1
|
Maroli N, Ryan MJ, Zanni MT, Kananenka AA. Do selectivity filter carbonyls in K + channels flip away from the pore? Two-dimensional infrared spectroscopy study. J Struct Biol X 2024; 10:100108. [PMID: 39157159 PMCID: PMC11328031 DOI: 10.1016/j.yjsbx.2024.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Molecular dynamics simulations revealed that the carbonyls of the Val residue in the conserved selectivity filter sequence TVGTG of potassium ion channels can flip away from the pore to form hydrogen bonds with the network of water molecules residing behind the selectivity filter. Such a configuration has been proposed to be relevant for C-type inactivation. Experimentally, X-ray crystallography of the KcsA channel admits the possibility that the Val carbonyls can flip, but it cannot decisively confirm the existence of such a configuration. In this study, we combined molecular dynamics simulations and line shape theory to design two-dimensional infrared spectroscopy experiments that can corroborate the existence of the selectivity filter configuration with flipped Val carbonyls. This ability to distinguish between flipped and unflipped carbonyls is based on the varying strength of the electric field inside and outside the pore, which is directly linked to carbonyl stretching frequencies that can be resolved using infrared spectroscopy.
Collapse
Affiliation(s)
- Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexei A. Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Wang CH, Duster AW, Aydintug BO, Zarecki MG, Lin H. Chloride Ion Transport by the E. coli CLC Cl -/H + Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study. Front Chem 2018; 6:62. [PMID: 29594103 PMCID: PMC5859129 DOI: 10.3389/fchem.2018.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl- ion migration through the transmembrane domain of a prototypical E. coli CLC Cl-/H+ antiporter by employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found to be critical for full access of the channel entrance by Cl-. Moving the anion into the external binding site (Sext) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl- traveled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl- exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl- along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing π bonds (e.g., the Tyr445 side chain), while the charges of the H atoms coordinating Cl- changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers (~10 kcal/mol) than the MM PMF (~2 kcal/mol). Binding energy calculations indicated that the interactions between Cl- and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing π bonds, missing the stabilizations of the Cl- ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl- transport.
Collapse
Affiliation(s)
- Chun-Hung Wang
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Adam W Duster
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Baris O Aydintug
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - MacKenzie G Zarecki
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
4
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
5
|
Selvaraju K, Jothi M, Kumaradhas P. Exploring the charge density distribution and the electrical characteristics of Oligo phenylene ethylene molecular nanowire using quantum chemical and charge density analysis. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Soniat M, Rick SW. The effects of charge transfer on the aqueous solvation of ions. J Chem Phys 2012; 137:044511. [DOI: 10.1063/1.4736851] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
7
|
|
8
|
Illingworth CJR, Furini S, Domene C. Computational Studies on Polarization Effects and Selectivity in K+ Channels. J Chem Theory Comput 2010. [DOI: 10.1021/ct100276c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christopher J. R. Illingworth
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Simone Furini
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
A B3LYP study on counterpoise-corrected geometry optimizations for hydrated complexes of [K(H2O)n]+ and [Na(H2O)n]+. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
K+/Na+ selectivity in toy cation binding site models is determined by the 'host'. Biophys J 2009; 96:3887-96. [PMID: 19450462 DOI: 10.1016/j.bpj.2008.12.3963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/05/2008] [Accepted: 12/11/2008] [Indexed: 11/21/2022] Open
Abstract
The macroscopic ion-selective behavior of K(+) channels is mediated by a multitude of physiological factors. However, considering the carbonyl-lined binding site of a conductive K(+) channel as a canonical eightfold coordinated construct can be useful in understanding the principles that correlate the channel's structure with its function. We probe the effects of structure and chemical composition on the K(+)/Na(+) selectivity provided by a variety of simplified droplet-like ion binding site models. We find that when carbonyl- and water-based models capture the qualitative structural features of the K(+) channel binding site, a selective preference for K(+) emerges. Thus our findings suggest that the preference for K(+) over Na(+) exhibited by such models is principally built-in, and is not due to a unique K(+)-selective property of carbonyl functional groups. This suggestion is confirmed by a general thermodynamic assessment, which provides a basis for using simplified models to study the design principles underlying the molecular evolution of K(+) channels.
Collapse
|
11
|
Kraszewski S, Boiteux C, Ramseyer C, Girardet C. Determination of the charge profile in the KcsA selectivity filter using ab initio calculations and molecular dynamics simulations. Phys Chem Chem Phys 2009; 11:8606-13. [PMID: 19774294 DOI: 10.1039/b905991a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge profile of K+ and Na+ ions moving in a single file across the filter of the KcsA channel is determined using both molecular dynamics simulations and ab initio calculations. We show a strong correlation between the charge variation and the ion location resulting in a saw-tooth profile, which provides additional information on the influence of charge transfer on the permeation and selectivity of the channel.
Collapse
Affiliation(s)
- Sebastian Kraszewski
- Laboratoire de Physique Moléculaire-UMR CNRS 6624, Faculté des Sciences Université de Franche-Comté, 16, Route de Gray, 25030, Besançon Cedex, France.
| | | | | | | |
Collapse
|
12
|
Bucher D, Guidoni L, Maurer P, Rothlisberger U. Developing Improved Charge Sets for the Modeling of the KcsA K+ Channel Using QM/MM Electrostatic Potentials. J Chem Theory Comput 2009; 5:2173-9. [DOI: 10.1021/ct9001619] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Denis Bucher
- Federal Institute of Technology EPFL, Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | - Leonardo Guidoni
- Federal Institute of Technology EPFL, Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | - Patrick Maurer
- Federal Institute of Technology EPFL, Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Federal Institute of Technology EPFL, Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Illingworth CJ, Domene C. Many-body effects and simulations of potassium channels. Proc Math Phys Eng Sci 2009. [DOI: 10.1098/rspa.2009.0014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The electronic polarizability of an ion or a molecule is a measure of the relative tendency of its electron cloud to be distorted from its normal shape by an electric field. On the molecular scale, in a condensed phase, any species sits in an electric field due to its neighbours, and the resulting polarization is an important contribution to the total interaction energy. Electrostatic interactions are crucial for determining the majority of chemical–physical properties of the system and electronic polarization is a fundamental component of these interactions. Thus, polarization effects should be taken into account if accurate descriptions are desired. In classical computer simulations, the forces required to drive the system are typically based on interatomic interaction potentials derived in part from electronic structure calculations or from experimental data. Owing to the difficulties in including polarization effects in classical force fields, most of them are based just on pairwise additive interaction potentials. At present, major efforts are underway to develop polarizable interaction potentials for biomolecular simulations. In this review, various ways of introducing explicit polarizability into biomolecular models and force fields are reviewed, and the progress that might be achieved in applying such methods to study potassium channels is described.
Collapse
Affiliation(s)
- Christopher J. Illingworth
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of OxfordOxford OX1 3QZ, UK
| | - Carmen Domene
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of OxfordOxford OX1 3QZ, UK
| |
Collapse
|
14
|
Conformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study. Biophys J 2008; 95:3239-51. [PMID: 18621821 DOI: 10.1529/biophysj.108.136556] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potassium channels switch between closed and open conformations and selectively conduct K(+) ions. There are at least two gates. The TM2 bundle at the intracellular site is the primary gate of KcsA, and rearrangements at the selectivity filter (SF) act as the second gate. The SF blocks ion flow via an inactivation process similar to C-type inactivation of voltage-gated K(+) channels. We recently generated the open-state conformation of the KcsA channel. We found no major, possibly inactivating, structural changes in the SF associated with this massive inner-pore rearrangement, which suggests that the gates might act independently. Here we energy-minimize the open state of wild-type and mutant KcsA, validating in silico structures of energy-minimized SFs by comparison with crystallographic structures, and use these data to gain insight into how mutation, ion depletion, and K(+) to Na(+) substitution influence SF conformation. Both E71 or D80 protonations/mutations and the presence/absence of protein-buried water molecule(s) modify the H-bonding network stabilizing the P-loops, spawning numerous SF conformations. We find that the inactivated state corresponds to conformations with a partially unoccupied or an entirely empty SF. These structures, involving modifications in all four P-loops, are stabilized by H-bonds between amide H and carbonyl O atoms from adjacent P-loops, which block ion passage. The inner portions of the P-loops are more rigid than the outer parts. Changes are localized to the outer binding sites, with innermost site S4 persisting in the inactivated state. Strong binding by Na(+) locally contracts the SF around Na(+), releasing ligands that do not participate in Na(+) coordination, and occluding the permeation pathway. K(+) selectivity primarily appears to arise from the inability of the SF to completely dehydrate Na(+) ions due to basic structural differences between liquid water and the "quasi-liquid" SF matrix.
Collapse
|
15
|
Recanatini M, Cavalli A, Masetti M. Modeling hERG and its Interactions with Drugs: Recent Advances in Light of Current Potassium Channel Simulations. ChemMedChem 2008; 3:523-35. [DOI: 10.1002/cmdc.200700264] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Kariev AM, Green ME. Quantum mechanical calculations on selectivity in the KcsA channel: the role of the aqueous cavity. J Phys Chem B 2008; 112:1293-8. [PMID: 18177033 DOI: 10.1021/jp076854o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have carried out quantum calculations on selected residues at the intracellular side of the selectivity filter of the KcsA potassium channel, using the published X-ray coordinates as starting points. The calculations involved primarily the side chains of residues lining the aqueous cavity on the intracellular side of the selectivity filter, in addition to water molecules, plus a K+ or Na+ ion. The results showed unambiguously that Na+ significantly distorts the symmetry of the channel at the entrance to the selectivity filter (at the residue T75), while K+ does so to a much smaller extent. In all, three ion positions have been calculated: the S4 (lowest) position at the bottom of the selectivity filter, the top of the cavity, and the midpoint of the cavity; Na+ is trapped at the cavity top, while K+ is cosolvated by the selectivity filter carbonyl groups plus threonine hydroxyl groups so that it can traverse the filter. Only one water molecule remains in the K+ solvation shell at the upper position in the cavity; this solvation shell also contains four threonine (T75) hydroxyl oxygens and two backbone carbonyls, while Na+ is solvated by five molecules of water and one oxygen from threonine hydroxyls. T75 at the entrance to the selectivity filter has a key role in recognition of the alkali ion, and T74 has secondary importance. The energetic basis for the preferential bonding of potassium by these residues is briefly discussed, based on additional calculations. Taken together, the results suggest that Na+ would have difficulty entering the cavity, and if it did, it would not be able to enter the selectivity filter.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry, City College of the City University of New York, 160 Convent Avenue, New York New York 10031, USA
| | | |
Collapse
|
17
|
Bostick DL, Brooks CL. Selectivity in K+ channels is due to topological control of the permeant ion's coordinated state. Proc Natl Acad Sci U S A 2007; 104:9260-5. [PMID: 17519335 PMCID: PMC1890482 DOI: 10.1073/pnas.0700554104] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Indexed: 11/18/2022] Open
Abstract
The selectivity filter of K+ channels provides specific coordinative interactions between dipolar carbonyl ligands, water, and the permeant cation, which allow for selective flow of K+ over (most importantly) Na+ across the cell membrane. Although a structural viewpoint attributes K+ selectivity to coordination geometry provided by the filter, recent molecular dynamics simulation studies attribute it to dynamic and unique chemical/electrostatic properties of the filter's carbonyl ligands. Here we provide a simple theoretical analysis of K+ and Na+ complexation with water in the context of simplified binding site models and bulk solution. Our analysis reveals that water molecules and carbonyl groups can both provide K+ selective environments if equivalent constraints are imposed on the coordination number of the complex. Absence of such constraints annihilates selectivity, demonstrating that whether a coordinating ligand is a water molecule or a carbonyl group, "external" or "topological" constraints/forces must be imposed on an ion-coordinated complex to elicit selective binding. These forces must inevitably originate from the channel protein, because in bulk water, which, by definition, presents a nonselective medium, the coordination number is allowed to relax to suit the ion. We show that the coordination geometry of K+ channel binding sites is replicated by 8-fold complexation of K+ in both water and simplified binding site models due to dominance of local interactions within a complex and is thus a requirement for topologically constraining the coordination number to a specific value.
Collapse
Affiliation(s)
- David L. Bostick
- Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC 6, La Jolla, CA 92037
| | - Charles L. Brooks
- Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC 6, La Jolla, CA 92037
| |
Collapse
|
18
|
Boiteux C, Kraszewski S, Ramseyer C, Girardet C. Ion conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives. J Mol Model 2007; 13:699-713. [PMID: 17415597 DOI: 10.1007/s00894-007-0202-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 03/08/2007] [Accepted: 03/19/2007] [Indexed: 12/29/2022]
Abstract
KcsA potassium channel belongs to a wide family of allosteric proteins that switch between closed and open states conformations in response to a stimulus, and act as a regulator of cation activity in living cells. The gating mechanism and cation selectivity of such channels have been extensively studied in the literature, with a revival emphasis these latter years, due to the publication of the crystallized structure of KcsA. Despite the increasing number of research and review papers on these topics, quantitative interpretation of these processes at the atomic scale is far from achieved. On the basis of available experimental and theoretical data, and by including our recent results, we review the progresses in this field of activity and discuss the weaknesses that should be corrected. In this spirit, we partition the channel into the filter, cavity, extra and intracellular media, in order to analyze separately the specificity of each region. Special emphasis is brought to the study of an open state for the channel and to the different properties generated by the opening. The influence of water as a structural and dynamical component of the channel properties in closed and open states, as well as in the sequential motions of the cations, is analyzed using molecular dynamics simulations and ab initio calculations. The polarization and charge transfer effects on the ions' dynamics and kinetics are discussed in terms of partial charge models.
Collapse
Affiliation(s)
- Céline Boiteux
- Laboratoire de Physique Moléculaire UMR CNRS 6624, Université de Franche-Comté, La Bouloie, 25030, Besançon Cedex, France
| | | | | | | |
Collapse
|
19
|
Kraszewski S, Boiteux C, Langner M, Ramseyer C. Insight into the origins of the barrier-less knock-on conduction in the KcsA channel: molecular dynamics simulations and ab initio calculations. Phys Chem Chem Phys 2007; 9:1219-25. [PMID: 17325768 DOI: 10.1039/b613668k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the pioneering work of Zhou et al. (Y. Zhou, J. H. Morais-Cabral, A. Kaufman and R. MacKinnon, Nature, 2001, 414, 43-48) it is now well established that the streptomyces lividans potassium channel (KcsA) can accommodate more than one ion, namely between 2 and 3. As a result, it is usually assumed that the conduction of ions proceeds through a barrier-less knock-on mechanism. This one is an alternation of two sequences containing either 2 or 3 ions which have nearly the same energies. However, the origin of such knock-on mechanism is not clearly known. The entry and the exit of ion in or out of the selectivity filter are suspected to be due to the repulsive interactions between ions. In this work, molecular dynamics simulations running over nanoseconds have been done in order to identify such events. Two specific situations, namely (S(1), S(3)) containing 2 ions and (S(2), S(4)) containing 3 ions, have been investigated regarding the different locations that ions can occupy during their diffusion through the selectivity filter of KcsA. We show that contractions of the (S(1), S(3)) file and dilation of the (S(2), S(4)) file are at the origin of the passage from one sequence to the other. The comparison between the experimentally observed diffusion rate and the occurrence's frequency of such contractions or dilation confirm the importance of such events. Ab initio calculations have also been conducted in order to examine the effect of ion polarization in the filter of KcsA. During the contraction of the ion/water file, one charge at the extra-cellular mouth of the channel strongly deviates from the others. This behavior could guide the diffusion direction to a certain extent since the contraction of the (S(1), S(3)) is favored.
Collapse
Affiliation(s)
- Sebastian Kraszewski
- Department of Physics, Wyb. Wyspiańskiego 27, Wrocław University of Technology, 50-370 Wrocław, Poland
| | | | | | | |
Collapse
|
20
|
Noskov SY, Roux B. Ion selectivity in potassium channels. Biophys Chem 2006; 124:279-91. [PMID: 16843584 DOI: 10.1016/j.bpc.2006.05.033] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/18/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Potassium channels are tetrameric membrane-spanning proteins that provide a selective pore for the conduction of K(+) across the cell membranes. One of the main physiological functions of potassium channels is efficient and very selective transport of K(+) ions through the membrane to the cell. Classical views of ion selectivity are summarized within a historical perspective, and contrasted with the molecular dynamics (MD) simulations free energy perturbation (FEP) performed on the basis of the crystallographic structure of the KcsA phospholipid membrane. The results show that the KcsA channel does not select for K(+) ions by providing a binding site of an appropriate (fixed) cavity size. Rather, selectivity for K(+) arises directly from the intrinsic local physical properties of the ligands coordinating the cation in the binding site, and is a robust feature of a pore symmetrically lined by backbone carbonyl groups. Further analysis reveals that it is the interplay between the attractive ion-ligand (favoring smaller cation) and repulsive ligand-ligand interactions (favoring larger cations) that is the basic element governing Na(+)/K(+) selectivity in flexible protein binding sites. Because the number and the type of ligands coordinating an ion directly modulate such local interactions, this provides a potent molecular mechanism to achieve and maintain a high selectivity in protein binding sites despite a significant conformational flexibility.
Collapse
Affiliation(s)
- Sergei Yu Noskov
- Institute for Molecular Pediatric Sciences and Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Sciences, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
21
|
Sumikama T, Saito S, Ohmine I. Mechanism of Ion Permeation in a Model Channel: Free Energy Surface and Dynamics of K+Ion Transport in an Anion-Doped Carbon Nanotube. J Phys Chem B 2006; 110:20671-7. [PMID: 17034258 DOI: 10.1021/jp062547r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of the ion permeation is investigated for an anion-doped carbon nanotube, as a model of the K+ channel, by analyzing the free energy surface and the dynamics of the ion permeation through the model channel. It is found that the main rate-determining step is how an ion enters the channel. The entrance of the ion is mostly blocked by a water molecule located at this entrance. Only about 10% of K+ ions which reach the mouth of the channel can really enter the channel. The rejection rate sensitively depends on the location of this water molecule, which is easily controlled by the charge of the carbon nanotube; for example, the maximum permeation is obtained when the anion charge is at a certain value, -5.4e in the present model. At this charge, the facile translocation of the ion inside the channel is also induced due to the number of fluctuations of the ions inside the channel. Therefore, the so-called "Newton's balls", a toy model, combined with a simple ion diffusion model for explaining the fast ion permeation should be modified. The present analysis thus suggests that there exists an optimum combination of the length and the charge of the carbon nanotube for the most efficient ion permeation.
Collapse
Affiliation(s)
- Takashi Sumikama
- Department of Chemistry, Faculty of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | |
Collapse
|