1
|
Li W, Filatov M, Zou W. Calculation of electric field gradients with the exact two-component (X2C) quasi-relativistic method and its local approximations. Phys Chem Chem Phys 2024; 26:18333-18342. [PMID: 38912554 DOI: 10.1039/d4cp01567c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
When calculating electric field gradients (EFGs), relativistic and electron correlation effects are crucial for obtaining accurate results, and the commonly used density functional methods produce unsatisfactory results, especially for heavy elements and/or strongly correlated systems. In this work, a stand-alone program is presented, which enables calculation of EFGs from the molecular orbitals supplied by an external high accuracy quantum chemical calculation and includes relativistic effects through the exact two-component (X2C) formalism and efficient local approximations to it. Application to BiN and BiP molecules shows that a high precision can be achieved in the calculation of nuclear quadrupole coupling constants of 209Bi by combining advanced ab initio methods with the X2C approach. For seventeen iron compounds, the Mössbauer nuclear quadrupole splittings (NQS) of 57Fe calculated using a double-hybrid functional method are in very good agreement with the experimental values. It is shown that, for strongly correlated molecules, the double-hybrid functionals are much more accurate than the commonly used hybrid functionals. The computer program developed in this study furnishes a useful utility for obtaining EFGs and related nuclear properties with high accuracy.
Collapse
Affiliation(s)
- Wenxin Li
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| | - Michael Filatov
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
2
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
3
|
Datta D, Saitow M, Sandhöfer B, Neese F. 57Fe Mössbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J Chem Phys 2020; 153:204101. [PMID: 33261496 DOI: 10.1063/5.0022215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on applications of the domain based local pair-natural orbital (PNO) coupled-cluster method within the singles and doubles approximation (DLPNO-CCSD) to the calculation of 57Fe isomer shifts and quadrupole splittings in a small training set of iron complexes consisting of large molecular ligands and iron atoms in varying charge, spin, and oxidation states. The electron densities and electric field gradients needed for these calculations were obtained within the recently implemented analytic derivative scheme. A method for the direct treatment of scalar relativistic effects in the calculation of effective electron densities is described by using the first-order Douglas-Kroll-Hess Hamiltonian and a Gaussian charge distribution model for the nucleus. The performance of DLPNO-CCSD is compared with four modern-day density functionals, namely, RPBE, TPSS, B3LYP, and B2PLYP, as well as with the second-order Møller-Plesset perturbation theory. An excellent correlation between the calculated electron densities and the experimental isomer shifts is attained with the DLPNO-CCSD method. The correlation constant a obtained from the slope of the linear correlation plot is found to be ≈-0.31 a.u.3 mm s-1, which agrees very well with the experimental calibration constant α = -0.31 ± 0.04 a.u.3 mm s-1. This value of a is obtained consistently using both nonrelativistic and scalar relativistic DLPNO-CCSD electron densities. While the B3LYP and B2PLYP functionals achieve equally good correlation between theory and experiment, the correlation constant a is found to deviate from the experimental value. Similar trends are observed also for quadrupole splittings. The value of the nuclear quadrupole moment for 57Fe is estimated to be 0.15 b at the DLPNO-CCSD level. This is consistent with previous results and is here supported by a higher level of theory. The DLPNO-CCSD results are found to be insensitive to the intrinsic approximations in the method, in particular the PNO occupation number truncation error, while the results obtained with density functional theory (DFT) are found to depend on the choice of the functional. In a statistical sense, i.e., on the basis of the linear regression analysis, however, the accuracies of the DFT and DLPNO-CCSD results can be considered comparable.
Collapse
Affiliation(s)
- Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, 201 Spedding Hall, 2416 Pammel Drive, Ames, Iowa 50011-2416, USA
| | - Masaaki Saitow
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Gaul K, Berger R. Quasi-relativistic study of nuclear electric quadrupole coupling constants in chiral molecules containing heavy elements. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1797199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Konstantin Gaul
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Robert Berger
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
5
|
|
6
|
Pašteka LF, Mawhorter RJ, Schwerdtfeger P. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1139206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- L. F. Pašteka
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Auckland, New Zealand
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - R. J. Mawhorter
- Department of Physics & Astronomy, Pomona College, Claremont, CA, USA
| | - P. Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Santiago RT, Haiduke RLA. New density functional parameterizations to accurate calculations of electric field gradient variations among compounds. J Comput Chem 2015; 36:2125-30. [PMID: 26284820 DOI: 10.1002/jcc.24052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/15/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022]
Abstract
This research provides a performance investigation of density functional theory and also proposes new functional parameterizations to deal with electric field gradient (EFG) calculations at nuclear positions. The entire procedure is conducted within the four-component formalism. First, we noticed that traditional hybrid and long-range corrected functionals are more efficient in the description of EFG variations for a set of elements (indium, antimony, iodine, lutetium, and hafnium) among linear molecules. Thus, we selected the PBE0, B3LYP, and CAM-B3LYP functionals and promoted a reoptimization of their parameters for a better description of these EFG changes. The PBE0q variant developed here showed an overall promising performance in a validation test conducted with potassium, iodine, copper, and gold. In general, the correlation coefficients found in linear regressions between experimental nuclear quadrupole coupling constants and calculated EFGs are improved while the systematic EFG errors also decrease as a result of this reparameterization.
Collapse
Affiliation(s)
- Régis Tadeu Santiago
- Departamento De Química E Física Molecular, Instituto De Química De São Carlos, Universidade De São Paulo, Avenida Trabalhador São-Carlense, 400, CP 780, São Carlos, SP, 13560-970, Brazil
| | - Roberto Luiz Andrade Haiduke
- Departamento De Química E Física Molecular, Instituto De Química De São Carlos, Universidade De São Paulo, Avenida Trabalhador São-Carlense, 400, CP 780, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
8
|
Cheng L. Benchmark calculations on the nuclear quadrupole-coupling parameters for open-shell molecules using non-relativistic and scalar-relativistic coupled-cluster methods. J Chem Phys 2015; 143:064301. [DOI: 10.1063/1.4928054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lan Cheng
- Department of Chemistry, Institute for Theoretical Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Santiago RT, Teodoro TQ, Haiduke RLA. The nuclear electric quadrupole moment of copper. Phys Chem Chem Phys 2014; 16:11590-6. [PMID: 24806277 DOI: 10.1039/c4cp00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.
Collapse
Affiliation(s)
- Régis Tadeu Santiago
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400-CP 780, 13560-970-São Carlos, SP, Brazil.
| | | | | |
Collapse
|
10
|
Electric field gradients of transition metal complexes: Basis set uncontraction and scalar relativistic effects. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Aidas K, Ågren H, Kongsted J, Laaksonen A, Mocci F. A quantum mechanics/molecular dynamics study of electric field gradient fluctuations in the liquid phase. The case of Na+in aqueous solution. Phys Chem Chem Phys 2013; 15:1621-31. [DOI: 10.1039/c2cp41993a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Cheng L, Stopkowicz S, Stanton JF, Gauss J. The route to high accuracy inab initiocalculations of Cu quadrupole-coupling constants. J Chem Phys 2012; 137:224302. [DOI: 10.1063/1.4767767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Autschbach J, Peng D, Reiher M. Two-Component Relativistic Calculations of Electric-Field Gradients Using Exact Decoupling Methods: Spin–orbit and Picture-Change Effects. J Chem Theory Comput 2012; 8:4239-48. [DOI: 10.1021/ct300623j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jochen Autschbach
- Department of Chemistry, University
at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Daoling Peng
- ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse
10, CH-8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse
10, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Solomonik VG, Mukhanov AA. Ab initio study of scandium fluoride molecules: ScF, ScF2, AND ScF3. J STRUCT CHEM+ 2012. [DOI: 10.1134/s0022476612010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Srebro M, Autschbach J. Does a Molecule-Specific Density Functional Give an Accurate Electron Density? The Challenging Case of the CuCl Electric Field Gradient. J Phys Chem Lett 2012; 3:576-581. [PMID: 26286152 DOI: 10.1021/jz201685r] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the framework of determining system-specific long-range corrected density functionals, the question is addressed whether such functionals, tuned to satisfy the condition -ε(HOMO) = IP or other energetic criteria, provide accurate electron densities. A nonempirical physically motivated two-dimensional tuning of range-separated hybrid functionals is proposed and applied to the particularly challenging case of a molecular property that depends directly on the ground-state density: the copper electric field gradient (EFG) in CuCl. From a continuous range of functional parametrizations that closely satisfy -ε(HOMO) = IP and the correct asymptotic behavior of the potential, the one that best fulfills the straight-line behavior of E(N), the energy as a function of a fractional electron number N, was found to provide the most accurate electron density as evidenced by calculated EFGs. The functional also performs well for related Cu systems.
Collapse
Affiliation(s)
- Monika Srebro
- †Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- ‡Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-060 Krakow, Poland
| | - Jochen Autschbach
- †Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
16
|
Arcisauskaite V, Knecht S, Sauer SPA, Hemmingsen L. Electric field gradients in Hg compounds: Molecular orbital (MO) analysis and comparison of 4-component and 2-component (ZORA) methods. Phys Chem Chem Phys 2012; 14:16070-9. [DOI: 10.1039/c2cp42291c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Bull JN, Maclagan RGAR, Tennant WC. First-Principle Calculations on the Microscopic 57Fe Electric-Field-Gradient Tensor of Ferrous Chloride Tetrahydrate: A Prototypical Mössbauer Species. J Phys Chem A 2011; 115:10655-63. [DOI: 10.1021/jp206218g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- James N. Bull
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | - W. Craighead Tennant
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
18
|
Aquino F, Govind N, Autschbach J. Electric Field Gradients Calculated from Two-Component Hybrid Density Functional Theory Including Spin−Orbit Coupling. J Chem Theory Comput 2010; 6:2669-86. [DOI: 10.1021/ct1002847] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fredy Aquino
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| | - Niranjan Govind
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| | - Jochen Autschbach
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| |
Collapse
|
19
|
Figgen D, Saue T, Schwerdtfeger P. Relativistic four- and two-component calculations of parity violation effects in chiral tungsten molecules of the form NWXYZ (X, Y, Z=H, F, Cl, Br, or I). J Chem Phys 2010; 132:234310. [DOI: 10.1063/1.3439692] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Cho H, de Jong WA, Soderquist CZ. Probing the oxygen environment in UO22+ by solid-state O17 nuclear magnetic resonance spectroscopy and relativistic density functional calculations. J Chem Phys 2010; 132:084501. [DOI: 10.1063/1.3308499] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Relativistic Effects on Magnetic Resonance Parameters and Other Properties of Inorganic Molecules and Metal Complexes. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-1-4020-9975-5_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
22
|
Bjornsson R, Bühl M. Electric field gradients of transition metal complexes from density functional theory: assessment of functionals, geometries and basis sets. Dalton Trans 2010; 39:5319-24. [PMID: 20442911 DOI: 10.1039/c001017k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ragnar Bjornsson
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife, UK KY16 9ST
| | | |
Collapse
|
23
|
Lipton AS, Heck RW, de Jong WA, Gao AR, Wu X, Roehrich A, Harbison GS, Ellis PD. Low temperature 65Cu NMR spectroscopy of the Cu+ site in azurin. J Am Chem Soc 2009; 131:13992-9. [PMID: 19746904 DOI: 10.1021/ja901308v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
(65)Cu central-transition NMR spectroscopy of the blue copper protein azurin in the reduced Cu(I) state, conducted at 18.8 T and 10 K, gave a strongly second order quadrupole perturbed spectrum, which yielded a (65)Cu quadrupole coupling constant of +/-71.2 +/- 1 MHz, corresponding to an electric field gradient of +/-1.49 atomic units at the copper site, and an asymmetry parameter of approximately 0.2. Quantum chemical calculations employing second order Møller-Plesset perturbation theory and large basis sets successfully reproduced these experimental results. Sensitivity and relaxation times were quite favorable, suggesting that NMR may be a useful probe of the electronic state of copper sites in proteins.
Collapse
Affiliation(s)
- Andrew S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Denk MK. The Variable Strength of the Sulfur-Sulfur Bond: 78 to 41 kcal - G3, CBS-Q, and DFT Bond Energies of Sulfur (S8) and Disulfanes XSSX (X = H, F, Cl, CH3, CN, NH2, OH, SH). Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200800880] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
|
26
|
An indirect approach to the determination of the nuclear quadrupole moment by four-component relativistic DFT in molecular calculations. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.05.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Feindel KW, Ooms KJ, Wasylishen RE. A solid-state 55Mn NMR spectroscopy and DFT investigation of manganese pentacarbonyl compounds. Phys Chem Chem Phys 2007; 9:1226-38. [PMID: 17325769 DOI: 10.1039/b616821c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Central transition (55)Mn NMR spectra of several solid manganese pentacarbonyls acquired at magnetic field strengths of 11.75, 17.63, and 21.1 T are presented. The variety of distinct powder sample lineshapes obtained demonstrates the sensitivity of solid-state (55)Mn NMR to the local bonding environment, including the presence of crystallographically unique Mn sites, and facilitates the extraction of the Mn chemical shift anisotropies, CSAs, and the nuclear quadrupolar parameters. The compounds investigated include molecules with approximate C(4v) symmetry, LMn(CO)(5)(L = Cl, Br, I, HgMn(CO)(5), CH(3)) and several molecules of lower symmetry (L = PhCH(2), Ph(3-n)Cl(n)Sn (n= 1, 2, 3)). For these compounds, the Mn CSA values range from <100 ppm for Cl(3)SnMn(CO)(5) to 1260 ppm for ClMn(CO)(5). At 21.1 T the (55)Mn NMR lineshapes are appreciably influenced by the Mn CSA despite the presence of significant (55)Mn quadrupolar coupling constants that range from 8.0 MHz for Cl(3)SnMn(CO)(5) to 35.0 MHz for CH(3)Mn(CO)(5). The breadth of the solid-state (55)Mn NMR spectra of the pentacarbonyl halides is dominated by the CSA at all three applied magnetic fields. DFT calculations of the Mn magnetic shielding tensors reproduce the experimental trends and the magnitude of the CSA is qualitatively rationalized using a molecular orbital, MO, interpretation based on Ramsey's theory of magnetic shielding. In addition to the energy differences between symmetry-appropriate occupied and virtual MOs, the d-character of the Mn MOs is important for determining the paramagnetic shielding contribution to the principal components of the magnetic shielding tensor.
Collapse
Affiliation(s)
- Kirk W Feindel
- Department of Chemistry, University of Alberta, Edmonton, Canada AB T6G 2G2
| | | | | |
Collapse
|
28
|
Kellö V, Sadlej AJ. The Nuclear Quadrupole Moment of 14N from Accurate Electric Field Gradient Calculations and Microwave Spectra of NP Molecule. ACTA ACUST UNITED AC 2007. [DOI: 10.1135/cccc20070064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extensive series of relativistic coupled cluster calculations of the electric field gradient at N in NP has been carried out. The accurate value of the calculated electric field gradient, combined with the highly accurate experimental value of the nuclear quadrupole coupling constant for the 14N nucleus, gives the 'molecular' value of the nuclear quadrupole moment Q(14N) = 20.46 mb. This result perfectly agrees with the value (20.44 ± 0.03 mb) determined from atomic calculations and atomic spectra. The present study involves also extensive investigations of basis sets which must be used in highly accurate calculations of electric field gradients.
Collapse
|
29
|
Wong A, Ida R, Mo X, Gan Z, Poh J, Wu G. Solid-State 25Mg NMR Spectroscopic and Computational Studies of Organic Compounds. Square-Pyramidal Magnesium(II) Ions in Aqua(magnesium) Phthalocyanine and Chlorophyll a. J Phys Chem A 2006; 110:10084-90. [PMID: 16913682 DOI: 10.1021/jp061350w] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order Møller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.
Collapse
Affiliation(s)
- Alan Wong
- Department of Chemistry, 90 Bader Lane, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Demovic L, Kellö V, Sadlej AJ, Cooke SA. The quadrupole moment of the Sb nucleus from molecular microwave data and calculated relativistic electric-field gradients. J Chem Phys 2006; 124:184308. [PMID: 16709107 DOI: 10.1063/1.2192779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recently determined accurate values of the nuclear quadrupole coupling constant of the Sb nucleus in SbN, SbP, SbF, and SbCl and the calculated electric-field gradients at Sb in these molecules are used to obtain the nuclear quadrupole moment of 121Sb and 123Sb. The calculation of the electric-field gradient has been carried out by using the infinite-order two-component relativistic method in the scalar approximation. The accompanying change of picture of the electric-field gradient operator has been accounted for by employing the shifted nucleus model of nuclear quadrupoles. The electron correlation effects are calculated at the level of the coupled cluster approximation. The present calculations give the "molecular" value of the nuclear quadrupole moment of 121Sb equal to -556+/-24 mb which is considerably different from the old "recommended" value of -360+/-40 mb and also differs from the recent "solid-state" result (-669+/-15 mb). The validation of the present data is comprehensively discussed.
Collapse
Affiliation(s)
- Lukás Demovic
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina, SK-842 15 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
31
|
Okabayashi T, Okabayashi EY, Tanimoto M, Furuya T, Saito S. Rotational spectroscopy of AuH and AuD in the 1Σ+ electronic ground state. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Willans MJ, Feindel KW, Ooms KJ, Wasylishen RE. An Investigation of Lanthanum Coordination Compounds by Using Solid-State139La NMR Spectroscopy and Relativistic Density Functional Theory. Chemistry 2006; 12:159-68. [PMID: 16224769 DOI: 10.1002/chem.200500778] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lanthanum-139 NMR spectra of stationary samples of several solid La(III) coordination compounds have been obtained at applied magnetic fields of 11.75 and 17.60 T. The breadth and shape of the 139La NMR spectra of the central transition are dominated by the interaction between the 139La nuclear quadrupole moment and the electric field gradient (EFG) at that nucleus; however, the influence of chemical-shift anisotropy on the NMR spectra is non-negligible for the majority of the compounds investigated. Analysis of the experimental NMR spectra reveals that the 139La quadrupolar coupling constants (C(Q)) range from 10.0 to 35.6 MHz, the spans of the chemical-shift tensor (Omega) range from 50 to 260 ppm, and the isotropic chemical shifts (delta(iso)) range from -80 to 178 ppm. In general, there is a correlation between the magnitudes of C(Q) and Omega, and delta(iso) is shown to depend on the La coordination number. Magnetic-shielding tensors, calculated by using relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) and incorporating scalar only or scalar plus spin-orbit relativistic effects, qualitatively reproduce the experimental chemical-shift tensors. In general, the inclusion of spin-orbit coupling yields results that are in better agreement with those from the experiment. The magnetic-shielding calculations and experimentally determined Euler angles can be used to predict the orientation of the chemical-shift and EFG tensors in the molecular frame. This study demonstrates that solid-state 139La NMR spectroscopy is a useful characterization method and can provide insight into the molecular structure of lanthanum coordination compounds.
Collapse
Affiliation(s)
- Mathew J Willans
- Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | | | | | |
Collapse
|
33
|
Schwerdtfeger P, Bast R, Gerry MCL, Jacob CR, Jansen M, Kellö V, Mudring AV, Sadlej AJ, Saue T, Söhnel T, Wagner FE. The quadrupole moment of the 3∕2+ nuclear ground state of Au197 from electric field gradient relativistic coupled cluster and density-functional theory of small molecules and the solid state. J Chem Phys 2005; 122:124317. [PMID: 15836388 DOI: 10.1063/1.1869975] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An attempt is made to improve the currently accepted muonic value for the 197Au nuclear quadrupole moment [+0.547(16)x10(-28) m2] for the 3/2+ nuclear ground state obtained by Powers et al. [Nucl. Phys. A230, 413 (1974)]. From both measured Mossbauer electric quadrupole splittings and solid-state density-functional calculations for a large number of gold compounds a nuclear quadrupole moment of +0.60x10(-28) m2 is obtained. Recent Fourier transform microwave measurements for gas-phase AuF, AuCl, AuBr, and AuI give accurate bond distances and nuclear quadrupole coupling constants for the 197Au isotope. However, four-component relativistic density-functional calculations for these molecules yield unreliable results for the 197Au nuclear quadrupole moment. Relativistic singles-doubles coupled cluster calculations including perturbative triples [CCSD(T) level of theory] for these diatomic systems are also inaccurate because of large cancellation effects between different field gradient contributions subsequently leading to very small field gradients. Here one needs very large basis sets and has to go beyond the standard CCSD(T) procedure to obtain any reliable field gradients for gold. From recent microwave experiments by Gerry and co-workers [Inorg. Chem. 40, 6123 (2001)] a significantly enhanced (197)Au nuclear quadrupole coupling constant in (CO)AuF compared to free AuF is observed. Here, these cancellation effects are less important, and relativistic CCSD(T) calculations finally give a nuclear quadrupole moment of +0.64x10(-28) m2 for 197Au. It is argued that it is currently very difficult to improve on the already published muonic value for the 197Au nuclear quadrupole moment.
Collapse
Affiliation(s)
- Peter Schwerdtfeger
- Theoretical and Computational Chemistry Research Center (TCCRC), Institute of Fundamental Sciences, Massey University (Albany Campus), Private Bag 102904, North Shore MSC, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Belanzoni * † P, Jan Baerends E, Van Lenthe E. The uranyl ion revisited: the electric field gradient at U as a probe of environmental effects. Mol Phys 2005. [DOI: 10.1080/00268970512331338153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Jensen F. Contracted basis sets for density functional calculations: Segmented versus general contraction. J Chem Phys 2005; 122:074111. [PMID: 15743225 DOI: 10.1063/1.1844313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The differences between segmented and general contracted basis sets of double and triple zeta quality are analyzed for first and second row elements. Based on coverage of the exponent space and the performance for molecular properties, it is shown that a segmented contraction requires duplication of one primitive function compared to a general contraction for double zeta type basis sets. For triple zeta basis sets, segmentation necessitates either addition of one primitive function and expanding to a quadruple valence space, or addition of two primitive functions. For molecular properties depending on the valence orbitals, such as atomization energies, equilibrium distances, and vibrational frequencies, some of the inner functions describing the core orbitals can be removed without significantly affecting the accuracy. Several of the popular basis sets in common use correspond to such core-pruned basis sets.
Collapse
Affiliation(s)
- Frank Jensen
- Department of Chemistry, University of Southern Denmark, DK-5230 Odense M., Denmark
| |
Collapse
|
36
|
Ooms KJ, Wasylishen RE. Solid-State Ru-99 NMR Spectroscopy: A Useful Tool for Characterizing Prototypal Diamagnetic Ruthenium Compounds. J Am Chem Soc 2004; 126:10972-80. [PMID: 15339183 DOI: 10.1021/ja0400887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The feasibility of (99)Ru NMR spectroscopy as a tool to characterize solid compounds is demonstrated. Results of the first solid-state (99)Ru NMR investigation of diamagnetic compounds are presented for Ru(NH(3))(6)Cl(2), K(4)Ru(CN)(6). xH(2)O (x = 0, 3), LaKRu(CN)(6), and Ru(3)(CO)(12). The sensitivity of the ruthenium magnetic shielding tensor to subtle changes in the local structure about the ruthenium nucleus is highlighted by comparing the (99)Ru isotropic chemical shift of Ru(NH(3))(6)Cl(2) in aqueous solutions and in the solid state. The narrow isotropic (99)Ru NMR peak observed for solid Ru(NH(3))(6)Cl(2) indicates that this compound is an ideal secondary reference sample for solid-state (99)Ru NMR studies. The isotropic (99)Ru chemical shift, (99)Ru nuclear quadrupolar coupling constant, C(Q), and quadrupolar asymmetry parameter of K(4)Ru(CN)(6). xH(2)O (x = 0, 3) are shown to be sensitive to x. For Ru(3)(CO)(12), the magnetic shielding tensors of each of the three nonequivalent Ru nuclei have spans of 1300-1400 ppm, and the (99)Ru C(Q) values are also similar, 1.36-1.85 MHz, and are surprisingly small given that (99)Ru has a moderate nuclear quadrupole moment. Information about the relative orientation of the Ru magnetic shielding and electric field gradient tensors has been determined for Ru(3)(CO)(12) from experimental (99)Ru NMR spectra as well as quantum chemical calculations.
Collapse
Affiliation(s)
- Kristopher J Ooms
- Contribution from the Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|