1
|
Kruchinin SE, Kislinskaya EE, Chuev GN, Fedotova MV. Protein 3D Hydration: A Case of Bovine Pancreatic Trypsin Inhibitor. Int J Mol Sci 2022; 23:ijms232314785. [PMID: 36499117 PMCID: PMC9737982 DOI: 10.3390/ijms232314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.
Collapse
Affiliation(s)
- Sergey E. Kruchinin
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
| | - Ekaterina E. Kislinskaya
- Department of Fundamental and Applied Chemistry, Institute of Mathematics, Information Technology and Science, Ivanovo State University, Ermak St., 39, 153025 Ivanovo, Russia
| | - Gennady N. Chuev
- Institute of Theoretical and Experimental Biophysics, The Russian Academy of Sciences, Institutskaya St., Pushchino, 142290 Moscow, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| | - Marina V. Fedotova
- G.A. Krestov Institute of Solution Chemistry, The Russian Academy of Sciences, Akademicheskaya St., 1, 153045 Ivanovo, Russia
- Correspondence: (G.N.C.); (M.V.F.)
| |
Collapse
|
2
|
Pethig R. Protein Dielectrophoresis: A Tale of Two Clausius-Mossottis-Or Something Else? MICROMACHINES 2022; 13:261. [PMID: 35208384 PMCID: PMC8876334 DOI: 10.3390/mi13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric β-dispersion produced by its relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations, replaces the macroscopic boundary-value problem with calculation of the cross-correlation between the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported negative DEP responses. This could result from crystallization or aggregation of the proteins (for which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal and other electrokinetic (some non-linear) forces now being considered in iDEP theory.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering & Electronics, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
3
|
Jin T, Long F, Zhang Q, Zhuang W. Site-Specific Water Dynamics in the First Hydration Layer of an Anti-Freeze Glyco-Protein: A Simulation Study. Phys Chem Chem Phys 2022; 24:21165-21177. [DOI: 10.1039/d2cp00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifreeze glycoproteins (AFGPs) inhibit ice recrystallization by a mechanism remaining largely elusive. Dynamics of AFGPs’ hydration water and its involvement in the antifreeze activity, for instance, have not been identified...
Collapse
|
4
|
Bittner JP, Huang L, Zhang N, Kara S, Jakobtorweihen S. Comparison and Validation of Force Fields for Deep Eutectic Solvents in Combination with Water and Alcohol Dehydrogenase. J Chem Theory Comput 2021; 17:5322-5341. [PMID: 34232662 DOI: 10.1021/acs.jctc.1c00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) have become popular as environmental-friendly solvents for biocatalysis. Molecular dynamics (MD) simulations offer an in-depth analysis of enzymes in DESs, but their performance depends on the force field chosen. Here, we present a comprehensive validation of three biomolecular force fields (CHARMM, Amber, and OPLS) for simulations of alcohol dehydrogenase (ADH) in DESs composed of choline chloride and glycerol/ethylene glycol with varying water contents. Different properties (e.g., protein structure and flexibility, solvation layer, and H-bonds) were used for validation. For two properties (viscosity and water activity) also experiments were performed. The viscosity was calculated with the periodic perturbation method, whereby its parameter dependency is disclosed. A modification of Amber was identified as the best-performing model for low water contents, whereas CHARMM outperforms the other models at larger water concentrations. An analysis of ADH's structure and interactions with the DESs revealed similar predictions for Amber and CHARMM.
Collapse
Affiliation(s)
- Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Lei Huang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Ningning Zhang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Selin Kara
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.,Department for Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
5
|
Huang L, Bittner JP, Domínguez de María P, Jakobtorweihen S, Kara S. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures. Chembiochem 2020; 21:811-817. [PMID: 31605652 PMCID: PMC7154551 DOI: 10.1002/cbic.201900624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.
Collapse
Affiliation(s)
- Lei Huang
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| | - Jan Philipp Bittner
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | | | - Sven Jakobtorweihen
- Institute of Thermal Separation ProcessesHamburg University of TechnologyEißendorfer Strasse 3821073HamburgGermany
| | - Selin Kara
- Department of EngineeringBiocatalysis and Bioprocessing GroupAarhus UniversityGustav Wieds Vej 108000AarhusDenmark
| |
Collapse
|
6
|
Kılıç H. Experiment-based physicochemical aspects for the coulombic hydration kinetics and thermodynamics of a pyrimidine and thiopyrimidine. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Abstract
Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)-the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the perturbation decays exponentially with a decay "length" of 0.3 shells and that the second and higher shells account for a mere 3% of the total perturbation measured by 17O MRD. The only long-range effect is a weak water alignment in the electric field produced by an electroneutral protein (not screened by counterions), but this effect is negligibly small for 17O MRD. By contrast, we find that the 17O TCF is significantly more sensitive to the important short-range perturbations than the other two TCFs examined here.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
8
|
König G, Reetz MT, Thiel W. 1-Butanol as a Solvent for Efficient Extraction of Polar Compounds from Aqueous Medium: Theoretical and Practical Aspects. J Phys Chem B 2018; 122:6975-6988. [PMID: 29897756 DOI: 10.1021/acs.jpcb.8b02877] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extraction of polar molecules from aqueous solution is a challenging task in organic synthesis. 1-Butanol has been used sporadically as an eluent for polar molecules, but it is unclear which molecular features drive its efficiency. Here, we employ free energy simulations to study the partitioning of 15 solutes between water and 1-butanol. The simulations demonstrate that the high affinity of polar molecules to the wet 1-butanol phase is associated with its nanostructure. Small inverse micelles of water are able to accommodate polar solutes and locally mimic an aqueous environment. We verify the simulations based on partition coefficients between water and 1-octanol, and include a blind prediction of the water/1-butanol partition coefficient of cyclohexane-1,2-diol. The calculations are in excellent agreement with experiment, reaching root-mean-square deviations below 0.7 kcal/mol. Actual extractions of cyclohexane-1,2-diol from buffer solutions that mimic cell lysates and suspensions in biocatalytic reactions further exemplify our findings. The yields highlight that extractions with 1-butanol can be significantly more efficient than the conventional protocol based on ethyl acetate.
Collapse
Affiliation(s)
- Gerhard König
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany.,Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research, and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany.,Department of Chemistry , Philipps-University Marburg , 35032 Marburg , Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
9
|
Abstract
Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
10
|
Leherte L, Vercauteren DP. Reduced Point Charge Models of Proteins: Effect of Protein–Water Interactions in Molecular Dynamics Simulations of Ubiquitin Systems. J Phys Chem B 2017; 121:9771-9784. [DOI: 10.1021/acs.jpcb.7b06355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laurence Leherte
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, Namur Medicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Daniel P. Vercauteren
- Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Department of Chemistry, Namur Medicine & Drug Innovation Center (NAMEDIC), Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
11
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
12
|
Effect of Water Clustering on the Activity of Candida antarctica Lipase B in Organic Medium. Catalysts 2017. [DOI: 10.3390/catal7080227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Hospital A, Candotti M, Gelpí JL, Orozco M. The Multiple Roles of Waters in Protein Solvation. J Phys Chem B 2017; 121:3636-3643. [DOI: 10.1021/acs.jpcb.6b09676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adam Hospital
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Joint
BSC-IRB Research Program in Computational Biology, The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Michela Candotti
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Joint
BSC-IRB Research Program in Computational Biology, The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Josep Lluís Gelpí
- Joint
BSC-IRB Research Program in Computational Biology, The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Department
of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, 08028, Spain
- Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona, 08034, Spain
| | - Modesto Orozco
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Joint
BSC-IRB Research Program in Computational Biology, The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Department
of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
14
|
Leherte L. Reduced point charge models of proteins: assessment based on molecular dynamics simulations. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1044452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Yamada T, Masaki Y, Okaniwa N, Kanamori T, Ohkubo A, Tsunoda H, Seio K, Sekine M. Synthesis and properties of oligonucleotides modified with 2'-O-(2-carboxyethyl)nucleotides and their carbamoyl derivatives. Org Biomol Chem 2015; 12:6457-64. [PMID: 25019462 DOI: 10.1039/c4ob01260g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
2'-O-Methyl oligoribonucleotides with four kinds of 2'-O-modified uridine derivatives were synthesised. Their duplex stability, hydration behavior and exonuclease resistance were studied by spectroscopic analyses and molecular dynamics simulations. Consequently, 2'-O-modification of the uridine residue with 2-carbamoylethyl or 2-(N-methylcarbamoyl)ethyl groups resulted in a significant improvement of the exonuclease resistance without the loss of duplex stability.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta-cho, Midoriku, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Saha D, Supekar S, Mukherjee A. Distribution of Residence Time of Water around DNA Base Pairs: Governing Factors and the Origin of Heterogeneity. J Phys Chem B 2015; 119:11371-81. [DOI: 10.1021/acs.jpcb.5b03553] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debasis Saha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| | - Shreyas Supekar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| |
Collapse
|
17
|
Peters GH, Werge M, Elf-Lind MN, Madsen JJ, Velardez GF, Westh P. Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study. Chem Phys Lipids 2014; 184:7-17. [PMID: 25159594 DOI: 10.1016/j.chemphyslip.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/15/2022]
Abstract
We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABA(neu)) and the osmolyte molecule glycerol (GOL) with a dipalmitoylphosphatidylcholine (DPPC) bilayer. In agreement with previously published experimental data, we found the lowest membrane affinity for the charged molecules and a moderate affinity for zwitterionic and polar molecules. The affinity can be ranked as follows: ACH-GLU<<GABA<GLY<<GABA(neu)<<GOL. The latter three penetrated the bilayer at most with the deepest location being close to the glycerol backbone of the phospholipids. Even at that position, these solutes were noticeably hydrated and carried ∼30-80% of the bulk water along. The mobility of hydration water at the solute is also affected by the penetration into the bilayer. Two time scales of exchanging water molecules could be determined. In the bulk phase, the hydration layer contains ∼20% slow exchanging water molecules which increases 2-3 times as the solutes entered the bilayer. Our results indicate that there is no intermediate exchange of slow moving water molecules from the solutes to the lipid atoms and vice versa. Instead, the exchange relies on the reservoir of unbounded ("free") water molecules in the interfacial bilayer region. Results from the equilibrium simulations are in good agreement with the results from umbrella sampling simulations, which were conducted for the four naturally occurring NTs. Free energy profiles for ACH and GLU show a minimum of ∼2-3 kJ/mol close to the bilayer interface, while for GABA and GLY, a minimum of respectively ∼2 kJ/mol and ∼5 kJ/mol is observed when these NTs are located in the vicinity of the lipid glycerol backbone. The most important interaction of NTs with the bilayer is the charged amino group of NTs with the lipid phosphate group.
Collapse
Affiliation(s)
- Günther H Peters
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Mikkel Werge
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | | | - Jesper J Madsen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gustavo F Velardez
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Roskilde 4000, Denmark.
| |
Collapse
|
18
|
Voloshin VP, Kim AV, Medvedev NN, Winter R, Geiger A. Calculation of the volumetric characteristics of biomacromolecules in solution by the Voronoi–Delaunay technique. Biophys Chem 2014; 192:1-9. [DOI: 10.1016/j.bpc.2014.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
|
19
|
Meli M, Pagano K, Ragona L, Colombo G. Investigating the dynamic aspects of drug-protein recognition through a combination of MD and NMR analyses: implications for the development of protein-protein interaction inhibitors. PLoS One 2014; 9:e97153. [PMID: 24865844 PMCID: PMC4035249 DOI: 10.1371/journal.pone.0097153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/14/2014] [Indexed: 12/04/2022] Open
Abstract
In this paper, we investigate the dynamic aspects of the molecular recognition between a small molecule ligand and a flat, exposed protein surface, representing a typical target in the development of protein-protein interaction inhibitors. Specifically, we analyze the complex between the protein Fibroblast Growth Factor 2 (FGF2) and a recently discovered small molecule inhibitor, labeled sm27 for which the binding site and the residues mainly involved in small molecule recognition have been previously characterized. We have approached this problem using microsecond MD simulations and NMR-based characterizations of the dynamics of the apo and holo states of the system. Using direct combination and cross-validation of the results of the two techniques, we select the set of conformational states that best recapitulate the principal dynamic and structural properties of the complex. We then use this information to generate a multi-structure representation of the sm27-FGF2 interaction. We propose this kind of representation and approach as a useful tool in particular for the characterization of systems where the mutual dynamic influence between the interacting partners is expected to play an important role. The results presented can also be used to generate new rules for the rational expansion of the chemical diversity space of FGF2 inhibitors.
Collapse
Affiliation(s)
- Massimiliano Meli
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | | | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| |
Collapse
|
20
|
Cardone A, Pant H, Hassan SA. Specific and non-specific protein association in solution: computation of solvent effects and prediction of first-encounter modes for efficient configurational bias Monte Carlo simulations. J Phys Chem B 2013; 117:12360-74. [PMID: 24044772 PMCID: PMC3870165 DOI: 10.1021/jp4050594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weak and ultraweak protein-protein association play a role in molecular recognition and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolve. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized on the basis of binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed.
Collapse
Affiliation(s)
- Antonio Cardone
- Institute for Advanced Computer Science, University of Maryland, College Park, MD 20742
- SSD, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | | | - Sergio A. Hassan
- Center for Molecular Modeling, DCB/CIT, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
21
|
Decomposition of a Protein Solution into Voronoi Shells and Delaunay Layers: Calculation of the Volumetric Properties. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-41905-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Development of ions-TIP4P-Ew force fields for molecular processes in bulk and at the aqueous interface using molecular simulations. J Mol Liq 2012. [DOI: 10.1016/j.molliq.2012.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Hassan SA. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields. J Chem Phys 2012; 137:074102. [PMID: 22920098 PMCID: PMC3432095 DOI: 10.1063/1.4742910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 02/04/2023] Open
Abstract
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Collapse
Affiliation(s)
- Sergio A Hassan
- Center for Molecular Modeling, DCB∕CIT, National Institutes of Health, U.S. DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
24
|
Haberler M, Schröder C, Steinhauser O. Hydrated Ionic Liquids with and without Solute: The Influence of Water Content and Protein Solutes. J Chem Theory Comput 2012; 8:3911-28. [PMID: 26593031 DOI: 10.1021/ct300191s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this computational study, the network of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate/water mixtures is analyzed in the presence (and absence) of the protein ubiquitin and a zinc finger motif. Thereby, common radial distribution functions are decomposed into contributions from different Voronoi shells, and the mutual orientation of cations, anions, and water in the bulk phase as a function of the water mole fraction is discussed. Single particle translation and the reorientation of the dipolar axis seem to follow hydrodynamic relations. Using the body-fixed frame as an alternative reference system, translation and rotation can be decomposed into contributions along and about the axes of a well-defined orthogonal trihedron, thus elucidating the principal motions of the cations and anions as a function of the water mole fraction. The structural dipolar orientation may be correlated with single particle dynamics and can be characterized by the static collective Kirkwood order parameter.
Collapse
Affiliation(s)
- Michael Haberler
- University of Vienna, Department of Computational Biological Chemistry, Austria
| | - Christian Schröder
- University of Vienna, Department of Computational Biological Chemistry, Austria
| | - Othmar Steinhauser
- University of Vienna, Department of Computational Biological Chemistry, Austria
| |
Collapse
|
25
|
|
26
|
What determines water-bridge lifetimes at the surface of DNA? Insight from systematic molecular dynamics analysis of water kinetics for various DNA sequences. Biophys Chem 2012; 160:54-61. [DOI: 10.1016/j.bpc.2011.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022]
|
27
|
Voloshin VP, Medvedev NN, Andrews MN, Burri RR, Winter R, Geiger A. Volumetric Properties of Hydrated Peptides: Voronoi–Delaunay Analysis of Molecular Simulation Runs. J Phys Chem B 2011; 115:14217-28. [DOI: 10.1021/jp2050788] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir P. Voloshin
- Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
| | - Nikolai N. Medvedev
- Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - R. Reddy Burri
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Winter
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Alfons Geiger
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
28
|
Ravikumar KM, Hwang W. Role of hydration force in the self-assembly of collagens and amyloid steric zipper filaments. J Am Chem Soc 2011; 133:11766-73. [PMID: 21692533 DOI: 10.1021/ja204377y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In protein self-assembly, types of surfaces determine the force between them. Yet the extent to which the surrounding water contributes to this force remains as a fundamental question. Here we study three self-assembling filament systems that respectively have hydrated (collagen), dry nonpolar, and dry polar (amyloid) interfaces. Using molecular dynamics simulations, we calculate and compare local hydration maps and hydration forces. We find that the primary hydration shells are formed all over the surface, regardless of the types of the underlying amino acids. The weakly oscillating hydration force arises from coalescence and depletion of hydration shells as two filaments approach, whereas local water diffusion, orientation, or hydrogen-bonding events have no direct effect. Hydration forces between hydrated, polar, and nonpolar interfaces differ in the amplitude and phase of the oscillation relative to the equilibrium surface separation. Therefore, water-mediated interactions between these protein surfaces, ranging in character from "hydrophobic" to "hydrophilic", have a common molecular origin based on the robustly formed hydration shells, which is likely applicable to a broad range of biomolecular assemblies whose interfacial geometry is similar in length scale to those of the present study.
Collapse
|
29
|
Laage D, Stirnemann G, Sterpone F, Rey R, Hynes JT. Reorientation and Allied Dynamics in Water and Aqueous Solutions. Annu Rev Phys Chem 2011; 62:395-416. [DOI: 10.1146/annurev.physchem.012809.103503] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Damien Laage
- Department of Chemistry, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 75005 Paris, France;
| | - Guillaume Stirnemann
- Department of Chemistry, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 75005 Paris, France;
| | - Fabio Sterpone
- Department of Chemistry, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 75005 Paris, France;
| | - Rossend Rey
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona 08034, Spain;
| | - James T. Hynes
- Department of Chemistry, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 75005 Paris, France;
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215;
| |
Collapse
|
30
|
Haberler M, Schröder C, Steinhauser O. Solvation studies of a zinc finger protein in hydrated ionic liquids. Phys Chem Chem Phys 2011; 13:6955-6969. [PMID: 21390358 PMCID: PMC7613782 DOI: 10.1039/c0cp02487b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The solvation of the zinc finger protein with the PDB-ID “5ZNF” in hydrated ionic liquids was studied at varying water content. 1-Ethyl-3-methylimidazolium and trifluoromethanesulfonate were the cation and anion, respectively. The protein stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The lengths of the respective trajectories extended up to 200 nanoseconds in order to cover the complete solvent dynamics. Considering the above mentioned properties as a function of the water content they all exhibit a maximum or minimum at the very same mole fraction. While the exact value x(H(2)O) = 0.927 depends on the underlying force field, its origin may be traced back to the competition between the van der Waals and the electrostatic energy of the protein as well as to the transition from aqueous dielectric screening to ionic charge screening with decreasing water content. The parameter-free Voronoi decomposition of space served as a basis for the analysis of most results. In particular, solvation shells were naturally inferred from this concept. In addition to the molecular analysis a mesoscopic view is given in terms of dielectric properties. Thereby, the net dielectric constant is decomposed into contributions from the protein, the first and second solvation shells as well as the bulk. Cross-terms between these components are given, too.
Collapse
Affiliation(s)
- Michael Haberler
- University of Vienna, Department of Computational Biological Chemistry, Währingerstr. 17, 1090 Vienna, Austria
| | | | | |
Collapse
|
31
|
Haberler M, Steinhauser O. On the influence of hydrated ionic liquids on the dynamical structure of model proteins: a computational study. Phys Chem Chem Phys 2011; 13:17994-8004. [DOI: 10.1039/c1cp22266j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Neumayr G, Rudas T, Steinhauser O. Global and local Voronoi analysis of solvation shells of proteins. J Chem Phys 2010; 133:084108. [DOI: 10.1063/1.3471383] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Sterpone F, Stirnemann G, Hynes JT, Laage D. Water Hydrogen-Bond Dynamics around Amino Acids: The Key Role of Hydrophilic Hydrogen-Bond Acceptor Groups. J Phys Chem B 2010; 114:2083-9. [DOI: 10.1021/jp9119793] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Sterpone
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond 75005 Paris, France, Fondation Pierre Gilles de Gennes pour la Recherche, Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Guillaume Stirnemann
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond 75005 Paris, France, Fondation Pierre Gilles de Gennes pour la Recherche, Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - James T. Hynes
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond 75005 Paris, France, Fondation Pierre Gilles de Gennes pour la Recherche, Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Damien Laage
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond 75005 Paris, France, Fondation Pierre Gilles de Gennes pour la Recherche, Paris, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
34
|
Modig K, Qvist J, Marshall CB, Davies PL, Halle B. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Phys Chem Chem Phys 2010; 12:10189-97. [DOI: 10.1039/c002970j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Carnevale V, Raugei S. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car–Parrinello and classical molecular dynamics investigation. J Chem Phys 2009; 131:225103. [DOI: 10.1063/1.3268703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
36
|
Neumayr G, Schröder C, Steinhauser O. Relaxation of Voronoi shells in hydrated molecular ionic liquids. J Chem Phys 2009; 131:174509. [DOI: 10.1063/1.3256003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6282] [Impact Index Per Article: 392.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
Affiliation(s)
- B.R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - C.L. Brooks
- Departments of Chemistry & Biophysics, University of
Michigan, Ann Arbor, MI 48109
| | - A.D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD, 21201
| | - L. Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition,
SE-141 57, Huddinge, Sweden
| | - R.J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Department of Medicine, Harvard Medical School, Boston, MA
02115
| | - B. Roux
- Department of Biochemistry and Molecular Biology, University of
Chicago, Gordon Center for Integrative Science, Chicago, IL 60637
| | - Y. Won
- Department of Chemistry, Hanyang University, Seoul
133–792 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Laboratoire de Chimie Biophysique, ISIS, Université de
Strasbourg, 67000 Strasbourg France
| |
Collapse
|
38
|
Verde AV, Acres JM, Maranas JK. Investigating the Specificity of Peptide Adsorption on Gold Using Molecular Dynamics Simulations. Biomacromolecules 2009; 10:2118-28. [DOI: 10.1021/bm9002464] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Vila Verde
- The Pennsylvania State University, Department of Chemical Engineering, University Park, Pennsylvania 16802
| | - Jacqueline M. Acres
- The Pennsylvania State University, Department of Chemical Engineering, University Park, Pennsylvania 16802
| | - Janna K. Maranas
- The Pennsylvania State University, Department of Chemical Engineering, University Park, Pennsylvania 16802
| |
Collapse
|
39
|
Tompa K, Bánki P, Bokor M, Kamasa P, Lasanda G, Tompa P. Interfacial water at protein surfaces: wide-line NMR and DSC characterization of hydration in ubiquitin solutions. Biophys J 2009; 96:2789-98. [PMID: 19348762 DOI: 10.1016/j.bpj.2008.11.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 11/10/2008] [Indexed: 11/15/2022] Open
Abstract
Wide-line 1H-NMR and differential scanning calorimetry measurements were done in aqueous solutions and on lyophilized samples of human ubiquitin between -70 degrees C and +45 degrees C. The measured properties (size, thermal evolution, and wide-line NMR spectra) of the protein-water interfacial region are substantially different in the double-distilled and buffered-water solutions of ubiquitin. The characteristic transition in water mobility is identified as the melting of the nonfreezing/hydrate water. The amount of water in the low-temperature mobile fraction is 0.4 g/g protein for the pure water solution. The amount of mobile water is higher and its temperature dependence more pronounced for the buffered solution. The specific heat of the nonfreezing/hydrate water was evaluated using combined differential scanning calorimetry and NMR data. Considering the interfacial region as an independent phase, the values obtained are 5.0-5.8 J x g(-1) x K(-1), and the magnitudes are higher than that of pure/bulk water (4.2 J x g(-1) x K(-1)). This unexpected discrepancy can only be resolved in principle by assuming that hydrate water is in tight H-bond coupling with the protein matrix. The specific heat for the system composed of the protein molecule and its hydration water is 2.3 J x g(-1) x K(-1). It could be concluded that the protein ubiquitin and its hydrate layer behave as a highly interconnected single phase in a thermodynamic sense.
Collapse
Affiliation(s)
- Kálmán Tompa
- Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Kim YS, Hochstrasser RM. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J Phys Chem B 2009; 113:8231-51. [PMID: 19351162 PMCID: PMC2845308 DOI: 10.1021/jp8113978] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following a survey of 2D IR principles, this article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils.
Collapse
Affiliation(s)
- Yung Sam Kim
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| | - Robin M. Hochstrasser
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| |
Collapse
|
41
|
Schröder C, Neumayr G, Steinhauser O. On the collective network of ionic liquid/water mixtures. III. Structural analysis of ionic liquids on the basis of Voronoi decomposition. J Chem Phys 2009; 130:194503. [DOI: 10.1063/1.3127782] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Lau EY, Phillips JL, Colvin ME. Molecular dynamics simulations of highly charged green fluorescent proteins. Mol Phys 2009. [DOI: 10.1080/00268970902845305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Wong S, Amaro RE, McCammon JA. MM-PBSA Captures Key Role of Intercalating Water Molecules at a Protein-Protein Interface. J Chem Theory Comput 2009; 5:422-429. [PMID: 19461869 PMCID: PMC2651627 DOI: 10.1021/ct8003707] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 11/28/2022]
Abstract
The calculation of protein interaction energetics is of fundamental interest, yet accurate quantities are difficult to obtain due to the complex and dynamic nature of protein interfaces. This is further complicated by the presence of water molecules, which can exhibit transient interactions of variable duration and strength with the protein surface. The T-cell receptor (TCR) and its staphylococcal enterotoxin 3 (SEC3) binding partner are well-characterized examples of a protein−protein interaction system exhibiting interfacial plasticity, cooperativity, and additivity among mutants. Specifically engineered mutants induce intercalating interfacial water molecules, which subsequently enhance protein−protein binding affinity. In this work, we perform a set of molecular mechanics (MM) Poisson−Boltzmann (PB) surface area (SA) calculations on the wild type and two mutant TCR-SEC3 systems and show that the method is able to discriminate between weak and strong binders only when key explicit water molecules are included in the analysis. The results presented here point to the promise of MM-PBSA toward rationalizing molecular recognition at protein−protein interfaces, while establishing a general approach to handle explicit interfacial water molecules in such calculations.
Collapse
Affiliation(s)
- Sergio Wong
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, Department of Pharmacology, and Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093-0365
| | | | | |
Collapse
|
44
|
Cole DJ, Payne MC, Ciacchi LC. Water structuring and collagen adsorption at hydrophilic and hydrophobic silicon surfaces. Phys Chem Chem Phys 2009; 11:11395-9. [DOI: 10.1039/b816125a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Sasisanker P, Weingärtner H. Hydration Dynamics of Water near an Amphiphilic Model Peptide at Low Hydration Levels: A Dielectric Relaxation Study. Chemphyschem 2008; 9:2802-8. [DOI: 10.1002/cphc.200800508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
Kim S, Born B, Havenith M, Gruebele M. Echtzeitnachweis von Änderungen im Protein-Wassernetzwerk während der Proteinfaltung mit Terahertz-Absorptionsspektroskopie. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802281] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Real-Time Detection of Protein-Water Dynamics upon Protein Folding by Terahertz Absorption Spectroscopy. Angew Chem Int Ed Engl 2008; 47:6486-9. [DOI: 10.1002/anie.200802281] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Dynamics at the protein-water interface from 17O spin relaxation in deeply supercooled solutions. Biophys J 2008; 95:2951-63. [PMID: 18586840 DOI: 10.1529/biophysj.108.135194] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the decisive molecular events in biology take place at the protein-water interface. The dynamical properties of the hydration layer are therefore of fundamental importance. To characterize the dynamical heterogeneity and rotational activation energy in the hydration layer, we measured the (17)O spin relaxation rate in dilute solutions of three proteins in a wide temperature range extending down to 238 K. We find that the rotational correlation time can be described by a power-law distribution with exponent 2.1-2.3. Except for a small fraction of secluded hydration sites, the dynamic perturbation in the hydration layer is the same for all proteins and does not differ in any essential way from the hydration shell of small organic solutes. In both cases, the dynamic perturbation factor is <2 at room temperature and exhibits a maximum near 262 K. This maximum implies that, at low temperatures, the rate of water molecule rotation has a weaker temperature dependence in the hydration layer than in bulk water. We attribute this difference to the temperature-independent constraints that the protein surface imposes on the water H-bond network. The free hydration layer studied here differs qualitatively from confined water in solid protein powder samples.
Collapse
|
49
|
Distinguishing thermodynamic and kinetic views of the preferential hydration of protein surfaces. Biophys J 2008; 95:2219-25. [PMID: 18515399 DOI: 10.1529/biophysj.108.133553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motivated by a quasi-chemical view of protein hydration, we define specific hydration sites on the surface of globular proteins in terms of the local water density at each site relative to bulk water density. The corresponding kinetic definition invokes the average residence time for a water molecule at each site and the average time that site remains unoccupied. Bound waters are identified by high site occupancies using either definition. In agreement with previous molecular dynamics simulation studies, we find only a weak correlation between local water densities and water residence times for hydration sites on the surface of two globular proteins, lysozyme and staphylococcal nuclease. However, a strong correlation is obtained when both the average residence and vacancy times are appropriately taken into account. In addition, two distinct kinetic regimes are observed for hydration sites with high occupancies: long residence times relative to vacancy times for a single water molecule, and short residence times with high turnover involving multiple water molecules. We also correlate water dynamics, characterized by average occupancy and vacancy times, with local heterogeneities in surface charge and surface roughness, and show that both features are necessary to obtain sites corresponding to kinetically bound waters.
Collapse
|
50
|
Abstract
Water-biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the (2)H spin relaxation rate in living bacteria cultured in D(2)O. The relaxation data, acquired in a wide magnetic field range (0.2 mT-12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that approximately 85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining approximately 15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 +/- 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction ( approximately 0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals.
Collapse
|