalar, vectorial and tensorial enantio-sensitive observables, the new properties of the chiro-optical response in the ultrafast and non-linear domains, and the geometrical magnetism associated with the chiral response in photoionization. The electric-dipole revolution is a landmark event. It has opened routes to extremely efficient enantio-discrimination with a family of new methods. These methods are governed by the same principles but work in vastly different regimes - from microwaves to optical light; they address all molecular degrees of freedom - electronic, vibrational and rotational, and use flexible detection schemes, i.e. detecting photons or electrons, making them applicable to different chiral phases, from gases to liquids to amorphous solids. The electric-dipole revolution has also enabled enantio-sensitive manipulation of chiral molecules with light. This manipulation includes exciting and controlling ultrafast helical currents in vibronic states of chiral molecules, enantio-sensitive control of populations in electronic, vibronic and rotational molecular states, and opens the way to efficient enantio-separation and enantio-sensitive trapping of chiral molecules. The word "perspective" has two meanings: an "outlook" and a "point of view". In this perspective article, we have tried to cover both meanings.
Collapse
Affiliation(s)
- David Ayuso
- Max-Born-Institut, 12489 Berlin, Germany
- Imperial College London, SW7 2AZ London, UK.
| | - Andres F Ordonez
- Max-Born-Institut, 12489 Berlin, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Olga Smirnova
- Max-Born-Institut, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
10
|
Dey D, Kuleff AI, Worth GA. Quantum Interference Paves the Way for Long-Lived Electronic Coherences. PHYSICAL REVIEW LETTERS 2022; 129:173203. [PMID: 36332247 DOI: 10.1103/physrevlett.129.173203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The creation and dynamical fate of a coherent superposition of electronic states generated in a polyatomic molecule by broadband ionization with extreme ultraviolet pulses is studied using the multiconfiguration time-dependent Hartree method together with an ionization continuum model Hamiltonian. The electronic coherence between the hole states usually lasts until the nuclear dynamics leads to decoherence. A key goal of attosecond science is to control the electronic motion and design laser control schemes to retain this coherence for longer timescales. Here, we investigate this possibility using time-delayed pulses and show how this opens up the prospect of coherent control of charge migration phenomenon.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
11
|
Ruberti M, Patchkovskii S, Averbukh V. Quantum coherence in molecular photoionization. Phys Chem Chem Phys 2022; 24:19673-19686. [PMID: 35946491 DOI: 10.1039/d2cp01562e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of onset and decay, as well as control of ultrafast quantum coherence in many-electron systems is in the focus of interest of attosecond physics. Interpretation of attosecond experiments detecting the ultrafast quantum coherence requires application of advanced theoretical and computational tools combining many-electron theory, description of the electronic continuum, including in the strong laser field scenario, as well as nuclear dynamics theory. This perspective reviews the recent theoretical advances in understanding the attosecond dynamics of quantum coherence in photoionized molecular systems and outlines possible future directions of theoretical and experimental study of coherence and entanglement in the attosecond regime.
Collapse
Affiliation(s)
- Marco Ruberti
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| | | | - Vitali Averbukh
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat Commun 2022; 13:4595. [PMID: 35933558 PMCID: PMC9357086 DOI: 10.1038/s41467-022-32313-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.
Collapse
|
13
|
Shi L, Benetti D, Li F, Wei Q, Rosei F. Design of MOF-Derived NiO-Carbon Nanohybrids Photocathodes Sensitized with Quantum Dots for Solar Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201815. [PMID: 35521950 DOI: 10.1002/smll.202201815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiO) is a promising p-type material for a wide range of optoelectronic devices, as well as photocathode for photoelectrochemical (PEC) water splitting. However, traditional NiO photoelectrodes exhibit a wide bandgap (3.6 eV), intrinsic poor electrical conductivity, and low surface area, leading to low PEC systems performance. Herein, the authors explore a Ni-based metal-organic framework (MOF) template method to obtain hierarchical hollow spheres of carbon/NiO nanostructure by successive carbonization and oxidation treatments. After sensitization with core and core-shell quantum dots (QDs), the optimized NiO-photocathode exhibits a maximum current density of -93.6 µA cm-2 at 0 V versus RHE (reversible hydrogen electrode) in neutral pH (6.8) and -285 µA cm-2 at -0.4 V versus RHE. Compared to pure NiO and single-core CdSe QDs, a 2.2-fold increase in photocurrent can be obtained. The improvement in the performance of this hybrid is not only due to the high surface area for loading QDs and light scattering, but also to the presence of a highly conductive carbon matrix that promotes fast charge transfer. The proposed MOFs-based NiO/carbon photocathode sensitized with QDs can be an effective strategy to improve the efficiency of metal oxide-based PEC systems for hydrogen generation.
Collapse
Affiliation(s)
- Li Shi
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Daniele Benetti
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| | - Faying Li
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
| |
Collapse
|
14
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
15
|
Koll LM, Maikowski L, Drescher L, Vrakking MJJ, Witting T. Phase-locking of time-delayed attosecond XUV pulse pairs. OPTICS EXPRESS 2022; 30:7082-7095. [PMID: 35299479 DOI: 10.1364/oe.452018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
We present a setup for the generation of phase-locked attosecond extreme ultraviolet (XUV) pulse pairs. The attosecond pulse pairs are generated by high harmonic generation (HHG) driven by two phase-locked near-infrared (NIR) pulses that are produced using an actively stabilized Mach-Zehnder interferometer compatible with near-single cycle pulses. The attosecond XUV pulses can be delayed over a range of 400 fs with a sub-10-as delay jitter. We validate the precision and the accuracy of the setup by XUV optical interferometry and by retrieving the energies of Rydberg states of helium in an XUV pump-NIR probe photoelectron spectroscopy experiment.
Collapse
|
16
|
Koll LM, Maikowski L, Drescher L, Witting T, Vrakking MJJ. Experimental Control of Quantum-Mechanical Entanglement in an Attosecond Pump-Probe Experiment. PHYSICAL REVIEW LETTERS 2022; 128:043201. [PMID: 35148151 DOI: 10.1103/physrevlett.128.043201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Entanglement is one of the most intriguing aspects of quantum mechanics and lies at the heart of the ongoing second quantum revolution, where it is a resource that is used in quantum key distribution, quantum computing, and quantum teleportation. We report experiments demonstrating the crucial role that entanglement plays in pump-probe experiments involving ionization, which are a hallmark of the novel research field of attosecond science. We demonstrate that the degree of entanglement in a bipartite ion + photoelectron system, and, as a consequence, the degree of vibrational coherence in the ion, can be controlled by tailoring the spectral properties of the attosecond extreme ultraviolet laser pulses that are used to create them.
Collapse
Affiliation(s)
- Lisa-Marie Koll
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Laura Maikowski
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Lorenz Drescher
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | - Tobias Witting
- Max-Born-Institut, Max-Born-Strasse 2A, 12x489 Berlin, Germany
| | | |
Collapse
|
17
|
Scheidegger A, Vaníček J, Golubev NV. Search for long-lasting electronic coherence using on-the-fly ab initio semiclassical dynamics. J Chem Phys 2022; 156:034104. [DOI: 10.1063/5.0076609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alan Scheidegger
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nikolay V. Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Kochetov V, Bokarev SI. RhoDyn: A ρ-TD-RASCI Framework to Study Ultrafast Electron Dynamics in Molecules. J Chem Theory Comput 2021; 18:46-58. [PMID: 34965135 DOI: 10.1021/acs.jctc.1c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article presents the program module RhoDyn as part of the OpenMOLCAS project intended to study ultrafast electron dynamics within the density-matrix-based time-dependent restricted active space configuration interaction framework (ρ-TD-RASCI). The formalism allows for the treatment of spin-orbit coupling effects, accounts for nuclear vibrations in the form of a vibrational heat bath, and naturally incorporates (auto)ionization effects. Apart from describing the theory behind and the program workflow, the paper also contains examples of its application to the simulations of the linear L2,3 absorption spectra of a titanium complex, high harmonic generation in the hydrogen molecule, ultrafast charge migration in benzene and iodoacetylene, and spin-flip dynamics in the core excited states of iron complexes.
Collapse
Affiliation(s)
- Vladislav Kochetov
- Institut für Physik, Universität Rostock, A.-Einstein-Strasse 23-24, 18059 Rostock, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, A.-Einstein-Strasse 23-24, 18059 Rostock, Germany
| |
Collapse
|
19
|
Golubev NV, Vaníček J, Kuleff AI. Core-Valence Attosecond Transient Absorption Spectroscopy of Polyatomic Molecules. PHYSICAL REVIEW LETTERS 2021; 127:123001. [PMID: 34597071 DOI: 10.1103/physrevlett.127.123001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Tracing ultrafast processes induced by interaction of light with matter is often very challenging. In molecular systems, the initially created electronic coherence becomes damped by the slow nuclear rearrangement on a femtosecond timescale which makes real-time observations of electron dynamics in molecules particularly difficult. In this work, we report an extension of the theory underlying the attosecond transient absorption spectroscopy (ATAS) for the case of molecules, including a full account for the coupled electron-nuclear dynamics in the initially created wave packet, and apply it to probe the oscillations of the positive charge created after outer-valence ionization of the propiolic acid molecule. By taking advantage of element-specific core-to-valence transitions induced by x-ray radiation, we show that the resolution of ATAS makes it possible to trace the dynamics of electron density with atomic spatial resolution.
Collapse
Affiliation(s)
- Nikolay V Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexander I Kuleff
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany and ELI-ALPS, Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| |
Collapse
|
20
|
Merritt ICD, Jacquemin D, Vacher M. Attochemistry: Is Controlling Electrons the Future of Photochemistry? J Phys Chem Lett 2021; 12:8404-8415. [PMID: 34436903 DOI: 10.1021/acs.jpclett.1c02016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling matter with light has always been a great challenge, leading to the ever-expanding field of photochemistry. In addition, since the first generation of light pulses of attosecond (1 as = 10-18 s) duration, a great deal of effort has been devoted to observing and controlling electrons on their intrinsic time scale. Because of their short duration, attosecond pulses have a large spectral bandwidth populating several electronically excited states in a coherent manner, i.e., an electronic wavepacket. Because of interference, such a wavepacket has a new electronic distribution implying a potentially different and totally new reactivity as compared to traditional photochemistry, leading to the novel concept of "attochemistry". This nascent field requires the support of theory right from the start. In this Perspective, we discuss the opportunities offered by attochemistry, the related challenges, and the current and future state-of-the-art developments in theoretical chemistry needed to model it accurately.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
21
|
Delgado J, Lara-Astiaso M, González-Vázquez J, Decleva P, Palacios A, Martín F. Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses. Faraday Discuss 2021; 228:349-377. [PMID: 33571330 DOI: 10.1039/d0fd00121j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a theoretical study of the electron and nuclear dynamics that would arise in an attosecond two-color XUV-pump/XUV-probe experiment in glycine. In this scheme, the broadband pump pulse suddenly ionizes the molecule and creates an electronic wave packet that subsequently evolves under the influence of the nuclear motion until it is finally probed by the second XUV pulse. To describe the different steps of such an experiment, we have combined a multi-reference static-exchange scattering method with a trajectory surface hopping approach. We show that by changing the central frequency of the pump pulse, i.e., by engineering the initial electronic wave packet with the pump pulse, one can drive the cation dynamics into a specific fragmentation pathway. Reminiscence of this early electron dynamics can be observed in specific fragmentation channels (not all of them) as a function of the pump-probe delay and in time-resolved photoelectron spectra at specific photoelectron energies. The optimum conditions to visualize the initial electronic coherence in photoelectron and photo-ion spectra depend very much on the characteristics of the pump pulse as well as on the electronic structure of the molecule under study.
Collapse
Affiliation(s)
- Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
| | - Manuel Lara-Astiaso
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesús González-Vázquez
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Piero Decleva
- CNR IOM, Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127 Trieste, Italy
| | - Alicia Palacios
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain and Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Ruberti M. Quantum electronic coherences by attosecond transient absorption spectroscopy: ab initio B-spline RCS-ADC study. Faraday Discuss 2021; 228:286-311. [PMID: 33575690 DOI: 10.1039/d0fd00104j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here I present a fully ab initio time-resolved study of X-ray attosecond transient absorption spectroscopy (ATAS) in a prototypical polyatomic molecule, pyrazine, and demonstrate the possibility of retrieving the many-electron quantum ionic coherences arising in attosecond molecular photoionisation and pre-determining the subsequent charge-directed photochemical reactivity. Advanced first-principles many-electron simulations are performed, within a hybrid XUV pump/X-ray probe setup, to describe the interaction of pyrazine with both XUV pump and X-ray probe pulses, and study the triggered correlated many-electron dynamics. The calculations are carried out by means of the recently-developed ab initio method for many-electron dynamics in polyatomic molecules, the time-dependent (TD) B-spline Restricted Correlation Space-Algebraic Diagrammatic Construction (RCS-ADC). RCS-ADC simulates molecular ionisation from first principles, combining the accurate description of electron correlation of quantum chemistry with the full account of the continuum dynamics of the photoelectron. Complete theoretical characterisation of the atto-ionised many-electron state and photo-induced attosecond charge dynamics is achieved by calculating the reduced ionic density matrix (R-IDM) of the bipartite ion-photoelectron system, with full inclusion of the correlated shakeup states. Deviations from the sudden approximation picture of photoionisation, in the low-photon-energy limit, are presented. The effect of the multi-channel interaction between the parent-ion and the emitted photoelectron on the onset of the quantum electronic coherences is analysed. Moreover, I show how the Schmidt decomposition of the R-IDM unravels the many-electron dynamics triggered by the pump, allowing for the identification of the key channels involved. Finally, I calculate the X-ray attosecond transient absorption spectra of XUV-ionised pyrazine. The results unveil the mapping of the ATAS measurement onto the quantum electronic coherences, and related non-zero R-IDM matrix elements, produced upon ionisation by the XUV pump laser pulse.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
23
|
Ivanov M. Concluding remarks: The age of molecular movies. Faraday Discuss 2021; 228:622-629. [PMID: 33960352 DOI: 10.1039/d1fd90033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Faraday Discussion has demonstrated enormous progress towards using advanced light sources, together with a variety of experimental and theoretical tools and techniques, to film the motion of both electrons and nuclei in molecules undergoing photo-induced reactions. The new tools are beginning to offer reliable opportunities for achieving the required spatio-temporal resolution, all the way to sub-femtosecond and sub-angstrom scales. The age of quantum molecular movies has arrived.
Collapse
Affiliation(s)
- Misha Ivanov
- Max Born Institute, Max Born Str. 2A, Berlin, Germany
| |
Collapse
|
24
|
Golubev NV, Begušić T, Vaníček J. On-the-Fly Ab Initio Semiclassical Evaluation of Electronic Coherences in Polyatomic Molecules Reveals a Simple Mechanism of Decoherence. PHYSICAL REVIEW LETTERS 2020; 125:083001. [PMID: 32909765 DOI: 10.1103/physrevlett.125.083001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Irradiation of a molecular system by an intense laser field can trigger dynamics of both electronic and nuclear subsystems. The lighter electrons usually move on much faster, attosecond timescale but the slow nuclear rearrangement damps ultrafast electronic oscillations, leading to the decoherence of the electronic dynamics within a few femtoseconds. We show that a simple, single-trajectory semiclassical scheme can evaluate the electronic coherence time in polyatomic molecules accurately by demonstrating an excellent agreement with full-dimensional quantum calculations. In contrast to numerical quantum methods, the semiclassical one reveals the physical mechanism of decoherence beyond the general blame on nuclear motion. In the propiolic acid, the rate of decoherence and the large deviation from the static frequency of electronic oscillations are quantitatively described with just two semiclassical parameters-the phase space distance and signed area between the trajectories moving on two electronic surfaces. Because it evaluates the electronic structure on the fly, the semiclassical technique avoids the "curse of dimensionality" and should be useful for preselecting molecules for experimental studies.
Collapse
Affiliation(s)
- Nikolay V Golubev
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Nascimento DR, DePrince AE. A general time-domain formulation of equation-of-motion coupled-cluster theory for linear spectroscopy. J Chem Phys 2019; 151:204107. [DOI: 10.1063/1.5125494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel R. Nascimento
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
26
|
|
27
|
Ruberti M. Onset of ionic coherence and ultrafast charge dynamics in attosecond molecular ionisation. Phys Chem Chem Phys 2019; 21:17584-17604. [PMID: 31372608 DOI: 10.1039/c9cp03074c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Here is presented a fully ab initio theoretical framework for simulating the correlated many-electron dynamics occurring during and emerging from molecular ionisation by attosecond laser pulses. This is based on the time-dependent (TD) version of the B-spline restricted correlation space (RCS)-algebraic diagrammatic construction (ADC) method, with the full description of the photoelectron and inclusion of electron correlation effects, such as shakeup processes and inter-channel couplings. The nature of the ultrafast charge dynamics in the molecular ion is elucidated by quantitatively predicting the degree of electronic coherence and eigenstate content of the prepared molecular cationic state, beyond the commonly used sudden approximation. The results presented here for the acetylene and ethylene molecules show that even in the high photon energy regime the simulated hole dynamics is quantitatively different from the prediction of the sudden approximation. Moreover, for high-bandwidth ionising pulse, the residual interaction between the cation, in highly-excited shake-up states, and the emitted slow photoelectron gives rise to a loss of coherence in the ionic system which can persist for the first few femtoseconds after ionisation.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, UK.
| |
Collapse
|
28
|
Inhester L, Greenman L, Rudenko A, Rolles D, Santra R. Detecting coherent core-hole wave-packet dynamics in N2 by time- and angle-resolved inner-shell photoelectron spectroscopy. J Chem Phys 2019. [DOI: 10.1063/1.5109867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
29
|
Perfetto E, Sangalli D, Palummo M, Marini A, Stefanucci G. First-Principles Nonequilibrium Green’s Function Approach to Ultrafast Charge Migration in Glycine. J Chem Theory Comput 2019; 15:4526-4534. [DOI: 10.1021/acs.jctc.9b00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E. Perfetto
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - D. Sangalli
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - M. Palummo
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - A. Marini
- CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area della Ricerca di Roma 1, Via Salaria Km 29.3, I-00016 Monterotondo Scalo, Italy
| | - G. Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
30
|
Ruberti M. Restricted Correlation Space B-Spline ADC Approach to Molecular Ionization: Theory and Applications to Total Photoionization Cross-Sections. J Chem Theory Comput 2019; 15:3635-3653. [PMID: 31136172 DOI: 10.1021/acs.jctc.9b00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein is presented a new approach to the ab initio algebraic diagrammatic construction (ADC) schemes for the polarization propagator, which is explicitly designed to accurately and efficiently describe molecular ionization. The restricted correlation space (RCS) version of the ADC methods up to second order of perturbation theory is derived via the intermediate state representation (ISR) and implemented in the multicenter B-spline basis set for the electronic continuum. Remarkably a general close-coupling structure of the RCS-ADC many-electron wave function, connecting the N-particle to the ( N - 1)-particle ADC intermediate states, emerges naturally as a nontrivial result of the RCS ansatz. Moreover, the introduced RCS-ADC schemes prove to be particularly manageable from a computational point of view, overcoming the practical limitations of the conventional ADC approaches. The quality of the new RCS-ADC( n) approaches is verified by performing a series of total photoionization cross-section calculations on a test set of molecules. The excellent agreement of the results with existing accurate benchmarks demonstrates that the RCS versions of the ADC schemes are optimal and quantitatively accurate methods for studying multichannel molecular photoionization.
Collapse
Affiliation(s)
- M Ruberti
- Department of Physics , Imperial College London , Prince Consort Road , London SW7 2AZ , United Kingdom
| |
Collapse
|
31
|
Despré V, Golubev NV, Kuleff AI. Charge Migration in Propiolic Acid: A Full Quantum Dynamical Study. PHYSICAL REVIEW LETTERS 2018; 121:203002. [PMID: 30500257 DOI: 10.1103/physrevlett.121.203002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 06/09/2023]
Abstract
Ionization of molecules very often populates several cationic states launching pure electron dynamics that appear as ultrafast migration of the hole charge throughout the system. A crucial question in the emerging field of attochemistry is whether these pure electronic coherences last long enough to allow for their efficient observation and eventual manipulation with ultrashort laser pulses. We report a full-dimensional quantum calculation of concerted electron-nuclear dynamics initiated by outer-valence ionization of propiolic acid molecule, showing that the charge will oscillate between the carbon triple bond and the carbonyl oxygen for more than 10 fs before getting trapped by the nuclear motion. This time is enough for the charge migration to be observed and controlled. We argue that the molecule is very suitable for experimental studies.
Collapse
Affiliation(s)
- Victor Despré
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Nikolay V Golubev
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
- ELI-ALPS, Budapesti út 5, H-6728 Szeged, Hungary
| |
Collapse
|
32
|
Ruberti M, Decleva P, Averbukh V. Full Ab Initio Many-Electron Simulation of Attosecond Molecular Pump–Probe Spectroscopy. J Chem Theory Comput 2018; 14:4991-5000. [DOI: 10.1021/acs.jctc.8b00479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Ruberti
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - P. Decleva
- Dipartimento di Scienze Chimiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - V. Averbukh
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
33
|
Polyak I, Jenkins AJ, Vacher M, Bouduban MEF, Bearpark MJ, Robb MA. Charge migration engineered by localisation: electron-nuclear dynamics in polyenes and glycine. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1478136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Iakov Polyak
- Department of Chemistry, Imperial College London, London, UK
- School of Chemistry, Cardiff University, Cardiff, UK
| | - Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London, UK
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London, UK
- Department of Chemistry-Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
| | - Marine E. F. Bouduban
- Department of Chemistry, Imperial College London, London, UK
- Photochemical Dynamics Group, Institute of Chemical Sciences & Engineering and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Michael A. Robb
- Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|
34
|
Kraus PM, Zürch M, Cushing SK, Neumark DM, Leone SR. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0008-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
36
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
37
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Attosecond angular flux of partial charges on the carbon atoms of benzene in non-aromatic excited state. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
40
|
Jochim B, Siemering R, Zohrabi M, Voznyuk O, Mahowald JB, Schmitz DG, Betsch KJ, Berry B, Severt T, Kling NG, Burwitz TG, Carnes KD, Kling MF, Ben-Itzhak I, Wells E, de Vivie-Riedle R. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields. Sci Rep 2017; 7:4441. [PMID: 28667335 PMCID: PMC5493692 DOI: 10.1038/s41598-017-04638-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 11/10/2022] Open
Abstract
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Collapse
Affiliation(s)
- Bethany Jochim
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - R Siemering
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany
| | - M Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - O Voznyuk
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - J B Mahowald
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - D G Schmitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K J Betsch
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Ben Berry
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - T Severt
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Nora G Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - T G Burwitz
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA
| | - K D Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - M F Kling
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.,Department für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, D-85748, Garching, Germany
| | - I Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - E Wells
- Department of Physics, Augustana University, Sioux Falls, SD 57197, USA.
| | - R de Vivie-Riedle
- Department für Chemie, Ludwig-Maximilians-Universität München, Butenandt-Strasse 11, D-81377, München, Germany.
| |
Collapse
|
41
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
42
|
Pohl V, Hermann G, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. I. Multideterminantal wave functions. J Comput Chem 2017; 38:1515-1527. [DOI: 10.1002/jcc.24792] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | | |
Collapse
|
43
|
Vacher M, Bearpark MJ, Robb MA, Malhado JP. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence. PHYSICAL REVIEW LETTERS 2017; 118:083001. [PMID: 28282194 DOI: 10.1103/physrevlett.118.083001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 05/23/2023]
Abstract
Knowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process. Here, we simulate the dynamics upon ionization of the polyatomic molecules paraxylene and modified bismethylene-adamantane, with a quantum mechanical treatment of both electron and nuclear dynamics using the direct dynamics variational multiconfigurational Gaussian method. Our simulations give new important physical insights about the expected decoherence process. We have shown that the decoherence of electron dynamics happens on the time scale of a few femtoseconds, with the interplay of different mechanisms: the dephasing is responsible for the fast decoherence while the nuclear overlap decay may actually help maintain it and is responsible for small revivals.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75120, Sweden and Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
44
|
Ding H, Jia D, Manz J, Yang Y. Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI+. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1287967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Ding
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Institut für Chemie und Biochemie, Freie Universität Berlin , 14195 Berlin, Germany
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy Laboratory, Shanxi University , Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan, China
| |
Collapse
|
45
|
Sun S, Mignolet B, Fan L, Li W, Levine RD, Remacle F. Nuclear Motion Driven Ultrafast Photodissociative Charge Transfer of the PENNA Cation: An Experimental and Computational Study. J Phys Chem A 2017; 121:1442-1447. [PMID: 28135094 DOI: 10.1021/acs.jpca.6b12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafast nuclear driven charge transfer prior to dissociation is an important process in modular systems as was demonstrated experimentally in the bifunctional molecule 2-phenylethyl-N,N-dimethylamine (PENNA) in work by Lehr et al. ( J. Phys. Chem. A 2005 , 109 , 8074 ). The ultrafast dynamics of PENNA photoexcited to the three lowest electronic states of the cation (D0, D1, and D2) was studied using quantum chemistry and surface hoping. We show that a conical intersection, localized in the Franck-Condon region, between the D0 and the D1 states, leads to an ultrafast charge transfer, computed here to be on a time scale of 65 fs, between the phenyl and the amine charged subunits. On the D0 ground state, the dissociation proceeds on the 60 ps time scale through a 19 kcal/mol late barrier. The computed kinetic energy release is in good agreement with a new experimental measurement of PENNA ionization by an 800 nm 30 fs intense laser pulse.
Collapse
Affiliation(s)
- Shoutian Sun
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Benoit Mignolet
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| | - Lin Fan
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Wen Li
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Raphael D Levine
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States.,The Fritz Haber Research Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem , 91904 Jerusalem, Israel
| | - Francoise Remacle
- Department of Chemistry, B6c, University of Liege , B4000 Liege, Belgium
| |
Collapse
|
46
|
Jia D, Manz J, Paulus B, Pohl V, Tremblay JC, Yang Y. Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
|
48
|
Hermann G, Tremblay JC. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions. J Chem Phys 2016; 145:174704. [PMID: 27825243 DOI: 10.1063/1.4966260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.
Collapse
Affiliation(s)
- G Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - J C Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
49
|
Jenkins AJ, Vacher M, Twidale RM, Bearpark MJ, Robb MA. Charge migration in polycyclic norbornadiene cations: Winning the race against decoherence. J Chem Phys 2016; 145:164103. [DOI: 10.1063/1.4965436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rebecca M. Twidale
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
50
|
Kuleff AI, Kryzhevoi NV, Pernpointner M, Cederbaum LS. Core Ionization Initiates Subfemtosecond Charge Migration in the Valence Shell of Molecules. PHYSICAL REVIEW LETTERS 2016; 117:093002. [PMID: 27610850 DOI: 10.1103/physrevlett.117.093002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 05/23/2023]
Abstract
After the ionization of a valence electron, the created hole can migrate ultrafast from one end of the molecule to another. Because of the advent of attosecond pulse techniques, the measuring and understanding of charge migration has become a central topic in attosecond science. Here, we pose the hitherto unconsidered question whether ionizing a core electron will also lead to charge migration. It is found that the created hole in the core stays put, but in response to this hole interesting electron dynamics takes place which can lead to intense charge migration in the valence shell. This migration is typically faster than that after the ionization of a valence electron and transpires on a shorter time scale than the natural decay of the core hole by the Auger process, making the subject very challenging to attosecond science.
Collapse
Affiliation(s)
- Alexander I Kuleff
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Nikolai V Kryzhevoi
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Markus Pernpointner
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|