1
|
Teke NK, Melekamburath A, Gaudel B, Valeev EF. "Best" Iterative Coupled-Cluster Triples Model? More Evidence for 3CC. J Phys Chem A 2024; 128:9819-9828. [PMID: 39478319 DOI: 10.1021/acs.jpca.4c04667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
To follow up on the unexpectedly good performance of several coupled-cluster models with approximate inclusion of 3-body clusters [Rishi, V.; Valeev, E. F. J. Chem. Phys. 2019, 151, 064102.] we performed a more complete assessment of the 3CC method [Feller, D. . J. Chem. Phys. 2008, 129, 204105.] for accurate computational thermochemistry in the standard HEAT framework. New spin-integrated implementation of the 3CC method applicable to closed- and open-shell systems utilizes a new automated toolchain for derivation, optimization, and evaluation of operator algebra in many-body electronic structure. We found that with a double-ζ basis set the 3CC correlation energies and their atomization energy contributions are almost always more accurate (with respect to the CCSDTQ reference) than the CCSDT model as well as the standard CCSD(T) model. The mean absolute errors in cc-pVDZ {3CC, CCSDT, and CCSD(T)} electronic (per valence electron) and atomization energies relative to the CCSDTQ reference for the HEAT data set [Tajti, A. . J. Chem. Phys. 2004, 121, 11599-11613.], were {24, 70, 122} μEh/e and {0.46, 2.00, 2.58} kJ/mol, respectively. The mean absolute errors in the complete-basis-set limit {3CC, CCSDT, and CCSD(T)} atomization energies relative to the HEAT model reference, were {0.52, 2.00, and 1.07} kJ/mol, The significant and systematic reduction of the error by the 3CC method and its lower cost than CCSDT suggests it as a viable candidate for post-CCSD(T) thermochemistry applications, as well as the preferred alternative to CCSDT in general.
Collapse
Affiliation(s)
- Nakul K Teke
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ajay Melekamburath
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bimal Gaudel
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Fishman V, Semidalas E, Martin JML. Basis Set Extrapolation from the Vanishing Counterpoise Correction Condition. J Phys Chem A 2024; 128:7462-7470. [PMID: 39167776 PMCID: PMC11382269 DOI: 10.1021/acs.jpca.4c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Basis set extrapolations are typically rationalized either from analytical arguments involving the partial-wave or principal expansions of the correlation energy in helium-like systems or from fitting extrapolation parameters to reference energetics for a small(ish) training set. Seeking to avoid both, we explore a third alternative: extracting extrapolation parameters from the requirement that the BSSE (basis set superposition error) should vanish at the complete basis set limit. We find this to be a viable approach provided that the underlying basis sets are not too small and reasonably well balanced. For basis sets not augmented by diffuse functions, BSSE minimization and energy fitting yield quite similar parameters.
Collapse
Affiliation(s)
- Vladimir Fishman
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Emmanouil Semidalas
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
| | - Jan M L Martin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel
- On sabbatical at Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Biggerstaff S, Kitzmiller NL, Turney JM, Schaefer HF. Comparative Study of Neutral and Cationic Sn 2H 2: Toward Laboratory Detection of the Cation. J Phys Chem A 2024; 128:7090-7104. [PMID: 39159433 PMCID: PMC11372748 DOI: 10.1021/acs.jpca.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Group 14 M2H2 isomers (M = Si, Ge, Sn, and Pb) have attracted interest due to their radically differing electronic structures from acetylene. To better understand the Sn-H interactions of the neutral and cationic Sn2H2 structures, we present the most rigorous study of these systems to date. CCSD(T)/cc-pwCVTZ harmonic frequencies are presented as the first predictions for the neutral and cationic species to date. CCSDT(Q)/CBS relative energies are reported using the focal point approach, confirming the butterfly isomer as the global minimum on the potential energy surface for both the neutral and cationic species. In all, there exist 7 minima and 15 transition states. NBO analysis is also performed to elucidate the changes in bond order going from neutral to cation across all isomers of Sn2H2. Our results provide insights into the important Sn-H interaction and provide guidance for future work that may detect S n 2 H 2 + in the laboratory for the first time.
Collapse
Affiliation(s)
- Samuel Biggerstaff
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nathaniel L Kitzmiller
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Liu Y, Pickard FC, Sluggett GW, Mustakis IG. Robust fragment-based method of calculating hydrogen atom transfer activation barrier in complex molecules. Phys Chem Chem Phys 2024; 26:1869-1880. [PMID: 38175161 DOI: 10.1039/d3cp05028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Dynamic processes driven by non-covalent interactions (NCI), such as conformational exchange, molecular binding, and solvation, can strongly influence the rate constants of reactions with low activation barriers, especially at low temperatures. Examples of this may include hydrogen-atom-transfer (HAT) reactions involved in the oxidative stress of an active pharmaceutical ingredient (API). Here, we develop an automated workflow to generate HAT transition-state (TS) geometries for complex and flexible APIs and then systematically evaluate the influences of NCI on the free activation energies, based on the multi-conformational transition-state theory (MC-TST) within the framework of a multi-step reaction path. The two APIs studied: fesoterodine and imipramine, display considerable conformational complexity and have multiple ways of forming hydrogen bonds with the abstracting radical-a hydroxymethyl peroxyl radical. Our results underscore the significance of considering conformational exchange and multiple activation pathways in activation calculations. We also show that structural elements and NCIs outside the reaction site minimally influence TS core geometry and covalent activation barrier, although they more strongly affect reactant binding and consequently the overall activation barrier. We further propose a robust and economical fragment-based method to obtain overall activation barriers, by combining the covalent activation barrier calculated for a small molecular fragment with the binding free energy calculated for the whole molecule.
Collapse
Affiliation(s)
- Yizhou Liu
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Frank C Pickard
- Pharmaceutical Sciences, Pfizer Research & Development, Groton, CT 06340, USA
- Medicine Design, Pfizer Research & Development, Cambridge, MA 02139, USA
| | - Gregory W Sluggett
- Analytical Research and Development, Pfizer Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA.
| | - Iasson G Mustakis
- Chemical Research & Development, Pfizer Research & Development, Groton, CT 06340, USA
| |
Collapse
|
5
|
Olejnik A, Jóźwiak H, Gancewski M, Quintas-Sánchez E, Dawes R, Wcisło P. Ab initio quantum scattering calculations and a new potential energy surface for the HCl(X1Σ+)-O2(X3Σg-) system: Collision-induced line shape parameters for O2-perturbed R(0) 0-0 line in H35Cl. J Chem Phys 2023; 159:134301. [PMID: 37782252 DOI: 10.1063/5.0169968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
The remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2]. The calculations are performed on our new highly accurate HCl(X1Σ+)-O2(X3Σg-) potential energy surface. In addition to pressure broadening and shift, we also determine their speed dependencies and the complex Dicke parameter. This gives important input to the community discussion on the physical meaning of the complex Dicke parameter and its relevance for atmospheric spectra (previously, the complex Dicke parameter for such systems was mainly determined from phenomenological fits to experimental spectra and the physical meaning of its value in that context is questionable). We also calculate the temperature dependence of the line shape parameters and obtain agreement with the available experimental data. We estimate the total combined uncertainties of our calculations at 2% relative root-mean-square error in the simulated line shape at 296 K. This result constitutes an important step toward computational population of spectroscopic databases with accurate ab initio line shape parameters for molecular systems of terrestrial atmospheric importance.
Collapse
Affiliation(s)
- Artur Olejnik
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Maciej Gancewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
6
|
Zaverkin V, Holzmüller D, Bonfirraro L, Kästner J. Transfer learning for chemically accurate interatomic neural network potentials. Phys Chem Chem Phys 2023; 25:5383-5396. [PMID: 36748821 DOI: 10.1039/d2cp05793j] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Developing machine learning-based interatomic potentials from ab initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning, in particular discriminative fine-tuning, for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab initio data. Additionally, we show that fine-tuning with energy labels alone can suffice to obtain accurate atomic forces and run large-scale atomistic simulations, provided a well-designed fine-tuning data set. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
Collapse
Affiliation(s)
- Viktor Zaverkin
- Faculty of Chemistry, Institute for Theoretical Chemistry, University of Stuttgart, Germany.
| | - David Holzmüller
- Faculty of Mathematics and Physics, Institute for Stochastics and Applications, University of Stuttgart, Germany.
| | - Luca Bonfirraro
- Faculty of Chemistry, Institute for Theoretical Chemistry, University of Stuttgart, Germany.
| | - Johannes Kästner
- Faculty of Chemistry, Institute for Theoretical Chemistry, University of Stuttgart, Germany.
| |
Collapse
|
7
|
Villegas-Escobar N, Hoobler PR, Toro-Labbé A, Schaefer HF. High-Level Coupled-Cluster Study on Substituent Effects in H 2 Activation by Low-Valent Aluminyl Anions. J Phys Chem A 2023; 127:956-965. [PMID: 36689320 DOI: 10.1021/acs.jpca.2c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The synthesis of novel aluminyl anion complexes has been well exploited in recent years. Moreover, the elucidation of the structure and reactivity of these complexes opens the path toward a new understanding of low-valent aluminum complexes and their chemistry. This work computationally treats the substituent effect on aluminyl anions to discover suitable alternatives for H2 activation at a high level of theory utilizing coupled-cluster techniques extrapolated to the complete basis set. The results reveal that the simplest AlH2- system is the most reactive toward the activation of H2, but due to the low steric demand, severe difficulty in the stabilization of this system makes its use nonviable. However, the results indicate that, in principle, aluminyl systems with -C, -CN, -NC, and -N chelating centers would be the best choices of ligand toward the activation of molecular hydrogen by taking care of suitable steric demand to prevent dimerization of the catalysts. Furthermore, computations show that monosubstitution (besides -H) in aluminyl anions is preferred over disubstitution. So our predictions show that bidentate ligands may yield less reactive aluminyl anions to activate H2 than monodentate ones.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción4070386, Chile
| | - Preston R Hoobler
- Department of Chemistry, Covenant College, Lookout Mountain, Georgia30750, United States
| | - Alejandro Toro-Labbé
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860Santiago, Chile
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia30602, United States
| |
Collapse
|
8
|
Karton A. Tightening the Screws: The Importance of Tight d Functions in Coupled-Cluster Calculations up to the CCSDT(Q) Level. J Phys Chem A 2022; 126:8544-8555. [DOI: 10.1021/acs.jpca.2c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, New South Wales2351, Australia
| |
Collapse
|
9
|
Kitzmiller NL, Wolf ME, Turney JM, Schaefer HF. Toward the Observation of the Tin and Lead Analogs of Formaldehyde. J Phys Chem A 2022; 126:7930-7937. [PMID: 36264195 DOI: 10.1021/acs.jpca.2c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heavy aldehyde and ketone analogues, R2X═O (X = Si, Ge, Sn, or Pb), differ from their R2C═O counterparts due to their greater tendency to oligeramize as the X═O bond polarity increases as one goes down the periodic table. To date, H2Sn═O and H2Pb═O have eluded experimental detection. Herein we present the most rigorous theoretical study to date on these structures, providing CCSD(T)/pwCVTZ fundamental frequencies computed on CCSD(T)/CBS optimized structures for the H2X═O (X = Sn, Pb) potential energy surface. The focal point approach is employed to produce the CCSDTQ/CBS relative energies. For the Sn and Pb structures, the carbene-like cis-HXOH was the global minima, with the trans species being less than 0.6 and 1.1 kcal mol-1 above the cis structures, respectively. The formaldehyde-like H2X═O structure is in an energy well of at least 34.8 and 25.4 kcal mol-1 for Sn and Pb, respectively. Our results provide guidance for future work that may detect H2Sn═O or H2Pb═O for the first time.
Collapse
Affiliation(s)
- Nathaniel L Kitzmiller
- The Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
| | - Mark E Wolf
- The Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
| | - Justin M Turney
- The Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
| | - Henry F Schaefer
- The Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia30602, United States
| |
Collapse
|
10
|
Köse ME. Estimation of Excited-State Geometries of Benzene and Fluorobenzene through Vibronic Analyses of Absorption Spectra. ACS OMEGA 2022; 7:32764-32774. [PMID: 36120020 PMCID: PMC9476181 DOI: 10.1021/acsomega.2c04615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The parameters used in theoretical modeling of vibrational patterns within Franck-Condon (FC) approximation can be adjusted to match the vibrationally well-resolved experimental absorption spectrum of molecules. These simulation parameters can then be used to reveal the structural changes occurring between the initial and final states assuming the harmonic oscillator approximation holds for both states. Such a theoretical approach has been applied to benzene and fluorobenzene to disclose the first excited-state geometries of both compounds. The carbon-carbon bond length of benzene in the 1B2u state has been calculated as 1.430 Å, which is in very good agreement with the experimental bond length of 1.432 Å. The FC spectral fit method has been exploited to reveal the 1B2 state of fluorobenzene as well. Commonly employed density functional theory (DFT) and time-dependent DFT methods have been used to calculate the ground- and excited-state geometries of both compounds, respectively. The comparison of geometrical parameters and vibrational frequencies at the relevant states shows that frequently used hybrid functionals perform quite well in the ground state, whereas their performances drop considerably while predicting the excited-state properties. Among the hybrid functionals studied, TD-B3LYP with 6-31+G(d) basis set can be chosen to calculate the excited-state properties of molecules, albeit with much less anticipation of accuracy from the performance that B3LYP usually shows at the ground state.
Collapse
|
11
|
Goodlett SM, Turney JM, Douberly GE, Schaefer HF. The noncovalent interaction between water and the 3P ground state of the oxygen atom*. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2086934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Stephen M. Goodlett
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - Justin M. Turney
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - Gary E. Douberly
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - Henry F. Schaefer
- Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Pernot P. The long road to calibrated prediction uncertainty in computational chemistry. J Chem Phys 2022; 156:114109. [DOI: 10.1063/5.0084302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Uncertainty quantification (UQ) in computational chemistry (CC) is still in its infancy. Very few CC methods are designed to provide a confidence level on their predictions, and most users still rely improperly on the mean absolute error as an accuracy metric. The development of reliable UQ methods is essential, notably for CC to be used confidently in industrial processes. A review of the CC-UQ literature shows that there is no common standard procedure to report or validate prediction uncertainty. I consider here analysis tools using concepts (calibration and sharpness) developed in meteorology and machine learning for the validation of probabilistic forecasters. These tools are adapted to CC-UQ and applied to datasets of prediction uncertainties provided by composite methods, Bayesian ensembles methods, and machine learning and a posteriori statistical methods.
Collapse
Affiliation(s)
- Pascal Pernot
- Institut de Chimie Physique, UMR8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
13
|
Pham TV, Lin MC. Investigation of Product Formation in the O( 1D, 3P) + N 2O Reactions: Comparison of Experimental and Theoretical Kinetics. J Phys Chem A 2022; 126:1103-1113. [PMID: 35156819 DOI: 10.1021/acs.jpca.1c09477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spin-forbidden and spin-allowed reactions of the excited and ground electronic state O(1D, 3P) + N2O(X1Σ+) systems have been studied theoretically. Quantum calculations at the UCCSD(T)/CBS(T, Q, 5)//CCSD/aug-cc-pVTZ level have located two crossing points, MSX1 and MSX2, with energies of 11.2 and 22.7 kcal mol-1 above O(3P) + N2O, respectively. The second-order P-independent rate constants for the adiabatic and non-adiabatic thermal reactions predicted by adiabatic TST/VTST and non-adiabatic TST, respectively, agree closely with the available literature results. The second-order rate constant, k2a = 9.55 × 10-11 exp(-26.09 kcal mol-1/RT) cm3 molecule-1 s-1, for the O(3P) + N2O → 2NO reaction, contributed by both the dominant MSX2 and the minor TS1-a channels, is in reasonable accord with prior experiments and recommendations, covering the temperature range of 1200-4100 K. The calculated rate constant, k2b = 4.47 × 10-12 exp(-12.9 kcal mol-1/RT) cm3 molecule-1 s-1, for the O(3P) + N2O → N2 + O2(a1Δg) reaction, occurring exclusively via MSX1, is also in good agreement with the combined experimental data measured in a shock tube study at T = 1940-3340 K (ref 16) and the result measured by Fourier transform infrared spectroscopy in the temperature range of 988-1083 K (ref 17). Moreover, the spin-allowed rate constants predicted for the singlet-state reactions, k1a = (7.06-7.46) × 10-11 cm3 molecule-1 s-1 for O(1D) + N2O → 2NO and k1b = (4.36-4.66) × 10-11 cm3 molecule-1 s-1 for O(1D) + N2O → N2 + O2(a1Δg) in the temperature range of 200-350 K, agree quantitatively with the experimentally measured data, while the total rate constant k1 = k1a + k1b was also found to be in excellent accordance with many reported values.
Collapse
Affiliation(s)
- Tien V Pham
- Department of Appl. Chem., National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan.,School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - M C Lin
- Department of Appl. Chem., National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu 30010, Taiwan
| |
Collapse
|
14
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
15
|
Rocha CMR, Linnartz H. High-level ab initio quartic force fields and spectroscopic characterization of C 2N . Phys Chem Chem Phys 2021; 23:26227-26240. [PMID: 34787132 DOI: 10.1039/d1cp03505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While it is now well established that large carbon chain species and radiative electron attachment (REA) are key ingredients triggering interstellar anion chemistry, the role played by smaller molecular anions, for which REA appears to be an unlikely formation pathway, is as yet elusive. Advancing this research undoubtedly requires the knowledge (and modeling) of their astronomical abundances which, for the case of C2N-, is largely hindered by a lack of accurate spectroscopic signatures. In this work, we provide such data for both ground -CCN-(3Σ-) and low-lying c-CNC-(1A1) isomers and their singly-substituted isotopologues by means of state-of-the-art rovibrational quantum chemical techniques. Their quartic force fields are herein calibrated using a high-level composite energy scheme that accounts for extrapolations to both one-particle and (approximate) -particle basis set limits, in addition to relativistic effects, with the final forms being subsequently subject to nuclear motion calculations. Besides standard spectroscopic attributes, the full set of computed properties includes fine and hyperfine interaction constants and can be readily introduced as guesses in conventional experimental data reduction analyses through effective Hamiltonians. On the basis of benchmark calculations performed anew for a minimal test set of prototypical triatomics and limited (low-resolution) experimental data for -CCN-(3Σ-), the target accuracies are determined to be better than 0.1% of experiment for rotational constants and 0.3% for vibrational fundamentals. Apart from laboratory investigations, the results here presented are expected to also prompt future astronomical surveys on C2N-. To this end and using the theoretically-predicted spectroscopic constants, the rotational spectra of both -CCN-(3Σ-) and c-CNC-(1A1) are derived and their likely detectability in the interstellar medium is further explored in connection with working frequency ranges of powerful astronomical facilities. Our best theoretical estimate places c-CNC-(1A1) at about 15.3 kcal mol-1 above the ground-state -CCN-(3Σ-) species.
Collapse
Affiliation(s)
- C M R Rocha
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| | - H Linnartz
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, The Netherlands.
| |
Collapse
|
16
|
Tzeli D, Raugei S, Xantheas SS. Quantitative Account of the Bonding Properties of a Rubredoxin Model Complex [Fe(SCH 3) 4] q, q = -2, -1, +2, +3. J Chem Theory Comput 2021; 17:6080-6091. [PMID: 34546757 DOI: 10.1021/acs.jctc.1c00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-sulfur clusters play important roles in biology as parts of electron-transfer chains and catalytic cofactors. Here, we report a detailed computational analysis of a structural model of the simplest natural iron-sulfur cluster of rubredoxin and its cationic counterparts. Specifically, we investigated adiabatic reduction energies, dissociation energies, and bonding properties of the low-lying electronic states of the complexes [Fe(SCH3)4]2-/1-/2+/3+ using multireference (CASSCF, MRCISD), and coupled cluster [CCSD(T)] methodologies. We show that the nature of the Fe-S chemical bond and the magnitude of the ionization potentials in the anionic and cationic [Fe(SCH3)4] complexes offer a physical rationale for the relative stabilization, structure, and speciation of these complexes. Anionic and cationic complexes present different types of chemical bonds: prevalently ionic in [Fe(SCH3)4]2-/1- complexes and covalent in [Fe(SCH3)4]2+/3+ complexes. The ionic bonds result in an energy gain for the transition [Fe(SCH3)4]2- → [Fe(SCH3)4]- (i.e., FeII → FeIII) of 1.5 eV, while the covalent bonds result in an energy loss for the transition [Fe(SCH3)4]2+ → [Fe(SCH3)4]3+ of 16.6 eV, almost half of the ionization potential of Fe2+. The ionic versus covalent bond character influences the Fe-S bond strength and length, that is, ionic Fe-S bonds are longer than covalent ones by about 0.2 Å (for FeII) and 0.04 Å (for FeII). Finally, the average Fe-S heterolytic bond strength is 6.7 eV (FeII) and 14.6 eV (FeIII) at the RCCSD(T) level of theory.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 84, Greece.,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 116 35, Greece
| | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
17
|
Maurer LR, Bursch M, Grimme S, Hansen A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J Chem Theory Comput 2021; 17:6134-6151. [PMID: 34546754 DOI: 10.1021/acs.jctc.1c00659] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the principle lack of systematic improvement possibilities of density functional theory, careful assessment of the performance of density functional approximations (DFAs) on well-designed benchmark sets, for example, for reaction energies and barrier heights, is crucial. While main-group chemistry is well covered by several available sets, benchmark data for transition metal chemistry is sparse. This is especially the case for larger, chemically relevant molecules. Addressing this issue, we recently introduced the MOR41 benchmark which covers chemically relevant reactions of closed-shell complexes. In this work, we extend these efforts to single-reference open-shell systems and introduce the "reactions of open-shell single-reference transition metal complexes" (ROST61) benchmark set. ROST61 includes accurate coupled-cluster reference values for 61 reaction energies with a mean reaction energy of -42.8 kcal mol-1. Complexes with 13-93 atoms covering 20 d-block elements are included, but due to the restriction to single-reference open-shell systems, important elements such as iron or platinum could not be taken into account, or only to a small extent. We assess the performance of 31 DFAs in combination with three London dispersion (LD) correction schemes. Further, DFT-based composite methods, MP2, and a few semiempirical quantum chemical methods are evaluated. Consistent with the results for the MOR41 closed-shell benchmark, we find that the ordering of DFAs according to Jacob's ladder is preserved and that adding an LD correction is crucial, clearly improving almost all tested methods. The recently introduced r2SCAN-3c composite method stands out with a remarkable mean absolute deviation (MAD) of only 2.9 kcal mol-1, which is surpassed only by hybrid DFAs with low amounts of Fock exchange (e.g., 2.3 kcal mol-1 for TPSS0-D4/def2-QZVPP) and double-hybrid (DH) DFAs but at a significantly higher computational cost. The lowest MAD of only 1.6 kcal mol-1 is obtained with the DH DFA PWPB95-D4 in the def2-QZVPP basis set approaching the estimated accuracy of the reference method. Overall, the ROST61 set adds important reference data to a sparsely sampled but practically relevant area of chemistry. At this point, it provides valuable orientation for the application and development of new DFAs and electronic structure methods in general.
Collapse
Affiliation(s)
- Leonard R Maurer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
18
|
Pham TV, Lin M. Ab initio quantum-chemical and kinetic studies of the O(1D) + N2(X1Σg+) spin-forbidden quenching process. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Quintas-Sánchez E, Dawes R, Denis-Alpizar O. Theoretical study of the HCS+–H2 van der Waals complex: potential energy surface, rovibrational bound states, and rotationally inelastic collisional cross sections. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, USA
| | - Otoniel Denis-Alpizar
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
20
|
Gancewski M, Jóźwiak H, Quintas-Sánchez E, Dawes R, Thibault F, Wcisło P. Fully quantum calculations of O 2-N 2 scattering using a new potential energy surface: Collisional perturbations of the oxygen 118 GHz fine structure line. J Chem Phys 2021; 155:124307. [PMID: 34598560 DOI: 10.1063/5.0063006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A proper description of the collisional perturbation of the shapes of molecular resonances is important for remote spectroscopic studies of the terrestrial atmosphere. Of particular relevance are the collisions between the O2 and N2 molecules-the two most abundant atmospheric species. In this work, we report a new highly accurate O2(X3Σg -)-N2(X1Σg +) potential energy surface and use it for performing the first quantum scattering calculations addressing line shapes for this system. We use it to model the shape of the 118 GHz fine structure line in O2 perturbed by collisions with N2 molecules, a benchmark system for testing our methodology in the case of an active molecule in a spin triplet state. The calculated collisional broadening of the line agrees well with the available experimental data over a wide temperature range relevant for the terrestrial atmosphere. This work constitutes a step toward populating the spectroscopic databases with ab initio line shape parameters for atmospherically relevant systems.
Collapse
Affiliation(s)
- Maciej Gancewski
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Franck Thibault
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Piotr Wcisło
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
21
|
Wolf ME, Vandezande JE, Schaefer HF. Catalyzed reaction of isocyanates (RNCO) with water. Phys Chem Chem Phys 2021; 23:18535-18546. [PMID: 34612391 DOI: 10.1039/d1cp03302f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reactions between substituted isocyanates (RNCO) and other small molecules (e.g. water, alcohols, and amines) are of significant industrial importance, particularly for the development of novel polyurethanes and other useful polymers. We present very high-level ab initio computations on the HNCO + H2O reaction, with results targeting the CCSDT(Q)/CBS//CCSD(T)/cc-pVQZ level of theory. Our results affirm that hydrolysis can occur across both the N[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds of HNCO via concerted mechanisms to form carbamate or imidic acid with ΔH0K barrier heights of 38.5 and 47.5 kcal mol-1. A total of 24 substituted RNCO + H2O reactions were studied. Geometries obtained with a composite method and refined with CCSD(T)/CBS single point energies determine that substituted RNCO species have a significant influence on these barrier heights, with an extreme case like fluorine lowering both barriers by close to 15 kcal mol-1 and most common alkyl substituents lowering both by approximately 3 kcal mol-1. Natural Bond Orbital (NBO) analysis provides evidence that the predicted barrier heights are strongly associated with the occupation of the in-plane C-O* orbital of the RNCO reactant. Key autocatalytic mechanisms are considered in the presence of excess water and RNCO species. Additional waters (one or two) are predicted to lower both barriers significantly at the CCSD(T)/aug-cc-pV(T+d)Z level of theory with strongly electron withdrawing RNCO substituents also increasing these effects, similar to the uncatalyzed case. The 298 K Gibbs energies are only marginally lowered by a second catalyst water molecule, indicating that the decreasing ΔH0K barriers are offset by loss of translational entropy with more than one catalyst water. Two-step 2RNCO + H2O mechanisms are characterized for the formation of carbamate and imidic acid. The second step of these two pathways exhibits the largest barrier and presents no clear pattern with respect to substituent choice. Our results indicate that an additional RNCO molecule might catalyze imidic acid formation but have less influence on the efficiency of carbamate formation. We expect that these results lay a firm foundation for the experimental study of substituted isocyanates and their relationship to the energetic pathways of related systems.
Collapse
Affiliation(s)
- Mark E Wolf
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
22
|
Bralick AK, Abbott BZ, Douberly GE, Schaefer III HF. The isomerisation of H2XY to HXYH (X, Y = O, S, and Se)*. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1976429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A. K. Bralick
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - B. Z. Abbott
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - G. E. Douberly
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| | - H. F. Schaefer III
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Bop CT, Quintas-Sánchez E, Sur S, Robin M, Lique F, Dawes R. Inelastic scattering in isotopologues of O 2-Ar: the effects of mass, symmetry, and density of states. Phys Chem Chem Phys 2021; 23:5945-5955. [PMID: 33666616 DOI: 10.1039/d1cp00326g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two species considered here, O2 (oxygen molecule) and Ar (argon-atom), are both abundant components of Earth's atmosphere and hence familiar collision partners in this medium. O2 is quite reactive and extensively involved in atmospheric chemistry, including Chapman's cycle of the formation and destruction of ozone; while Ar, like N2, typically plays the nevertheless crucial role of inert collider. Inert species can provide stabilization to metastable encounter-complexes through the energy transfer associated with inelastic collisions. The interplay of collision frequency and energy transfer efficiency, with state lifetimes and species concentrations, contributes to the rich and varied chemistry and dynamics found in diverse environments ranging from planetary atmospheres to the interstellar and circumstellar media. The nature and density of bound and resonance states, coupled electronic states, symmetry, and nuclear spin-statistics can all play a role. Here, we systematically investigate some of those factors by looking at the O2-Ar system, comparing rigorous quantum-scattering calculations for the 16O16O-40Ar, 18O16O-40Ar, and 18O18O-40Ar isotope combinations. A new accurate potential energy surface was constructed for this purpose holding the O2 bond distance at its vibrationally averaged distance.
Collapse
Affiliation(s)
- Cheikh T Bop
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France. and Universite du Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | | | - Sangeeta Sur
- Missouri University of Science and Technology, Rolla, MO 65409-0010, USA.
| | - Mathurin Robin
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France.
| | - François Lique
- Laboratoire Ondes et Milieux Complexes, UMR 6294, Centre National de la Recherche Scientifique-Universite du Havre, F-76063 Le Havre, France. and Universite du Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France
| | - Richard Dawes
- Missouri University of Science and Technology, Rolla, MO 65409-0010, USA.
| |
Collapse
|
24
|
Desrousseaux B, Quintas-Sánchez E, Dawes R, Marinakis S, Lique F. Collisional excitation of interstellar PN by H 2: New interaction potential and scattering calculations. J Chem Phys 2021; 154:034304. [PMID: 33499633 DOI: 10.1063/5.0039145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rotational excitation of interstellar PN molecules induced by collisions with H2 is investigated. We present the first ab initio four-dimensional potential energy surface (PES) for the PN-H2 van der Waals system. The PES was obtained using an explicitly correlated coupled cluster approach with single, double, and perturbative triple excitations [CCSD(T)-F12b]. The method of interpolating moving least squares was used to construct an analytical PES from these data. The equilibrium structure of the complex was found to be linear, with H2 aligned at the N end of the PN molecule, at an intermolecular separation of 4.2 Å. The corresponding well-depth is 224.3 cm-1. The dissociation energies were found to be 40.19 cm-1 and 75.05 cm-1 for complexes of PN with ortho-H2 and para-H2, respectively. Integral cross sections for rotational excitation in PN-H2 collisions were calculated using the new PES and were found to be strongly dependent on the rotational level of the H2 molecule. These new collisional data will be crucial to improve the estimation of PN abundance in the interstellar medium from observational spectra.
Collapse
Affiliation(s)
- Benjamin Desrousseaux
- LOMC, UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre Cedex, France
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Sarantos Marinakis
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, London E15 4LZ, United Kingdom
| | - François Lique
- LOMC, UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre Cedex, France
| |
Collapse
|
25
|
Kitzmiller NL, Wolf ME, Turney JM, Schaefer HF. The HOX⋯SO 2 (X=F, Cl, Br, I) Binary Complexes: Implications for Atmospheric Chemistry. Chemphyschem 2020; 22:112-126. [PMID: 33090675 DOI: 10.1002/cphc.202000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2 binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug-cc-pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug-cc-pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug-cc-pwCVDZ-PP pseudopotential. 27 HOX⋯SO2 complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2 complexes in this study ranged from 1.35 to 3.81 kcal mol-1 . The single-interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol-1 , while the single-interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol-1 , indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2 which may guide further research of related systems.
Collapse
Affiliation(s)
- Nathaniel L Kitzmiller
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Mark E Wolf
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
26
|
Wolf ME, Turney JM, Schaefer HF. High level ab initio investigation of the catalytic effect of water on formic acid decomposition and isomerization. Phys Chem Chem Phys 2020; 22:25638-25651. [PMID: 33146170 DOI: 10.1039/d0cp03796f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Formic acid (FA) is a ubiquitous molecule found in the atmosphere, and is relevant to many important processes. The FA molecule generally exists as the trans isomer, which can decompose into H2O and CO (dehydration). It can also exist in the less favorable cis isomer which can decompose into H2 and CO2 (decarboxylation). Our work examines the complexes formed between each isomer of FA with water. We present geometries and vibrational frequencies obtained at the reliable CCSD(T)/aug-cc-pVTZ level of theory for seven FAwater complexes. We utilize the focal point method to determine CCSDT(Q)/CBS plus corrections binding energies of 7.37, 3.36, and 2.02 kcal mol-1 plus 6.07, 3.79, 2.60, and 2.55 kcal mol-1 for the trans-FAwater and cis-FAwater complexes, respectively. Natural bond orbital analysis is used to further decompose the interactions in each complex and gain insight into their relative strengths. Furthermore, we examine the effect that a single water molecule has on the barrier heights to each decomposition pathway by optimizing the transition states and verifying their connectivity with intrinsic reaction coordinate computations as well as utilizing a kinetic model. Water lowers the barrier to dehydration by at most 15.78 kcal mol-1 and the barrier to decarboxylation by up to 15.90 kcal mol-1. Our research also examines for the first time the effect of one water molecule on the interconversion barrier and we find that the barrier from trans to cis is not catalyzed by water due to the strong FA and water interactions. Our results highlight some instances where different binary complexes result in different decomposition pathways and even a case where one binary complex can form the same decomposition products via two distinct mechanisms. Our results provide a reliable benchmark of the FAH2O system as well as provide insight into future studies of similar atmospheric systems.
Collapse
Affiliation(s)
- Mark E Wolf
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
27
|
Quintas-Sánchez E, Dawes R, Wang XG, Carrington T. Computational study of the rovibrational spectrum of CO 2-N 2. Phys Chem Chem Phys 2020; 22:22674-22683. [PMID: 33016299 DOI: 10.1039/d0cp04186f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CO2-N2 complex is formed from two key components of Earth's atmosphere, and as such, has received some attention from both experimental and theoretical studies. On the theory side, a potential energy surface (PES) based on high level ab initio data was reported [Nasri et al., J. Chem. Phys., 2015, 142, 174301] and then used in more recently reported rovibrational calculations [Lara-Moreno et al., Phys. Chem. Chem. Phys., 2019, 21, 3550]. Accuracy of about 1 percent was achieved for calculated rotational transitions of the ground vibrational state of the complex, compared with previously reported microwave spectra. However, a very recent measurement of the geared bending mode frequency [Barclay et al., J. Chem. Phys., 2020, 153, 014303] recorded a value of 21.4 cm-1, which is wildly different from the corresponding calculated value of 45.9 cm-1. To provide some insight into this discrepancy, we have constructed a new more accurate PES, and used it to perform highly converged variational rovibrational calculations. Our new results yield a value of 21.1 cm-1 for that bending frequency, in close agreement with the experiment. We also obtain significantly improved predicted rotational transitions. Finally, we note that a very shallow well, previously reported as a distinct second isomer, is not found on our new PES, but rather a transition structure is seen in that location.
Collapse
|
28
|
Varandas AJC. Extrapolation in quantum chemistry: Insights on energetics and reaction dynamics. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620300013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Since there is no exact solution for problems in physics and chemistry, extrapolation methods may assume a key role in quantitative quantum chemistry. Two topics where it bears considerable impact are addressed, both at the heart of computational quantum chemistry: electronic structure and reaction dynamics. In the first, the problem of extrapolating the energy obtained by solving the electronic Schrödinger equation to the limit of the complete one-electron basis set is addressed. With the uniform-singlet-and-triplet-extrapolation (USTE) scheme at the focal point, the emphasis is on recent updates covering from the energy itself to other molecular properties. The second topic refers to extrapolation of quantum mechanical reactive scattering probabilities from zero total angular momentum to any of the values that it may assume when running quasiclassical trajectories, QCT/QM-[Formula: see text]J. With the extrapolation guided in both cases by physically motivated asymptotic theories, realism is seeked by avoiding unsecure jumps into the unknown. Although, mostly review oriented, a few issues are addressed for the first time here and there. Prospects for future work conclude the overview.
Collapse
Affiliation(s)
- A. J. C. Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Department of Physics, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil
- Department of Chemistry and Chemistry Centre, University of Coimbra, Coimbra 3004-535, Portugal
| |
Collapse
|
29
|
Karton A. Effective basis set extrapolations for CCSDT, CCSDT(Q), and CCSDTQ correlation energies. J Chem Phys 2020; 153:024102. [PMID: 32668917 DOI: 10.1063/5.0011674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well established that extrapolating the coupled-cluster single double triple [CCSD and (T)] correlation energies using empirically motivated extrapolation exponents can accelerate the basis set convergence. Here, we consider the extrapolation of coupled-cluster expansion terms beyond the CCSD(T) level to the complete basis set (CBS) limit. We obtain reference CCSDT-CCSD(T) [T3-(T)], CCSDT(Q)-CCSDT [(Q)], and CCSDTQ-CCSDT(Q) [T4-(Q)] contributions from cc-pV{5,6}Z extrapolations for a diverse set of 16 first- and second-row systems. We use these basis-set limit results to fit extrapolation exponents in conjunction with the cc-pV{D,T}Z, cc-pV{T,Q}Z, and cc-pV{Q,5}Z basis set pairs. The optimal extrapolation exponents result in noticeable improvements in performance (relative to α = 3.0) in conjunction with the cc-pV{T,Q}Z basis set pair; however, smaller improvements are obtained for the other basis sets. These results confirm that the basis sets and basis set extrapolations used for obtaining post-CCSD(T) components in composite thermochemical theories such as Weizmann-4 and HEAT are sufficiently close to the CBS limit for attaining sub-kJ/mole accuracy. The fitted extrapolation exponents demonstrate that the T3-(T) correlation component converges more slowly to the CBS limit than the (Q) and T4 terms. A systematic investigation of the effect of diffuse functions shows that it diminishes (i) in the order T3-(T) > (Q) > T4-(Q) and (ii) with the size of the basis set. Importantly, we find that diffuse functions tend to systematically reduce the T3-(T) contribution but systematically increases the (Q) contribution. Thus, the use of the cc-pVnZ basis sets benefits from a certain degree of error cancellation between these two components.
Collapse
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
30
|
Pham TV, Tsay TJ, Lin MC. Thermal decomposition of N
2
O near 900 K studied by FTIR spectrometry: Comparison of experimental and theoretical O(
3
P) formation kinetics. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tien V. Pham
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
- School of Chemical EngineeringHanoi University of Science and Technology Hanoi Vietnam
| | - T. J. Tsay
- Department of ChemistryEmory University Atlanta Georgia
| | - M. C. Lin
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
- Department of ChemistryEmory University Atlanta Georgia
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
31
|
Menezes da Silva VH, Ornellas FR. Characterizing structures, energetics, and spectra of species on the 1,3[H, C, As] potential energy surfaces: A high-level theoretical contribution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117578. [PMID: 31670030 DOI: 10.1016/j.saa.2019.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
The ground and the low lying electronic states of structures on the 1,3[H, C, As] potential energy surfaces were investigated with the highly correlated theoretical approaches CCSD(T), CCSD(T)-F12b, and CASSCF/MRCI along with the series of correlation consistent (aug-cc-pVnZ, n = D, T, Q, 5) basis sets. Energetic and spectroscopic parameters were obtained at the complete basis set limit, and the effect of core-valence correlation on these properties evaluated. Fundamental frequencies were also computed with the variational configuration interaction (VCI) approach. Heats of formation at 0 and 298.15 K were estimated for HCAs and CH, AsH, CAs, and HCAs, as well as the calculation of ionization potentials for HCAs. Comparisons of the present results with literature ones for the systems HCN/HNC, HCP/HPC highlight similarities and differences among these systems. Altogether, this investigation provides a very reliable characterization of the species on the surfaces and should guide future experimental studies on these systems.
Collapse
Affiliation(s)
- Vitor H Menezes da Silva
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Fernando R Ornellas
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
32
|
Misiewicz JP, Moore KB, Franke PR, Morgan WJ, Turney JM, Douberly GE, Schaefer HF. Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight. J Chem Phys 2020; 152:024302. [DOI: 10.1063/1.5133954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathon P. Misiewicz
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Kevin B. Moore
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Peter R. Franke
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - W. James Morgan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Justin M. Turney
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gary E. Douberly
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F. Schaefer
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
33
|
Abbott BZ, Hoobler PR, Schaefer HF. Relatives of cyanomethylene: replacement of the divalent carbon by B -, N +, Al -, Si, P +, Ga -, Ge, and As . Phys Chem Chem Phys 2019; 21:26438-26452. [PMID: 31774089 DOI: 10.1039/c9cp05777c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lowest lying singlet and triplet states of HBCN-, HCCN, HNCN+, HAlCN-, HSiCN, HPCN+, HGaCN-, HGeCN, and HAsCN+ were studied using the CCSDT(Q)/CBS//CCSD(T)/aug-cc-pVQZ level of theory. Periodic trends in geometries, singlet-triplet gaps, and barriers to linearity were established and analyzed. The first row increasingly favors the triplet state, with a singlet-triplet gap (ΔEST = Esinglet - Etriplet) of 3.5 kcal mol-1, 11.9 kcal mol-1, and 22.6 kcal mol-1, respectively, for HBCN-, HCCN, and HNCN+. The second row increasing favors the singlet state, with singlet-triplet gaps of -20.4 kcal mol-1 (HAlCN-), -26.6 kcal mol-1 (HSiCN), and -26.8 kcal mol-1 (HPCN+). The third row also favors the singlet state, with singlet-triplet gaps of -26.8 kcal mol-1 (HGaCN-), -33.5 kcal mol-1 (HGeCN), and -33.1 kcal mol-1 (HAsCN+). The HXCN species have larger absolute singlet-triplet energy gaps compared to their parent species XH2 except for the case of X = N+. The effect of the substitution of hydrogen with a cyano group was analyzed with isodesmic bond separation analysis and NBO.
Collapse
Affiliation(s)
- Boyi Z Abbott
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
34
|
Wolf ME, Hoobler PR, Turney JM, Schaefer HF. Important features of the potential energy surface of the methylamine plus O( 1D) reaction. Phys Chem Chem Phys 2019; 21:24194-24205. [PMID: 31659355 DOI: 10.1039/c9cp05039f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This research presents an ab initio characterization of the potential energy surface for the methylamine plus 1D oxygen atom reaction, which may be relevant to interstellar chemistry. Geometries and harmonic vibrational frequencies were determined for all stationary points at the CCSD(T)/aug-cc-pVTZ level of theory. The focal point method along with several additive corrections was used to obtain reliable CCSDT(Q)/CBS potential energy surface features. Extensive conformational analysis and intrinsic reaction coordinate computations were performed to ensure accurate chemical connectivity of the stationary points. Five minima were determined to be possible products of this reaction and three novel transition states were found that were previously unreported or mislabeled in the literature. The pathways we present can be used to guide further searches for NH2 containing species in the interstellar medium.
Collapse
Affiliation(s)
- Mark E Wolf
- Center for Computational Quantum Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
35
|
Hong Y, Hou B, Jiang H, Zhang J. Machine learning and artificial neural network accelerated computational discoveries in materials science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1450] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Hong
- Department of Chemistry University of Nebraska‐Lincoln Lincoln Nebraska
| | - Bo Hou
- Department of Engineering University of Cambridge Cambridge UK
| | - Hengle Jiang
- Holland Computing Center University of Nebraska‐Lincoln Lincoln Nebraska
| | - Jingchao Zhang
- Holland Computing Center University of Nebraska‐Lincoln Lincoln Nebraska
| |
Collapse
|
36
|
Lesiuk M, Jeziorski B. Complete Basis Set Extrapolation of Electronic Correlation Energies Using the Riemann Zeta Function. J Chem Theory Comput 2019; 15:5398-5403. [PMID: 31532205 DOI: 10.1021/acs.jctc.9b00705] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article, we demonstrate the effectiveness of the method of complete basis set (CBS) extrapolation of correlation energies based on the application of the Riemann zeta function. Instead of fitting the results obtained with a systematic sequence of one-electron bases with a certain functional form, an analytic resummation of the missing contributions coming from higher angular momenta, l, is performed. The assumption that these contributions vanish asymptotically as an inverse power of l leads to an expression for the CBS limit given in terms of the zeta function. This result is turned into an extrapolation method that is very easy to use and requires no "empirical" parameters to be optimized. The performance of the method is assessed by comparing the results with very accurate reference data obtained with explicitly correlated theories and with results obtained with standard extrapolation schemes. On average, the errors of the zeta-function extrapolation are several times smaller compared with the conventional schemes employing the same sequence of bases. A recipe for the estimation of the residual extrapolation error is also proposed.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
| | - Bogumił Jeziorski
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
| |
Collapse
|
37
|
Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun 2019; 10:2903. [PMID: 31263102 PMCID: PMC6602931 DOI: 10.1038/s41467-019-10827-4] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist's toolset. The use of computer simulations requires a balance between cost and accuracy: quantum-mechanical methods provide high accuracy but are computationally expensive and scale poorly to large systems, while classical force fields are cheap and scalable, but lack transferability to new systems. Machine learning can be used to achieve the best of both approaches. Here we train a general-purpose neural network potential (ANI-1ccx) that approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. This is achieved by training a network to DFT data then using transfer learning techniques to retrain on a dataset of gold standard QM calculations (CCSD(T)/CBS) that optimally spans chemical space. The resulting potential is broadly applicable to materials science, biology, and chemistry, and billions of times faster than CCSD(T)/CBS calculations.
Collapse
Affiliation(s)
- Justin S Smith
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Benjamin T Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Roman Zubatyuk
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS, 39217, USA
| | - Nicholas Lubbers
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Christian Devereux
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Olexandr Isayev
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Sur S, Quintas-Sánchez E, Ndengué SA, Dawes R. Development of a potential energy surface for the O3–Ar system: rovibrational states of the complex. Phys Chem Chem Phys 2019; 21:9168-9180. [DOI: 10.1039/c9cp01044k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collisional stabilization is an important step in the process of atmospheric formation of ozone.
Collapse
Affiliation(s)
- Sangeeta Sur
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| | | | - Steve A. Ndengué
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| | - Richard Dawes
- Department of Chemistry
- Missouri University of Science & Technology
- Rolla
- USA
| |
Collapse
|
39
|
Wolf ME, Zhang B, Turney JM, Schaefer HF. A comparison between hydrogen and halogen bonding: the hypohalous acid–water dimers, HOX⋯H2O (X = F, Cl, Br). Phys Chem Chem Phys 2019; 21:6160-6170. [DOI: 10.1039/c9cp00422j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypohalous acids (HOX) are a class of molecules that play a key role in the atmospheric seasonal depletion of ozone and have the ability to form both hydrogen and halogen bonds.
Collapse
Affiliation(s)
- Mark E. Wolf
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Boyi Zhang
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Justin M. Turney
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- USA
| |
Collapse
|
40
|
Dawes R, Quintas‐Sánchez E. THE CONSTRUCTION OF AB INITIO‐BASED POTENTIAL ENERGY SURFACES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Misiewicz JP, Noonan JA, Turney JM, Schaefer HF. The non-covalently bound SOH 2O system, including an interpretation of the differences between SOH 2O and O 2H 2O. Phys Chem Chem Phys 2018; 20:28840-28847. [PMID: 30420992 DOI: 10.1039/c8cp05749d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SOH2O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of -2.71 kcal mol-1 and a zero kelvin enthalpy of -1.67 kcal mol-1, while the chalcogen bonded complex has an electronic energy of -2.64 kcal mol-1 and a zero kelvin enthalpy of -2.00 kcal mol-1. We also report the transition state between the two structures, which lies below the SOH2O dissociation limit, with an electronic energy of -1.26 kcal mol-1 and an enthalpy of -0.81 kcal mol-1. These features are much sharper than for the isovalent complex of O2 and H2O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between O2 and H2O are uniformly weak, but the SOH2O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell.
Collapse
Affiliation(s)
- Jonathon P Misiewicz
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia.
| | | | | | | |
Collapse
|
42
|
Kesharwani MK, Sylvetsky N, Köhn A, Tew DP, Martin JML. Do CCSD and approximate CCSD-F12 variants converge to the same basis set limits? The case of atomization energies. J Chem Phys 2018; 149:154109. [PMID: 30342453 DOI: 10.1063/1.5048665] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While the title question is a clear "yes" from purely theoretical arguments, the case is less clear for practical calculations with finite (one-particle) basis sets. To shed further light on this issue, the convergence to the basis set limit of CCSD (coupled cluster theory with all single and double excitations) and of different approximate implementations of CCSD-F12 (explicitly correlated CCSD) has been investigated in detail for the W4-17 thermochemical benchmark. Near the CBS ([1-particle] complete basis set) limit, CCSD and CCSD(F12*) agree to within their respective uncertainties (about ±0.04 kcal/mol) due to residual basis set incompleteness error, but a nontrivial difference remains between CCSD-F12b and CCSD(F12*), which is roughly proportional to the degree of static correlation. The observed basis set convergence behavior results from the superposition of a rapidly converging, attractive, CCSD[F12]-CCSD-F12b difference (consisting mostly of third-order terms) and a more slowly converging, repulsive, fourth-order difference between CCSD(F12*) and CCSD[F12]. For accurate thermochemistry, we recommend CCSD(F12*) over CCSD-F12b if at all possible. There are some indications that the nZaPa family of basis sets exhibits somewhat smoother convergence than the correlation consistent family.
Collapse
Affiliation(s)
- Manoj K Kesharwani
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| | - Andreas Köhn
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 76100 Reḥovot, Israel
| |
Collapse
|
43
|
Eken Y, Patel P, Díaz T, Jones MR, Wilson AK. SAMPL6 host-guest challenge: binding free energies via a multistep approach. J Comput Aided Mol Des 2018; 32:1097-1115. [PMID: 30225724 DOI: 10.1007/s10822-018-0159-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
Abstract
In this effort in the SAMPL6 host-guest binding challenge, a combination of molecular dynamics and quantum mechanical methods were used to blindly predict the host-guest binding free energies of a series of cucurbit[8]uril (CB8), octa-acid (OA), and tetramethyl octa-acid (TEMOA) hosts bound to various guest molecules in aqueous solution. Poses for host-guest systems were generated via molecular dynamics (MD) simulations and clustering analyses. The binding free energies for the structures obtained via cluster analyses of MD trajectories were calculated using the MMPBSA method and density functional theory (DFT) with the inclusion of Grimme's dispersion correction, an implicit solvation model to model the aqueous solution, and the resolution-of-the-identity (RI) approximation (MMPBSA, RI-B3PW91-D3, and RI-B3PW91, respectively). Among these three methods tested, the results for OA and TEMOA systems showed MMPBSA and RI-B3PW91-D3 methods can be used to qualitatively rank binding energies of small molecules with an overbinding by 7 and 37 kcal/mol respectively, and RI-B3PW91 gave the poorest quality results, indicating the importance of dispersion correction for the binding free energy calculations. Due to the complexity of the CB8 systems, all of the methods tested show poor correlation with the experimental results. Other quantum mechanical approaches used for the calculation of binding free energies included DFT without the RI approximation, utilizing truncated basis sets to reduce the computational cost (memory, disk space, CPU time), and a corrected dielectric constant to account for ionic strength within the implicit solvation model.
Collapse
Affiliation(s)
- Yiğitcan Eken
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Prajay Patel
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Thomas Díaz
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael R Jones
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Karton A. Post-CCSD(T) contributions to total atomization energies in multireference systems. J Chem Phys 2018; 149:034102. [DOI: 10.1063/1.5036795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
45
|
Varandas AJC. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry. Annu Rev Phys Chem 2018; 69:177-203. [PMID: 29394151 DOI: 10.1146/annurev-physchem-050317-021148] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.
Collapse
Affiliation(s)
- António J C Varandas
- Coimbra Chemistry Center and Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal;
| |
Collapse
|
46
|
Misiewicz JP, Elliott SN, Moore KB, Schaefer HF. Re-examining ammonia addition to the Criegee intermediate: converging to chemical accuracy. Phys Chem Chem Phys 2018; 20:7479-7491. [DOI: 10.1039/c7cp08582f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theory shows ammonia is unlikely to be significant in Criegee chemistry and demonstrates the importance of perturbative quadruple excitations in Criegee chemistry.
Collapse
Affiliation(s)
| | - Sarah N. Elliott
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- Georgia
| | - Kevin B. Moore
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- Georgia
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- Georgia
| |
Collapse
|
47
|
Varandas AJC. CBS extrapolation in electronic structure pushed to the end: a revival of minimal and sub-minimal basis sets. Phys Chem Chem Phys 2018; 20:22084-22098. [DOI: 10.1039/c8cp02932f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complete basis set (CBS) limit is secluded in calculations of electronic structure, and hence CBS extrapolation draws immediate attention.
Collapse
Affiliation(s)
- A. J. C. Varandas
- School of Physics and Physical Engineering
- Qufu Normal University
- 273165 Qufu
- China
- Departamento de Química, and Centro de Química
| |
Collapse
|
48
|
Moore KB, Sadeghian K, Sherrill CD, Ochsenfeld C, Schaefer HF. C-H···O Hydrogen Bonding. The Prototypical Methane-Formaldehyde System: A Critical Assessment. J Chem Theory Comput 2017; 13:5379-5395. [PMID: 29039941 DOI: 10.1021/acs.jctc.7b00753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Distinguishing the functionality of C-H···O hydrogen bonds (HBs) remains challenging, because their properties are difficult to quantify reliably. Herein, we present a study of the model methane-formaldehyde complex (MFC). Six stationary points on the MFC potential energy surface (PES) were obtained at the CCSD(T)/ANO2 level. The CCSDT(Q)/CBS interaction energies of the conformers range from only -1.12 kcal mol-1 to -0.33 kcal mol-1, denoting a very flat PES. Notably, only the lowest energy stationary point (MFC1) corresponds to a genuine minimum, whereas all other stationary points-including the previously studied ideal case of ae(C-H···O) = 180°-exhibit some degree of freedom that leads to MFC1. Despite the flat PES, we clearly see that the HB properties of MFC1 align with those of the prototypical water dimer O-H···O HB. Each HB property generally becomes less prominent in the higher-energy conformers. Only the MFC1 conformer prominently exhibits (1) elongated C-H donor bonds, (2) attractive C-H···O═C interactions, (3) n(O) → σ*(C-H) hyperconjugation, (4) critical points in the electron density from Bader's method and from the noncovalent interactions method, (5) positively charged donor hydrogen, and (6) downfield NMR chemical shifts and nonzero 2J(CM-HM···OF) coupling constants. Based on this research, some issues merit further study. The flat PES hinders reliable determinations of the HB-induced shifts of the C-H stretches; a similarly difficult challenge is observed for the experiment. The role of charge transfer in HBs remains an intriguing open question, although our BLW and NBO computations suggest that it is relevant to the C-H···O HB geometries. These issues notwithstanding, the prominence of the HB properties in MFC1 serves as clear evidence that the MFC is predominantly bound by a C-H···O HB.
Collapse
Affiliation(s)
- Kevin B Moore
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Keyarash Sadeghian
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians University (LMU) , Munich D-81377, Germany
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
49
|
Plascencia C, Wang J, Wilson AK. Importance of the ligand basis set in ab initio thermochemical calculations of transition metal species. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Vinje J, Falck M, Mazzola F, Cooil SP, Koch H, Høyvik IM, Wells J. Tautomerization of Thymine Using Ultraviolet Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9666-9672. [PMID: 28835097 DOI: 10.1021/acs.langmuir.7b02473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultraviolet-light-induced changes to the nucleobase thymine deposited onto a MoS2 surface were studied using photoelectron spectroscopy and first-principles calculations. These measurements suggest changes in the molecular structure indicated by changes in core electron binding energies. The experimental work has been interpreted by means of ab initio calculations using coupled cluster singles and doubles (CCSD) linear response theory. Contrary to the expected behavior, i.e., the dimerization of two thymine molecules into a pyrimidine dimer, a shift between two tautomeric forms was observed upon UV-exposure. Exposure to ionizing radiation is known to induce damage in many biological molecules, and the present work gives additional insight into its effects on thymine, the interactions of the molecules, and finally how certain UV photoproducts may be avoided.
Collapse
Affiliation(s)
- Jakob Vinje
- Department of Physics, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Merete Falck
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Federico Mazzola
- Department of Physics, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Simon Phillip Cooil
- Department of Physics, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Ida-Marie Høyvik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Justin Wells
- Department of Physics, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| |
Collapse
|