1
|
Sappl L, Likos CN, Zöttl A. Multi-particle collision dynamics for a coarse-grained model of soft colloids applied to ring polymers. J Chem Phys 2023; 159:114904. [PMID: 37724733 DOI: 10.1063/5.0165191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
The simulation of polymer solutions often requires the development of methods that accurately include hydrodynamic interactions. Resolution on the atomistic scale is too computationally expensive to cover mesoscopic time and length scales on which the interesting polymer phenomena are observed. Therefore, coarse-graining methods have to be applied. In this work, the solvent is simulated using the well-established multi-particle collision dynamics scheme, and for the polymer, different coarse-graining methods are employed and compared against the monomer resolved Kremer-Grest model by their resulting diffusion coefficients. This research builds on previous work [Ruiz-Franco et al., J. Chem. Phys. 151, 074902 (2019)], in which star polymers and linear chains in a solvent were simulated and two different coarse-graining methods were developed, in order to increase computational efficiency. The present work extends this approach to ring polymers and seeks to refine one of the authors' proposed model: the penetrable soft colloid model. It was found that both proposed models are not well suited to ring polymers; however, the introduction of a factor to the PSC model delivers satisfying results for the diffusion behavior by regulating the interaction intensity with the solvent.
Collapse
Affiliation(s)
- Lisa Sappl
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Vienna, Austria
| | - Andreas Zöttl
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Vienna, Austria
| |
Collapse
|
2
|
Jaiswal S, Sahoo S, Thakur S. Particle-based mesoscopic model for phase separation in a binary fluid mixture. Phys Rev E 2023; 107:055303. [PMID: 37328993 DOI: 10.1103/physreve.107.055303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
A mesoscopic simulation model to study the phase separation in a binary fluid mixture in three dimensions (3D) is presented here by augmenting the existing particle-based multiparticle collision dynamics (MPCD) algorithm. The approach describes the nonideal equation of the fluid state by incorporating the excluded-volume interaction between the two components within the framework of stochastic collision, which depends on the local fluid composition and velocity. Calculating the nonideal contribution to the pressure both from simulation and analytics shows the model to be thermodynamically consistent. A phase diagram to explore the range of parameters that give rise to phase separation in the model is investigated. The interfacial width and phase growth obtained from the model agree with the literature for a wide range of temperatures and parameters.
Collapse
Affiliation(s)
- Surabhi Jaiswal
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Soudamini Sahoo
- Department of Physics, Indian Institute of Technology Palakkad, Kerala 678623, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
3
|
Wang D, Wen X, Zhang D, Tan X, Tang J. Single-polymer dynamics of starch-like branched ring polymers in steady shear flow. Int J Biol Macromol 2023; 227:173-181. [PMID: 36535348 DOI: 10.1016/j.ijbiomac.2022.12.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The stretching dynamics and dynamical behaviors of individual branched ring polymer (BRP), a coarse-grained model for some types of the starch, in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. By analyzing the stretched configuration of BRPs, we find the polymer size increases nonmonotonically with increasing branch length. Meanwhile, the decrease of the alignment angle of the stretched configuration of BRPs follows a universal power law during the first downward phase as the shear rate increases. Constructing the three-dimensional surface of the polymer's ring backbone and tracing the temporal fluctuations of the surface's normal vector along the simulation trajectory, the tumbling and tank-treading motion are clearly reflected by periodic and non-periodic changes of the normal vector. Interestingly, these temporal changes are much more regular than that of the gyration tensor. Thus, a novel cross-correlation function, which is the correlation between fluctuations of the normal vector along the flow direction and the velocity-gradient direction, is proposed to analyze the tumbling motion that usually coexists with the tank-treading motion. This function can naturally address the fails of traditional method that analyzing the tumbling motion by determining the correlation of temporal fluctuations of the gyration tensor Gαα. By analyzing the dynamical behaviors of BRPs, diverse dependences of the tumbling frequency ωTB and tank-treading frequency ωTT on the shear rate γ̇ are observed at a wide range of shear rates and polymer sizes. Furthermore, our simulations also reveal that the tank-treading motion is more stable than the tumbling motion for small-branch-size BRPs but the tumbling motion is more stable than the tank-treading motion for large-branch-size BRPs.
Collapse
Affiliation(s)
- Deyin Wang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Xiaohui Wen
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China.
| | - Dong Zhang
- College of Life Sciences and Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xinguan Tan
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajun Tang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
4
|
Devarajan DS, Rekhi S, Nikoubashman A, Kim YC, Howard MP, Mittal J. Effect of Charge Distribution on the Dynamics of Polyampholytic Disordered Proteins. Macromolecules 2022; 55:8987-8997. [PMID: 38250712 PMCID: PMC10798675 DOI: 10.1021/acs.macromol.2c01390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability and physiological function of many biomolecular coacervates depend on the structure and dynamics of intrinsically disordered proteins (IDPs) that typically contain a significant fraction of charged residues. Although the effect of relative arrangement of charged residues on IDP conformation is a well-studied problem, the associated changes in dynamics are far less understood. In this work, we systematically interrogate the effects of charge distribution on the chain-level and segmental dynamics of polyampholytic IDPs in dilute solutions. We study a coarse-grained model polyampholyte consisting of an equal fraction of two oppositely charged residues (glutamic acid and lysine) that undergoes a transition from an ideal chain-like conformation for uniformly charge-patterned sequences to a semi-compact conformation for highly charge-segregated sequences. Changes in the chain-level dynamics with increasing charge segregation correlate with changes in conformation. The chain-level and segmental dynamics conform to simple homopolymer models for uniformly charge-patterned sequences but deviate with increasing charge segregation, both in the presence and absence of hydrodynamic interactions. We discuss the significance of these findings, obtained for a model polyampholyte, in the context of a charge-rich intrinsically disordered region of the naturally occurring protein LAF-1. Our findings have important implications for understanding the effects of charge patterning on the dynamics of polyampholytic IDPs in dilute conditions using polymer scaling theories.
Collapse
Affiliation(s)
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, United States
| | - Michael P. Howard
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
5
|
Roca-Bonet S, Wagner M, Ripoll M. Clustering of self-thermophilic asymmetric dimers: the relevance of hydrodynamics. SOFT MATTER 2022; 18:7741-7751. [PMID: 35916336 DOI: 10.1039/d2sm00523a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-thermophilic dimers are characterized by a net phoretic attraction which, in combination with hydrodynamic interactions, results in the formation of crystalline-like aggregates. To distinguish the effect of the different contributions is frequently an important challenge. We present a simulation investigation done in parallel in the presence and the absence of hydrodynamic interactions for the case of asymmetric self-thermophoretic dimers. In the absence of hydrodynamics, the clusters have the standard heads-in configurations. In contrast, in the presence of hydrodynamics, clusters with heads-in conformation are being formed, in which dimers with their propulsion velocity pointing out of the cluster are assembled and stabilized by strong hydrodynamic osmotic flows. Significant variation in the material properties is to be expected from such differences in the collective behavior, whose understanding and control is of great relevance for the development of new synthetic active materials.
Collapse
Affiliation(s)
- Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
6
|
Dynamical and Structural Properties of Comb Long-Chain Branched Polymer in Shear Flow. Int J Mol Sci 2022; 23:ijms231911290. [PMID: 36232591 PMCID: PMC9569657 DOI: 10.3390/ijms231911290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Using hybrid multi-particle collision dynamics (MPCD) and a molecular dynamics (MD) method, we investigate the effect of arms and shear flow on dynamical and structural properties of the comb long-chain branched (LCB) polymer with dense arms. Firstly, we analyze dynamical properties of the LCB polymer by tracking the temporal changes on the end-to-end distance of both backbones and arms as well as the orientations of the backbone in the flow-gradient plane. Simultaneously, the rotation and tumbling behaviors with stable frequencies are observed. In other words, the LCB polymer undergoes a process of periodic stretched–folded–stretched state transition and rotation, whose period is obtained by fitting temporal changes on the orientation to a periodic function. In addition, the impact induced by random and fast motions of arms and the backbone will descend as the shear rate increases. By analyzing the period of rotation behavior of LCB polymers, we find that arms have a function in keeping the LCB polymer’s motion stable. Meanwhile, we find that the rotation period of the LCB polymer is mainly determined by the conformational distribution and the non-shrinkable state of the structure along the velocity-gradient direction. Secondly, structural properties are numerically characterized by the average gyration tensor of the LCB polymer. The changes in gyration are in accordance with the LCB polymer rolling when varying the shear rate. By analyzing the alignment of the LCB polymer and comparing with its linear and star counterparts, we find that the LCB polymer with very long arms, like the corresponding linear chain, has a high speed to reach its configuration expansion limit in the flow direction. However, the comb polymer with shorter arms has stronger resistance on configuration expansion against the imposed flow field. Moreover, with increasing arm length, the comb polymer in shear flow follows change from linear-polymer-like to capsule-like behavior.
Collapse
|
7
|
Perez Ocampo L, Weiss LB, Jardat M, Likos CN, Dahirel V. Electroosmotic Flow Induced Lift Forces on Polymer Chains in Nanochannels. ACS POLYMERS AU 2022; 2:245-256. [PMID: 35971422 PMCID: PMC9372999 DOI: 10.1021/acspolymersau.1c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A major objective
of research in nanofluidics is to achieve better
selectivity in manipulating the fluxes of nano-objects and in particular
of biopolymers. Numerical simulations allow one to better understand
the physical mechanisms at play in such situations. We performed hybrid
mesoscale simulations to investigate the properties of polymers under
flows in slit pores at the nanoscale. We use multiparticle collision
dynamics, an algorithm that includes hydrodynamics and thermal fluctuations,
to investigate the properties of fully flexible and stiff polymers
under several types of flow, showing that Poiseuille flows and electroosmotic
flows can lead to quantitatively and qualitatively different behaviors
of the chain. In particular, a counterintuitive phenomenon occurs
in the presence of an electroosmotic flow: When the monomers are attracted
by the solid surfaces through van der Waals forces, shear-induced
forces lead to a stronger repulsion of the polymers from these surfaces.
Such focusing of the chain in the middle of the channel increases
its flowing velocity, a phenomenon that may be exploited to separate
different types of polymers.
Collapse
Affiliation(s)
- Lisbeth Perez Ocampo
- Sorbonne Université, CNRS, Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
| | - Lisa B. Weiss
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Marie Jardat
- Sorbonne Université, CNRS, Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
8
|
Clopés Llahí J, Martín-Gómez A, Gompper G, Winkler RG. Simulating wet active polymers by multiparticle collision dynamics. Phys Rev E 2022; 105:015310. [PMID: 35193189 DOI: 10.1103/physreve.105.015310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The conformational and dynamical properties of active Brownian polymers embedded in a fluid depend on the nature of the driving mechanism, e.g., self-propulsion or external actuation of the monomers. Implementations of self-propelled and actuated active Brownian polymers in a multiparticle collision (MPC) dynamics fluid are presented, which capture the distinct differences between the two driving mechanisms. The active force-free nature of self-propelled monomers requires adaptations of the MPC simulation scheme, with its streaming and collision steps, where the monomer self-propulsion velocity has to be omitted in the collision step. Comparison of MPC simulation results for active polymers in dilute solution with results of Brownian dynamics simulations accounting for hydrodynamics via the Rotne-Prager-Yamakawa tensor confirm the suitability of the implementation. The polymer conformational and dynamical properties are analyzed by the static and dynamic structure factor, and the scaling behavior of the latter with respect to the wave number and time dependence are discussed. The dynamic structure factor displays various activity-induced temporal regimes, depending on the considered wave number, which reflect the persistent diffusive motion of the whole polymer at small wave numbers, and the activity-enhanced internal dynamics at large wave numbers. The obtained simulation results are compared with theoretical predictions.
Collapse
Affiliation(s)
- Judit Clopés Llahí
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Aitor Martín-Gómez
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
9
|
Tan Z, Calandrini V, Dhont JKG, Nägele G, Winkler RG. Hydrodynamics of immiscible binary fluids with viscosity contrast: a multiparticle collision dynamics approach. SOFT MATTER 2021; 17:7978-7990. [PMID: 34378623 DOI: 10.1039/d1sm00541c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a multiparticle collision dynamics (MPC) implementation of layered immiscible fluids A and B of different shear viscosities separated by planar interfaces. The simulated flow profile for imposed steady shear motion and the time-dependent shear stress functions are in excellent agreement with our continuum hydrodynamics results for the composite fluid. The wave-vector dependent transverse velocity auto-correlation functions (TVAF) in the bulk-fluid regions of the layers decay exponentially, and agree with those of single-phase isotropic MPC fluids. In addition, we determine the hydrodynamic mobilities of an embedded colloidal sphere moving steadily parallel or transverse to a fluid-fluid interface, as functions of the distance from the interface. The obtained mobilities are in good agreement with hydrodynamic force multipoles calculations, for a no-slip sphere moving under creeping flow conditions near a clean, ideally flat interface. The proposed MPC fluid-layer model can be straightforwardly implemented, and it is computationally very efficient. Yet, owing to the spatial discretization inherent to the MPC method, the model can not reproduce all hydrodynamic features of an ideally flat interface between immiscible fluids.
Collapse
Affiliation(s)
- Zihan Tan
- Biomacromolecular Systems and Processes, Institute of Biological Information Processing, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | | | | | | | | |
Collapse
|
10
|
Formanek M, Moreno AJ. Crowded solutions of single-chain nanoparticles under shear flow. SOFT MATTER 2021; 17:2223-2233. [PMID: 33465214 DOI: 10.1039/d0sm01978j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-linking of single polymer chains. By means of computer simulations with implemented hydrodynamic interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of several conformational and dynamic observables on the shear rate and the concentration, obtaining a set of power-law scaling laws. The concentration has a very different effect on the shear rate dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these findings are inherently related to the topological interactions preventing concatenation of the SCNPs, which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the shear flow.
Collapse
Affiliation(s)
- Maud Formanek
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
11
|
Li R, Gompper G, Ripoll M. Tumbling and Vorticity Drift of Flexible Helicoidal Polymers in Shear Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Run Li
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Howard MP, Nikoubashman A. Stratification of polymer mixtures in drying droplets: Hydrodynamics and diffusion. J Chem Phys 2020; 153:054901. [PMID: 32770900 DOI: 10.1063/5.0014429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We study the evaporation-induced stratification of a mixture of short and long polymer chains in a drying droplet using molecular simulations. We systematically investigate the effects of hydrodynamic interactions (HI) on this process by comparing hybrid simulations accounting for HI between polymers through the multiparticle collision dynamics technique with free-draining Langevin dynamics simulations neglecting the same. We find that the dried supraparticle morphologies are homogeneous when HI are included but are stratified in core-shell structures (with the short polymers forming the shell) when HI are neglected. The simulation methodology unambiguously attributes this difference to the treatment of the solvent in the two models. We rationalize the presence (or absence) of stratification by measuring phenomenological multicomponent diffusion coefficients for the polymer mixtures. The diffusion coefficients show the importance of not only solvent backflow but also HI between polymers in controlling the dried supraparticle morphology.
Collapse
Affiliation(s)
- Michael P Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
13
|
Mousavi SM, Gompper G, Winkler RG. Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study. SOFT MATTER 2020; 16:4866-4875. [PMID: 32424390 DOI: 10.1039/d0sm00571a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microswimmers such as E. coli bacteria accumulate and exhibit an intriguing dynamics near walls, governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and predominant interactions demand a detailed characterization of the entrapment process. We employ a mesoscale hydrodynamics simulation approach to study entrapment of an E. coli-type cell at a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella. Three stages of the entrapment process can be distinguished: the approaching regime, where a cell swims toward a wall on a nearly straight trajectory; a scattering regime, where the cell touches the wall and reorients; and a surface-swimming regime. Our simulations show that steric interactions may dominate the entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized by a strong wobbling dynamics, with cells preferentially pointing toward the wall during surface swimming.
Collapse
Affiliation(s)
- S Mahdiyeh Mousavi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
14
|
Paciolla M, Arismendi-Arrieta DJ, Moreno AJ. Coarsening Kinetics of Complex Macromolecular Architectures in Bad Solvent. Polymers (Basel) 2020; 12:E531. [PMID: 32121665 PMCID: PMC7182883 DOI: 10.3390/polym12030531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study reports a general scenario for the out-of-equilibrium features of collapsing polymeric architectures. We use molecular dynamics simulations to characterize the coarsening kinetics, in bad solvent, for several macromolecular systems with an increasing degree of structural complexity. In particular, we focus on: flexible and semiflexible polymer chains, star polymers with 3 and 12 arms, and microgels with both ordered and disordered networks. Starting from a powerful analogy with critical phenomena, we construct a density field representation that removes fast fluctuations and provides a consistent characterization of the domain growth. Our results indicate that the coarsening kinetics presents a scaling behaviour that is independent of the solvent quality parameter, in analogy to the time-temperature superposition principle. Interestingly, the domain growth in time follows a power-law behaviour that is approximately independent of the architecture for all the flexible systems; while it is steeper for the semiflexible chains. Nevertheless, the fractal nature of the dense regions emerging during the collapse exhibits the same scaling behaviour for all the macromolecules. This suggests that the faster growing length scale in the semiflexible chains originates just from a faster mass diffusion along the chain contour, induced by the local stiffness. The decay of the dynamic correlations displays scaling behavior with the growing length scale of the system, which is a characteristic signature in coarsening phenomena.
Collapse
Affiliation(s)
- Mariarita Paciolla
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain;
| | | | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain;
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain;
| |
Collapse
|
15
|
Qi K, Westphal E, Gompper G, Winkler RG. Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions. PHYSICAL REVIEW LETTERS 2020; 124:068001. [PMID: 32109107 DOI: 10.1103/physrevlett.124.068001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The rotational diffusive motion of a self-propelled, attractive spherical colloid immersed in a solution of self-avoiding polymers is studied by mesoscale hydrodynamic simulations. A drastic enhancement of the rotational diffusion by more than an order of magnitude in the presence of activity is obtained. The amplification is a consequence of two effects, a decrease of the amount of adsorbed polymers by active motion and an asymmetric encounter with polymers on the squirmer surface, which yields an additional torque and random noise for the rotational motion. Our simulations suggest a way to control the rotational dynamics of squirmer-type microswimmers by the degree of polymer adsorption and system heterogeneity.
Collapse
Affiliation(s)
- Kai Qi
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Elmar Westphal
- Peter Grünberg Institute and Jülich Centre for Neutron Science, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| |
Collapse
|
16
|
Lee KW, Araki T, Yamamoto J. Dynamics control of an in-plane-switching liquid crystal cell using heterogeneous substrates. SOFT MATTER 2020; 16:348-356. [PMID: 31755886 DOI: 10.1039/c9sm01742a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The control of surface anchoring strength can be achieved by using heterogeneous substrates. In contrast to conventional substrates that control the anchoring strength by using temperature or chemical processes, heterogeneous substrates provide surface anchoring to liquid crystal molecules by using a mixed composition of (1) a zero anchoring surface and (2) planar-anchoring patches. To study the dynamics of in-plane-switching liquid crystal displays (IPS-LCDs) under external fields, a new particle-based numerical algorithm is developed to simulate both nematic liquid crystals and heterogeneous surfaces. This new method allows us to create different heterogeneous surfaces easily by adopting predefined distributions of numerical particles. The generated effective anchoring strength from the heterogeneous surface is thus calculated, and the dynamical response is found to be similar to that of conventional homogeneously processed substrates. The results suggest that the use of a heterogeneous LCD cell is a suitable alternative for creating desirable LCD substrates, for which chemical/temperature dependence can be transferred to a more controllable configurational dependence. Interestingly, we found master curves in the peak transmittance/recovery time phase space, and they appeared to be dependent solely on the cell thickness. This discovery clarifies the fundamental optical dynamics of IPS-LCD cells.
Collapse
Affiliation(s)
- Kuang-Wu Lee
- Department of Physics, Kyoto University, Kyoto, Japan.
| | | | | |
Collapse
|
17
|
Toneian D, Kahl G, Gompper G, Winkler RG. Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations. J Chem Phys 2019; 151:194110. [PMID: 31757142 DOI: 10.1063/1.5126082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The emergent fluctuating hydrodynamics of a viscoelastic fluid modeled by the multiparticle collision dynamics (MPC) approach is studied. The fluid is composed of flexible, Gaussian phantom polymers that interact by local momentum-conserving stochastic MPCs. For comparison, the analytical solution of the linearized Navier-Stokes equation is calculated, where viscoelasticity is taken into account by a time-dependent shear relaxation modulus. The fluid properties are characterized by the transverse velocity autocorrelation function in Fourier space as well as in real space. Various polymer lengths are considered-from dumbbells to (near-)continuous polymers. Viscoelasticity affects the fluid properties and leads to strong correlations, which overall decay exponentially in Fourier space. In real space, the center-of-mass velocity autocorrelation function of individual polymers exhibits a long-time tail, independent of the polymer length, which decays as t-3/2, similar to a Newtonian fluid, in the asymptotic limit t → ∞. Moreover, for long polymers, an additional power-law decay appears at time scales shorter than the longest polymer relaxation time with the same time dependence, but negative correlations, and the polymer length dependence L-1/2. Good agreement is found between the analytical and simulation results.
Collapse
Affiliation(s)
- David Toneian
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Kahl
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2346-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Weiss LB, Likos CN, Nikoubashman A. Spatial Demixing of Ring and Chain Polymers in Pressure-Driven Flow. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lisa B. Weiss
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
20
|
Radhakrishnan R, Farokhirad S, Eckmann DM, Ayyaswamy PS. Nanoparticle transport phenomena in confined flows. ADVANCES IN HEAT TRANSFER 2019; 51:55-129. [PMID: 31692964 DOI: 10.1016/bs.aiht.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticles submerged in confined flow fields occur in several technological applications involving heat and mass transfer in nanoscale systems. Describing the transport with nanoparticles in confined flows poses additional challenges due to the coupling between the thermal effects and fluid forces. Here, we focus on the relevant literature related to Brownian motion, hydrodynamic interactions and transport associated with nanoparticles in confined flows. We review the literature on the several techniques that are based on the principles of non-equilibrium statistical mechanics and computational fluid dynamics in order to simultaneously preserve the fluctuation-dissipation relationship and the prevailing hydrodynamic correlations. Through a review of select examples, we discuss the treatments of the temporal dynamics from the colloidal scales to the molecular scales pertaining to nanoscale fluid dynamics and heat transfer. As evident from this review, there, indeed has been little progress made in regard to the accurate modeling of heat transport in nanofluids flowing in confined geometries such as tubes. Therefore the associated mechanisms with such processes remain unexplained. This review has revealed that the information available in open literature on the transport properties of nanofluids is often contradictory and confusing. It has been very difficult to draw definitive conclusions. The quality of work reported on this topic is non-uniform. A significant portion of this review pertains to the treatment of the fluid dynamic aspects of the nanoparticle transport problem. By simultaneously treating the energy transport in ways discussed in this review as related to momentum transport, the ultimate goal of understanding nanoscale heat transport in confined flows may be achieved.
Collapse
Affiliation(s)
- Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Samaneh Farokhirad
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Portonovo S Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States.,Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, United States
| |
Collapse
|
21
|
Ruiz-Franco J, Jaramillo-Cano D, Camargo M, Likos CN, Zaccarelli E. Multi-particle collision dynamics for a coarse-grained model of soft colloids. J Chem Phys 2019; 151:074902. [PMID: 31438712 DOI: 10.1063/1.5113588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent. In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or from theoretical arguments. We hereby propose two different approaches. The first one simply extends the MPCD method by including in the simulations effective monomers with a given density profile, thus neglecting monomer-monomer interactions. The second one considers the macromolecule as a single penetrable soft colloid (PSC), which is permeated by an inhomogeneous distribution of solvent particles. By defining an appropriate set of rules to control the collision events between the solvent and the soft colloid, both linear and angular momenta are exchanged. We apply these methods to the case of linear chains and star polymers for varying monomer lengths and arm number, respectively, and compare the results for the dynamical properties with those obtained within monomer-resolved simulations. We find that the effective monomer method works well for linear chains, while the PSC method provides very good results for stars. These methods pave the way to extend MPCD treatments to complex macromolecular objects such as microgels or dendrimers and to work with soft colloids at finite concentrations.
Collapse
Affiliation(s)
- José Ruiz-Franco
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Diego Jaramillo-Cano
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Manuel Camargo
- FIMEB & CICBA, Universidad Antonio Nariño - Campus Farallones, Km 18 vía Cali-Jamundí, 760030 Cali, Colombia
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
22
|
A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems. Math Biosci 2019; 312:23-32. [PMID: 30998936 DOI: 10.1016/j.mbs.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 12/19/2022]
Abstract
The present paper introduces a new micro-meso hybrid algorithm based on the Ghost Cell Method concept in which the microscopic subdomain is governed by the Reactive Multi-Particle Collision (RMPC) dynamics. The mesoscopic subdomain is modeled using the Reaction-Diffusion Master Equation (RDME). The RDME is solved by means of the Inhomogeneous Stochastic Simulation Algorithm. No hybrid algorithm has hitherto used the RMPC dynamics for modeling reactions and the trajectories of each individual particle. The RMPC is faster than other molecular based methods and has the advantage of conserving mass, energy and momentum in the collision and free streaming steps. The new algorithm is tested on three reaction-diffusion systems. In all the systems studied, very good agreement with the deterministic solutions of the corresponding differential equations is obtained. In addition, it has been shown that proper discretization of the computational domain results in significant speed-ups in comparison with the full RMPC algorithm.
Collapse
|
23
|
Howard MP, Nikoubashman A, Palmer JC. Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
|
25
|
Sayyidmousavi A, Rohlf K. Reactive multi-particle collision dynamics with reactive boundary conditions. Phys Biol 2018; 15:046007. [DOI: 10.1088/1478-3975/aabc35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Liebetreu M, Ripoll M, Likos CN. Trefoil Knot Hydrodynamic Delocalization on Sheared Ring Polymers. ACS Macro Lett 2018; 7:447-452. [PMID: 35619341 DOI: 10.1021/acsmacrolett.8b00059] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The behavior of unknotted and trefoil-knotted ring polymers under shear flow is here examined by means of mesoscopic simulations. In contrast to most polymers, ring polymers in a hydrodynamic solvent at high shear rates do not get shortened in the vorticity direction. This is a consequence of the backflow produced by the interaction of the sheared solvent with the end-free polymer topology. The extended structures of the ring in the vorticity-flow plane, when they are aligned in a constant velocity plane, favor ring contour fluctuations. This variety of conformations largely suppresses the tank-treading type of rotation with extended conformations in favor of the tumbling type of rotations, where stretched and collapsed conformations alternate. The extension of trefoil knots is also enhanced, so that the knots become delocalized. We anticipate that these effects, which disappear in the absence of hydrodynamic interactions, will have a crucial impact on the rheological properties of concentrated ring solutions, and will also influence the behavior of more complicated systems such as mixtures of polymers with different topologies.
Collapse
Affiliation(s)
- Maximilian Liebetreu
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Marisol Ripoll
- Forschungszentrum Jülich, Institute of Complex Systems, Theoretical Soft Matter and Biophysics, 52425 Jülich, Germany
| | - Christos N. Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
27
|
Singh SP, Gompper G, Winkler RG. Steady state sedimentation of ultrasoft colloids. J Chem Phys 2018; 148:084901. [PMID: 29495770 DOI: 10.1063/1.5001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structural and dynamical properties of ultra-soft colloids-star polymers-exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.
Collapse
Affiliation(s)
- Sunil P Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal By pass Road Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
28
|
Chinnasamy T, Kingsley JL, Inci F, Turek PJ, Rosen MP, Behr B, Tüzel E, Demirci U. Guidance and Self-Sorting of Active Swimmers: 3D Periodic Arrays Increase Persistence Length of Human Sperm Selecting for the Fittest. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700531. [PMID: 29610725 PMCID: PMC5827459 DOI: 10.1002/advs.201700531] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Male infertility is a reproductive disease, and existing clinical solutions for this condition often involve long and cumbersome sperm sorting methods, including preprocessing and centrifugation-based steps. These methods also fall short when sorting for sperm free of reactive oxygen species, DNA damage, and epigenetic aberrations. Although several microfluidic platforms exist, they suffer from structural complexities, i.e., pumps or chemoattractants, setting insurmountable barriers to clinical adoption. Inspired by the natural filter-like capabilities of the female reproductive tract for sperm selection, a model-driven design, featuring pillar arrays that efficiently and noninvasively isolate highly motile and morphologically normal sperm, with lower epigenetic global methylation, from raw semen, is presented. The Simple Periodic ARray for Trapping And isolatioN (SPARTAN) created here modulates the directional persistence of sperm, increasing the spatial separation between progressive and nonprogressive motile sperm populations within an unprecedentedly short 10 min assay time. With over 99% motility of sorted sperm, a 5-fold improvement in morphology, 3-fold increase in nuclear maturity, and 2-4-fold enhancement in DNA integrity, SPARTAN offers to standardize sperm selection while eliminating operator-to-operator variations, centrifugation, and flow. SPARTAN can also be applied in other areas, including conservation ecology, breeding of farm animals, and design of flagellar microrobots for diagnostics.
Collapse
Affiliation(s)
- Thiruppathiraja Chinnasamy
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | - James L. Kingsley
- Department of PhysicsWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Fatih Inci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
| | | | - Mitchell P. Rosen
- Department of OBGYNUniversity of California San Francisco School of MedicineSan FranciscoCA94158USA
| | - Barry Behr
- Department of Obstetrics and GynecologySchool of MedicineStanford UniversityStanfordCA94305USA
| | - Erkan Tüzel
- Department of PhysicsWorcester Polytechnic InstituteWorcesterMA01609USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologyStanford School of MedicineStanford UniversityPalo AltoCA94304USA
- Department of Electrical Engineering (by courtesy)Stanford UniversityStanfordCA94305USA
| |
Collapse
|
29
|
Das S, Riest J, Winkler RG, Gompper G, Dhont JKG, Nägele G. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. SOFT MATTER 2017; 14:92-103. [PMID: 29199754 DOI: 10.1039/c7sm02019h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dispersions of particles with short-range attractive and long-range repulsive interactions exhibit rich equilibrium microstructures and a complex phase behavior. We present theoretical and simulation results for structural and, in particular, short-time diffusion properties of a colloidal model system with such interactions, both in the dispersed-fluid and equilibrium-cluster phase regions. The particle interactions are described by a generalized Lennard-Jones-Yukawa pair potential. For the theoretical-analytical description, we apply the hybrid Beenakker-Mazur pairwise additivity (BM-PA) scheme. The static structure factor input to this scheme is calculated self-consistently using the Zerah-Hansen integral equation theory approach. In the simulations, a hybrid simulation method is adopted, combing molecular dynamics simulations of colloids with the multiparticle collision dynamics approach for the fluid, which fully captures hydrodynamic interactions. The comparison of our theoretical and simulation results confirms the high accuracy of the BM-PA scheme for dispersed-fluid phase systems. For particle attraction strengths exceeding a critical value, our simulations yield an equilibrium cluster phase. Calculations of the mean lifetime of the appearing clusters and the comparison with the analytical prediction of the dissociation time of an isolated particle pair reveal quantitative differences pointing to the importance of many-particle hydrodynamic interactions for the cluster dynamics. The cluster lifetime in the equilibrium-cluster phase increases far stronger with increasing attraction strength than that in the dispersed-fluid phase. Moreover, significant changes in the cluster shapes are observed in the course of time. Hence, an equilibrium-cluster dispersion cannot be treated dynamically as a system of permanent rigid bodies.
Collapse
Affiliation(s)
- Shibananda Das
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Chen A, Zhao N, Hou Z. The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. SOFT MATTER 2017; 13:8625-8635. [PMID: 29115361 DOI: 10.1039/c7sm01854a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The diffusion of nanoparticles (NPs) in polymer solutions is studied by a combination of a mesoscale simulation method, multiparticle collision dynamics (MPCD), and molecular dynamics (MD) simulations. We investigate the long-time diffusion coefficient D as well as the subdiffusive behavior in the intermediate time region. The dependencies of both D and subdiffusion factor α on NP size and polymer concentration, respectively, are explicitly calculated. Particular attention is paid to the role of hydrodynamic interaction (HI) in the NP diffusion dynamics. Our simulation results show that the long-time diffusion coefficients satisfy perfectly the scaling relation found by experimental observations. Meanwhile, the subdiffusive factor decreases with the increase in polymer concentration but is of little relevance to the NP size. By parallel simulations with and without HI, we reveal that HI will generally enhance D, while the enhancement effect is non-monotonous with increasing polymer concentration, and it becomes most pronounced at semidilute concentrations. With the aid of a scaling law based on the diffusive activation energy model, we understand that HI affects diffusion through decreasing the diffusive activation energy on the one hand while increasing the effective diffusion size on the other. In addition, HI will certainly influence the subdiffusive behavior of the NP, leading to a larger subdiffusion exponent.
Collapse
Affiliation(s)
- Anpu Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | |
Collapse
|
31
|
Abstract
Colloidal migration in a temperature gradient is referred to as thermophoresis. In contrast to particles with a spherical shape, we show that elongated colloids may have a thermophoretic response that varies with the colloid orientation. Remarkably, this can translate into a non-vanishing thermophoretic force in the direction perpendicular to the temperature gradient. Opposite to the friction force, the thermophoretic force of a rod oriented with the temperature gradient can be larger or smaller than when oriented perpendicular to it. The precise anisotropic thermophoretic behavior clearly depends on the colloidal rod aspect ratio, and also on its surface details, which provides an interesting tunability to the devices constructed based on this principle. By means of mesoscale hydrodynamic simulations, we characterize this effect for different types of rod-like colloids.
Collapse
Affiliation(s)
- Zihan Tan
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
32
|
Liu L, Chen W, Chen J. Shape and Diffusion of Circular Polyelectrolytes in Salt-Free Dilute Solutions and Comparison with Linear Polyelectrolytes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lijun Liu
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Wenduo Chen
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jizhong Chen
- State Key Laboratory
of Polymer
Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
33
|
Abstract
The morphology of core-shell microgels under different swelling conditions and as a function of the core-shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core-shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory-Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core-shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials.
Collapse
Affiliation(s)
- Ali Ghavami
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G. Winkler
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
34
|
Cerbelaud M, Maria Laganapan A, Ala-Nissila T, Ferrando R, Videcoq A. Shear viscosity in hard-sphere and adhesive colloidal suspensions with reverse non-equilibrium molecular dynamics. SOFT MATTER 2017; 13:3909-3917. [PMID: 28488709 DOI: 10.1039/c7sm00441a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We employ the reverse non-equilibrium molecular dynamics method (RNEMD) of Müller-Plathe [Phys. Rev. E, 1999, 59, 4894] to calculate the shear viscosity of colloidal suspensions within the stochastic rotation dynamics-molecular dynamics (SRD-MD) simulation method. We examine the influence of different coupling schemes in SRD-MD on the colloidal volume fraction ϕc dependent viscosity from the dilute limit up to ϕc = 0.3. Our results demonstrate that the RNEMD method is a robust and reliable method for calculating rheological properties of colloidal suspensions. To obtain quantitatively accurate results beyond the dilute regime, the hydrodynamic interactions between the effective fluid particles in the SRD and the MD colloidal particles must be carefully considered in the coupling scheme. We benchmark the method by comparing with the hard sphere suspension case, and then calculate relative viscosities for colloids with mutually attractive interactions. We show that the viscosity displays a sharp increase at the onset of aggregation of the colloidal particles with increasing volume fraction and attraction.
Collapse
|
35
|
Dennison M, Kapral R, Stark H. Diffusion in systems crowded by active force-dipole molecules. SOFT MATTER 2017; 13:3741-3749. [PMID: 28463368 DOI: 10.1039/c7sm00400a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Experimental studies of systems containing active proteins that undergo conformational changes driven by catalytic chemical reactions have shown that the diffusion coefficients of passive tracer particles and active molecules are larger than the corresponding values when chemical activity is absent. Various mechanisms have been proposed for such behavior, including, among others, force dipole interactions of molecular motors moving on filaments and collective hydrodynamic effects arising from active proteins. Simulations of a multi-component system containing active dumbbell molecules that cycle between open and closed states, a passive tracer particle and solvent molecules are carried out. Consistent with experiments, it is shown that the diffusion coefficients of both passive particles and the dumbbells themselves are enhanced when the dumbbells are active. The dependence of the diffusion enhancement on the volume fraction of dumbbells is determined, and the effects of crowding by active dumbbell molecules are shown to differ from those due to inactive molecules.
Collapse
Affiliation(s)
- Matthew Dennison
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
| | | | | |
Collapse
|
36
|
Ghavami A, Kobayashi H, Winkler RG. Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. J Chem Phys 2017; 145:244902. [PMID: 28049314 DOI: 10.1063/1.4972893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the dynamics of polymers in a microgel system under different swelling conditions. A microgel particle consists of coarse-grained linear polymers which are tetra-functionally crosslinked and undergoes conformational changes in response to the external stimuli. Here, a broad range of microgel sizes, extending from tightly collapsed to strongly swollen particles, is considered. In order to account for hydrodynamic interactions, the microgel is embedded in a multiparticle collision dynamics fluid while hydrophobic attraction is modelled by an attractive Lennard-Jones potential and swelling of ionic microgels is described through the Debye-Hückel potential. The polymer dynamics is analyzed in terms of the monomer mean square displacement and the intermediate scattering function S(q, t). The scattering function decays in a stretched-exponential manner, with a decay rate exhibiting a crossover from a collective diffusive dynamics at low magnitudes of the wavevector q to a hydrodynamic-dominated dynamics at larger q. There is little difference between the intermediate scattering functions of microgels under good solvent conditions and strongly swollen gels, but strongly collapsed gels exhibit a faster decay at short times and hydrodynamic interactions become screened. In addition, we present results for the dynamics of the crosslinks, which exhibit an unexpected, semiflexible polymer-like dynamics.
Collapse
Affiliation(s)
- Ali Ghavami
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Hideki Kobayashi
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
37
|
Katyal D, Kant R. Dynamics of Branched Polymers in Random Layered Flows with Intramolecular Hydrodynamic Coupling: Star and Dendrimer. MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Divya Katyal
- Complex Systems Group; Department of Chemistry; University of Delhi; Delhi 110007 India
| | - Rama Kant
- Complex Systems Group; Department of Chemistry; University of Delhi; Delhi 110007 India
| |
Collapse
|
38
|
Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results. Polymers (Basel) 2017; 9:polym9010015. [PMID: 30970691 PMCID: PMC6431964 DOI: 10.3390/polym9010015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022] Open
Abstract
We investigate the conformational properties of polymers in ionic microgels in the presence of salt ions by molecular dynamics simulations and analytical theory. A microgel particle consists of coarse-grained linear polymers, which are tetra-functionally crosslinked. Counterions and salt ions are taken into account explicitly, and charge-charge interactions are described by the Coulomb potential. By varying the charge interaction strength and salt concentration, we characterize the swelling of the polyelectrolytes and the charge distribution. In particular, we determine the amount of trapped mobile charges inside the microgel and the Debye screening length. Moreover, we analyze the polymer extension theoretically in terms of the tension blob model taking into account counterions and salt ions implicitly by the Debye–Hückel model. Our studies reveal a strong dependence of the amount of ions absorbed in the interior of the microgel on the electrostatic interaction strength, which is related to the degree of the gel swelling. This implies a dependence of the inverse Debye screening length κ on the ion concentration; we find a power-law increase of κ with the Coulomb interaction strength with the exponent 3/5 for a salt-free microgel and an exponent 1/2 for moderate salt concentrations. Additionally, the radial dependence of polymer conformations and ion distributions is addressed.
Collapse
|
39
|
Lüsebrink D, Cerdà JJ, Sánchez PA, Kantorovich SS, Sintes T. The behavior of a magnetic filament in flow under the influence of an external magnetic field. J Chem Phys 2016; 145:234902. [DOI: 10.1063/1.4971860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daniel Lüsebrink
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Joan J. Cerdà
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Pedro A. Sánchez
- Faculty of Physics, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
| | | | - Tomás Sintes
- IFISC (UIB-CSIC) Instituto de Física Interdisciplinar y Sistemas Complejos, Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
40
|
Lo Verso F, Pomposo JA, Colmenero J, Moreno AJ. Tunable slow dynamics in a new class of soft colloids. SOFT MATTER 2016; 12:9039-9046. [PMID: 27774553 DOI: 10.1039/c6sm02136k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By means of extensive simulations, we investigate concentrated solutions of globular single-chain nanoparticles (SCNPs), an emergent class of synthetic soft nano-objects. By increasing the concentration, the SCNPs show flattening, and even reentrant behaviour, in the density dependence of their structural and dynamic correlations, as well as a soft caging regime and weak dynamic heterogeneity. The latter is confirmed by validation of the Stokes-Einstein relation up to concentrations far beyond the overlap density. Therefore SCNPs arise as a new class of soft colloids, exhibiting slow dynamics and actualizing in a real system the structural and dynamic anomalies proposed by models of ultrasoft particles. Quantitative differences in the dynamic behaviour depend on the SCNP deformability, which can be tuned through the degree of internal cross-linking.
Collapse
Affiliation(s)
- Federica Lo Verso
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain.
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain and IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20080 San Sebastián, Spain and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
41
|
Arbe A, Pomposo J, Moreno A, LoVerso F, González-Burgos M, Asenjo-Sanz I, Iturrospe A, Radulescu A, Ivanova O, Colmenero J. Structure and dynamics of single-chain nano-particles in solution. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Eisenstecken T, Hu J, Winkler RG. Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. SOFT MATTER 2016; 12:8316-8326. [PMID: 27714355 DOI: 10.1039/c6sm01532h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of cells in the gap changes from a geometry-dominated behavior for very narrow to fluid-dominated behavior for wider gaps, where cells are preferentially located in the gap center for narrower gaps and stay preferentially next to one of the walls for wider gaps. Dynamically, the cells exhibit a wide spectrum of migration behaviors, depending on their flagella bundle arrangement, and ranges from straight swimming to wall rolling.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Jinglei Hu
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany. and Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
43
|
Park JD, Myung JS, Ahn KH. A review on particle dynamics simulation techniques for colloidal dispersions: Methods and applications. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0229-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Maccarrone S, Ghavami A, Holderer O, Scherzinger C, Lindner P, Richtering W, Richter D, Winkler RG. Dynamic Structure Factor of Core–Shell Microgels: A Neutron Scattering and Mesoscale Hydrodynamic Simulation Study. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simona Maccarrone
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
- Institute
of Physical Chemistry, RWTH Aachen University and JARA - Soft Matter Science, Landoltweg 2, 52056 Aachen, Germany
| | | | - Olaf Holderer
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Christine Scherzinger
- Institute
of Physical Chemistry, RWTH Aachen University and JARA - Soft Matter Science, Landoltweg 2, 52056 Aachen, Germany
| | - Peter Lindner
- Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble, Cedex 9, France
| | - Walter Richtering
- Institute
of Physical Chemistry, RWTH Aachen University and JARA - Soft Matter Science, Landoltweg 2, 52056 Aachen, Germany
| | - Dieter Richter
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | | |
Collapse
|
45
|
Simulation of Individual Polymer Chains and Polymer Solutions with Smoothed Dissipative Particle Dynamics. FLUIDS 2016. [DOI: 10.3390/fluids1010007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Dennison M, Stark H. Viscoelastic properties of marginal networks in a solvent. Phys Rev E 2016; 93:022605. [PMID: 26986375 DOI: 10.1103/physreve.93.022605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Polymer networks at the margins of mechanical stability are known to be highly sensitive to applied forces and fields and to exhibit an anomalously large resistance to deformation. In this paper, we study the effects of hydrodynamic interactions on the behavior of marginal networks using a hybrid molecular dynamics and multiparticle collision dynamics simulation technique. We examine how the filament and solvent properties affect the response of marginal networks to shear. We find that the stiffening of the network shows a stronger dependence on the shear frequency when hydrodynamic interactions are present than when they are not. The network shear modulus scales as G'∼ω(α(c)), with a critical stiffening exponent α(c) that can be controlled by varying the relative concentrations of the network and the solvent. Our results show that this arises due to the solvent aiding the relaxation of the network and suppressing the network nonaffinity, with the system deforming more affinely when hydrodynamic interactions are maximized.
Collapse
Affiliation(s)
- M Dennison
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - H Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
47
|
Gao T, Fan J, Tao YG. Multi-particle collision dynamics simulation on capturing a target sphere fuelled by chemical reaction. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tong Gao
- School of Computer Science and Engineering, Jilin Jianzhu (Architecture) University, Changchun, P.R. China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yu-Guo Tao
- Department of Chemistry, University of Toronto, Canada
| |
Collapse
|
48
|
Myung JS, Winkler RG, Gompper G. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow. J Chem Phys 2015; 143:243117. [PMID: 26723602 DOI: 10.1063/1.4933368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.
Collapse
Affiliation(s)
- Jin Suk Myung
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
49
|
Howard MP, Panagiotopoulos AZ, Nikoubashman A. Inertial and viscoelastic forces on rigid colloids in microfluidic channels. J Chem Phys 2015; 142:224908. [DOI: 10.1063/1.4922323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Michael P. Howard
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Arash Nikoubashman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
50
|
Singh SP, Huang CC, Westphal E, Gompper G, Winkler RG. Hydrodynamic correlations and diffusion coefficient of star polymers in solution. J Chem Phys 2015; 141:084901. [PMID: 25173039 DOI: 10.1063/1.4893766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The center-of-mass dynamics of star polymers in dilute solution is analyzed by hybrid mesoscale simulations. The fluid is modeled by the multiparticle collision dynamics approach, a particle-based hydrodynamic simulation technique, which is combined with molecular dynamics simulations for the polymers. Star polymers of various functionalities are considered. We determine the center-of-mass velocity correlation functions, the corresponding mean square displacements, and diffusion coefficients. The velocity correlation functions exhibit a functionality-dependent and structure-specific intermediate time regime, with a slow decay. It is followed by the long-time tail t(-3/2), which is solely determined by the fluid. Infinite-system-size diffusion coefficients are determined from the velocity correlation function by a combination of simulation and analytical results, as well as from the center-of-mass mean square displacement for various systems sizes and extrapolation. In terms of the hydrodynamic radius, the star polymer hydrodynamic diffusion coefficient exhibits the same universal system-size dependence as a spherical colloid. The functionality dependence of the ratio of hydrodynamic radii and the radii of gyration agrees well with experimental predictions.
Collapse
Affiliation(s)
- Sunil P Singh
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Chien-Cheng Huang
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Elmar Westphal
- Peter Grünberg Institute and Jülich Centre for Neutron Science, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|