1
|
Karabulut E, Celik FA, Korkmaz ET. The long-lived reactive nitrogen species in the troposphere: DFTB model for atmospheric applications. Phys Chem Chem Phys 2023; 25:5569-5581. [PMID: 36727207 DOI: 10.1039/d2cp05344f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The longest lived reactive NO2 molecule formation in a dry and clean air environment under a high-temperature shock wave was investigated under three basic reactions (R2 for the O + NO system, R6 for the NO + NO3 system, and R7 for the NO + O3 system) in the atmospheric environment. With certain approaches, a DFTB3 model was used, which gave results close to the density functional theory. In the calculations, the related reactions up to 250 ps were examined at individual specific temperatures, and the temperature ranges that contributed to the formation of the NO2 molecule were determined. Moreover, a shock wave with both heating and cooling channels was applied only on R2 to see whether molecular concentrations were in good agreement with atmospheric information. The reaction products were examined under a shock wave of about 20 ps. At the end of the study, the applicability of the DFTB model to atmospheric systems was demonstrated by comparing it with experimental data and information. QCT approach was also used for the calculation of reaction rate constants of only O2-formation on the O + NO system. Here, all systems are focused on nitrogen species containing oxygen. In particular, the highest-population NO molecule that emerged in the lightning flash event was used as the reactant, while systems existing with the longest lived NO2 in the atmosphere after the lightning flash were focused in the product channel. As a result of the study, the hypothesis of geophysicists that almost all NO2 formed in the lightning flash event originates from the NO + O system was disproved. It has been proven that the presence of NO3 molecules that can withstand high temperatures in such systems should be evaluated.
Collapse
Affiliation(s)
- Ezman Karabulut
- Vocational School of Health Services, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Fatih Ahmet Celik
- Faculty of Arts&Sciences, Physics Department, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Ebru Tanboğa Korkmaz
- Faculty of Arts&Sciences, Physics Department, Bitlis Eren University, 13000 Bitlis, Turkey
| |
Collapse
|
2
|
Karabulut E. Oxygen Molecule Formation and the Puzzle of Nitrogen Dioxide and Nitrogen Oxide during Lightning Flash. J Phys Chem A 2022; 126:5363-5374. [PMID: 35920809 DOI: 10.1021/acs.jpca.2c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unlike the compounds of the natural air atmosphere, the lightning systems are primarily focused on NO(X2Π), NO2(12A'), and O(3P) concentrations that occurred newly and highly in the ground electronic structure. While the NO/NO2 concentrations ratio is about 2000 during the lightning flash, this ratio becomes about 0.8 right after the lightning flash. The reason for this decrease in the ratio is the disappearance of the high temperature that prevents the formation of NO2 (with the combination of NO and O) and of the photon energy that causes its dissociation (NO2 + hv → NO + O) right after the lightning flash. However, this study will focus on the reactions that contribute to the NO concentration, except for the combination of N and O atoms during lightning flash. To do this, it was focused on the reactive scattering states (especially the NO-exchange) of the NO + O collision and the photo-dissociation of NO2, which provide the formation of the NO molecule in the ground electronic state. This case raises important questions. To what extent do the NO-exchange reaction and the photo-dissociation of NO2 contribute to the atmospherically observed NO molecules? or how can the vibrational quantum states of the NO molecules formed by the photo-dissociation be effected on the NO + O1 collision to produce a NO1 molecule? These conditions may contribute to the concentrations of NO high during lightning flashes. Under low collision energy (between 0.1 and 0.3 eV), the NO (v = 0) population dissociated by a photon can act as reactants in the NO-exchange reactive scattering on the doublet electronic state. Since it is assumed that all of the NO2 molecules are due to NO in the lightning flash system, this is one of the reasons that makes the NO population so high during lightning flash. Therefore, in the light of considering that the lightning system supports the formation of highly vibrating molecular groups, it might also support the formation of O2 molecules. In particular, it was shown that the v = 4 quantum state of the NO molecule over the doublet state between collision energies of 0.9-1.5 eV and the v = 5 quantum state of the NO molecule over the quartet state between collision energies of 1.0-1.5 eV contribute to O2 formation.
Collapse
Affiliation(s)
- Ezman Karabulut
- Vocational School of Health Service, Bitlis Eren University, 13000 Bitlis, Turkey
| |
Collapse
|
3
|
Liu Y, Wang JW, Zhang J, Qi TT, Chu GW, Zou HK, Sun BC. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Walters WW, Michalski G. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O 3 reaction. J Chem Phys 2016; 145:224311. [PMID: 27984902 DOI: 10.1063/1.4968562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.
Collapse
Affiliation(s)
- Wendell W Walters
- Department of Earth, Atmospheric, and Planetary Sciences Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
| | - Greg Michalski
- Department of Earth, Atmospheric, and Planetary Sciences Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
| |
Collapse
|
5
|
Trail JR, Needs RJ. Pseudopotentials for correlated electron systems. J Chem Phys 2013; 139:014101. [DOI: 10.1063/1.4811651] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis. Proc Natl Acad Sci U S A 2013; 110:17650-5. [PMID: 23431159 DOI: 10.1073/pnas.1213150110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Select meteoritic classes possess mass-independent sulfur isotopic compositions in sulfide and organic phases. Photochemistry in the solar nebula has been attributed as a source of these anomalies. Hydrogen sulfide (H2S) is the most abundant gas-phase species in the solar nebula, and hence, photodissociation of H2S by solar vacuum UV (VUV) photons (especially by Lyman-α radiation) is a relevant process. Because of experimental difficulties associated with accessing VUV radiation, there is a paucity of data and a lack of theoretical basis to test the hypothesis of a photochemical origin of mass-independent sulfur. Here, we present multiisotopic measurements of elemental sulfur produced during the VUV photolysis of H2S. Mass-independent sulfur isotopic compositions are observed. The observed isotopic fractionation patterns are wavelength-dependent. VUV photodissociation of H2S takes place through several predissociative channels, and the measured mass-independent fractionation is most likely a manifestation of these processes. Meteorite sulfur data are discussed in light of the present experiments, and suggestions are made to guide future experiments and models.
Collapse
|
7
|
Assémat E, Efstathiou K, Joyeux M, Sugny D. Fractional bidromy in the vibrational spectrum of HOCl. PHYSICAL REVIEW LETTERS 2010; 104:113002. [PMID: 20366472 DOI: 10.1103/physrevlett.104.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Indexed: 05/29/2023]
Abstract
We introduce the notion of fractional bidromy which is the combination of fractional monodromy and bidromy, two recent generalizations of Hamiltonian monodromy. We consider the vibrational spectrum of the HOCl molecule which is used as an illustrative example to show the presence of nontrivial fractional bidromy. To our knowledge, this is the first example of a molecular system where such a generalized monodromy is exhibited.
Collapse
Affiliation(s)
- E Assémat
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex, France
| | | | | | | |
Collapse
|
8
|
Irikura KK, Johnson RD, Kacker RN, Kessel R. Uncertainties in scaling factors forab initiovibrational zero-point energies. J Chem Phys 2009; 130:114102. [DOI: 10.1063/1.3086931] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Lyons JR. Photolysis of Long-Lived Predissociative Molecules as a Source of Mass-Independent Isotope Fractionation: The Example of SO2. ADVANCES IN QUANTUM CHEMISTRY 2008. [DOI: 10.1016/s0065-3276(07)00205-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Ivanov MV, Zhu H, Schinke R. Theoretical investigation of exchange and recombination reactions in O(P3)+NO(Π2) collisions. J Chem Phys 2007; 126:054304. [PMID: 17302474 DOI: 10.1063/1.2430715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a detailed dynamical study of the kinetics of O(3P)+NO(2Pi) collisions including O atom exchange reactions and the recombination of NO2. The classical trajectory calculations are performed on the lowest 2A' and 2A" potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, kex, is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2kex, overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, kr, is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, kr proportional, T-1.5, of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, DeltaZPE, into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO2, which is in accord with the overall T-1.4 dependence of the measured recombination rate even in the low temperature range.
Collapse
Affiliation(s)
- M V Ivanov
- Max-Planck-Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany.
| | | | | |
Collapse
|
11
|
Jost R, Michalski G, Thiemens M. Comparison of rovibronic density of asymmetric versus symmetric NO2 isotopologues at dissociation threshold: broken symmetry effects. J Chem Phys 2005; 123:054320. [PMID: 16108652 DOI: 10.1063/1.1978873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured the rovibronic densities of four symmetric (C2v) and two asymmetric (Cs) isotopologues of nitrogen dioxide just below their photodissociation threshold. At dissociation threshold and under jet conditions the laser-induced fluorescence abruptly disappears because the dissociation into NO(2pi(1/2)) + O(3P2) is much faster than the radiative decay. As a consequence, in a narrow energy range below D0, the highest bound rovibronic energy levels of J=1/2 and J=3/2 can be observed and sorted. A statistical analysis of the corresponding rovibronic density, energy spacing, and rovibronic transition intensities has been made. The observed intensity distributions are in agreement with the Porter-Thomas distribution. This distribution allows one to estimate the number of missing levels, and therefore to determine and compare the rovibronic and the vibronic densities. The four symmetric NO2 isotopologues, 16O14N16O, 18O14N18O, 16O15N16O, and 18O15N18O, have, respectively, a sum of J=1/2 and J=3/2 rovibronic densities of 18+/-0.8, 18.3+/-1.4, 18.4+/-2.7, and 19.8+/-3.5 cm(-1), while for the two asymmetric isotopologues, 18O14N16O and 18O15N16O, the corresponding densities are 20.9+/-4.5 and 23.6+/-5.6 cm(-1). The corresponding vibronic densities are in agreement only if we include both the merging of symmetry species (from those of C2v to those of Cs) and the contribution of the long-range tail(s) of the potential-energy surface along the dissociation coordinate. The effects of isotopic substitution on dissociation rates and the possible relation to mass-independent isotopic fractionation are discussed.
Collapse
Affiliation(s)
- R Jost
- Laboratoire de Spectrométrie Physique, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 5588, Université Joseph Fourier-Grenoble 1, BP 87, 38402 Saint Martin d'Hères Cedex, France
| | | | | |
Collapse
|