1
|
Li H, Zhao X, Ren X, Wei D, Zhang S, Wang H, Zuo ZW, Li L, Yu X. Energetic and Kinetic Competition on the Stability of Pd 13 Clusters: Ab Initio Molecular Dynamics Simulations. J Phys Chem A 2024; 128:8856-8864. [PMID: 39159008 DOI: 10.1021/acs.jpca.4c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Material stability is the focus on both experiments and calculations, which includes the energetic stability at the static state and the thermodynamic stability at the kinetic state. To show whether energetics or kinetics dominates on material stability, this study focuses on the Pd13 clusters, because of their observable magnetic moment in experiment. Energetically, the CALYPSO searching method and first-principles calculations find that Pd13(C2) is the ground state at 0 K while the static frequency calculations demonstrate that the icosahedron Pd13(Ih) becomes more favorable on free energy as temperature increases. However, their magnetic moments (8 μB) are not in agreement with the experimental value (<5.2 μB). Kinetically, ab initio molecular dynamics simulations reveal that Pd13(C3v) (6 μB) has supreme isomerization temperature and the other 11 low-lying isomers transform to Pd13(C3v) directly or indirectly, demonstrating that Pd13(C3v) has the maximum probability to be observed in experiment. The magnetic moment difference between experiment (<5.2 μB) and this calculation (6 μB) may be due to the spin multiplicities. Our result suggests that the magnetic moment disparity between theory and experiment (in Pd13 clusters) originates from the kinetic stability.
Collapse
Affiliation(s)
- Haisheng Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xingju Zhao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ren
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuai Zhang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Hui Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Zheng-Wei Zuo
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Liben Li
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal new Materials and Advanced Processing Technology, Luoyang 471023, China
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi, Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
2
|
Ali HS, Henchman RH. Energy-entropy multiscale cell correlation method to predict toluene-water log P in the SAMPL9 challenge. Phys Chem Chem Phys 2023; 25:27524-27531. [PMID: 37800345 PMCID: PMC11411597 DOI: 10.1039/d3cp03076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The energy-entropy multiscale cell correlation (EE-MCC) method is used to calculate toluene-water log P values of 16 drug molecules in the SAMPL9 physical properties challenge. EE-MCC calculates the free energy, energy and entropy from molecular dynamics (MD) simulations of the water and toluene solutions. Specifically, MCC evaluates entropy by partitioning the system into cells of correlated atoms at multiple length scales and further partitioning the local coordinates into energy wells, yielding vibrational and topographical terms from the energy-well sizes and probabilities. The log P values calculated by EE-MCC using three 200 ns MD simulations have a mean average error of 0.82 and standard error of the mean of 0.97 versus experiment, which is comparable with the best methods entered in SAMPL9. The main contribution to log P is from energy. Less polar drugs have more favourable energies of transfer. The entropy of transfer consists of increased solute vibrational and conformational terms in toluene due to weaker interactions, fewer solute positions in the larger-molecule solvent, reduced water vibrational entropy, negligible change in toluene vibrational entropy, and gains in solvent orientational entropy. The solvent entropy contributions here may be slightly underestimated because software limitations and statistical fluctuations meant that only the first shell could be included while averaged over the whole solution. Nonetheless, such issues will be addressed in future software to offer a general method to calculate entropy directly from MD simulation and to provide molecular understanding or guide system design.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
3
|
Kalayan J, Chakravorty A, Warwicker J, Henchman RH. Total free energy analysis of fully hydrated proteins. Proteins 2023; 91:74-90. [PMID: 35964252 PMCID: PMC10087023 DOI: 10.1002/prot.26411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
The total free energy of a hydrated biomolecule and its corresponding decomposition of energy and entropy provides detailed information about regions of thermodynamic stability or instability. The free energies of four hydrated globular proteins with different net charges are calculated from a molecular dynamics simulation, with the energy coming from the system Hamiltonian and entropy using multiscale cell correlation. Water is found to be most stable around anionic residues, intermediate around cationic and polar residues, and least stable near hydrophobic residues, especially when more buried, with stability displaying moderate entropy-enthalpy compensation. Conversely, anionic residues in the proteins are energetically destabilized relative to singly solvated amino acids, while trends for other residues are less clear-cut. Almost all residues lose intraresidue entropy when in the protein, enthalpy changes are negative on average but may be positive or negative, and the resulting overall stability is moderate for some proteins and negligible for others. The free energy of water around single amino acids is found to closely match existing hydrophobicity scales. Regarding the effect of secondary structure, water is slightly more stable around loops, of intermediate stability around β strands and turns, and least stable around helices. An interesting asymmetry observed is that cationic residues stabilize a residue when bonded to its N-terminal side but destabilize it when on the C-terminal side, with a weaker reversed trend for anionic residues.
Collapse
Affiliation(s)
- Jas Kalayan
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Arghya Chakravorty
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jim Warwicker
- Manchester Institute of Biotechnology and School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Mukherjee S, Schäfer LV. Spatially Resolved Hydration Thermodynamics in Biomolecular Systems. J Phys Chem B 2022; 126:3619-3631. [PMID: 35534011 PMCID: PMC9150089 DOI: 10.1021/acs.jpcb.2c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Indexed: 01/17/2023]
Abstract
Water is essential for the structure, dynamics, energetics, and thus the function of biomolecules. It is a formidable challenge to elicit, in microscopic detail, the role of the solvation-related driving forces of biomolecular processes, such as the enthalpy and entropy contributions to the underlying free-energy landscape. In this Perspective, we discuss recent developments and applications of computational methods that provide a spatially resolved map of hydration thermodynamics in biomolecular systems and thus yield atomic-level insights to guide the interpretation of experimental observations. An emphasis is on the challenge of quantifying the hydration entropy, which requires characterization of both the motions of the biomolecules and of the water molecules in their surrounding.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Theoretical Chemistry, Ruhr
University Bochum, 44801 Bochum, Germany
| | - Lars V. Schäfer
- Theoretical Chemistry, Ruhr
University Bochum, 44801 Bochum, Germany
| |
Collapse
|
5
|
Heyes DM, Pieprzyk S, Brańka AC. Application of cell models to the melting and sublimation lines of the Lennard-Jones and related potential systems. Phys Rev E 2021; 104:044119. [PMID: 34781546 DOI: 10.1103/physreve.104.044119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Harmonic cell models (HCMs) are shown to predict the melting line of the Lennard-Jones (LJ) but not the sublimation line. In addition, even for the melting line, the HCMs are found to be physically unrealistic for inverse power potential systems near the hard-sphere limit, and for the Weeks-Chandler-Andersen system at extremely low temperatures. Despite this, the HCM accurately predicts the LJ mean-square displacement (MSD) from molecular-dynamics (MD) simulations along both lines after simple scaling corrections, to include the effects of anharmonicity and correlated dynamics of the atoms, are applied. Single caged atom molecular dynamics and Monte Carlo simulations provide further quantitative characterization of these additional effects, which go beyond harmonicity. The melting indicator and a modification of the cell model in a similar form are shown to be approximately constant along the melting line, which indicates an isomorph. The less well studied LJ sublimation line is shown not to be an isomorph, yet it still can be represented analytically very accurately by the relationship k_{B}T=aρ^{4}+bρ^{2}, where a and b are constants (k_{B} is Boltzmann's constant, T is the temperature, and ρ is the number density). This relationship has been found previously for the melting line, but the two constants have opposite signs for the sublimation and melting lines. This simple formula is also predicted using a nonharmonic static lattice expression for the pressure. The probability distribution function of the melting factor indicates departures from harmonic or Gaussian behavior in the lower wing. Nevertheless, the mean melting factor is shown to follow a simple MSD Debye-Waller factor dependence along both the melting and sublimation lines. This work combining HCM and MD simulations provides a comparison of the melting and sublimation lines of the LJ system, which could provide the foundations for a more unified statistical mechanical description of these two solid boundary lines.
Collapse
Affiliation(s)
- D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | - S Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - A C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
6
|
Ali HS, Chakravorty A, Kalayan J, de Visser SP, Henchman RH. Energy-entropy method using multiscale cell correlation to calculate binding free energies in the SAMPL8 host-guest challenge. J Comput Aided Mol Des 2021; 35:911-921. [PMID: 34264476 PMCID: PMC8367938 DOI: 10.1007/s10822-021-00406-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Free energy drives a wide range of molecular processes such as solvation, binding, chemical reactions and conformational change. Given the central importance of binding, a wide range of methods exist to calculate it, whether based on scoring functions, machine-learning, classical or electronic structure methods, alchemy, or explicit evaluation of energy and entropy. Here we present a new energy-entropy (EE) method to calculate the host-guest binding free energy directly from molecular dynamics (MD) simulation. Entropy is evaluated using Multiscale Cell Correlation (MCC) which uses force and torque covariance and contacts at two different length scales. The method is tested on a series of seven host-guest complexes in the SAMPL8 (Statistical Assessment of the Modeling of Proteins and Ligands) "Drugs of Abuse" Blind Challenge. The EE-MCC binding free energies are found to agree with experiment with an average error of 0.9 kcal mol-1. MCC makes clear the origin of the entropy changes, showing that the large loss of positional, orientational, and to a lesser extent conformational entropy of each binding guest is compensated for by a gain in orientational entropy of water released to bulk, combined with smaller decreases in vibrational entropy of the host, guest and contacting water.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Arghya Chakravorty
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Samuel P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
7
|
Päslack C, Das CK, Schlitter J, Schäfer LV. Spectrally Resolved Estimation of Water Entropy in the Active Site of Human Carbonic Anhydrase II. J Chem Theory Comput 2021; 17:5409-5418. [PMID: 34259506 DOI: 10.1021/acs.jctc.1c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major challenge in understanding ligand binding to biomacromolecules lies in dissecting the underlying thermodynamic driving forces at the atomic level. Quantifying the contributions of water molecules is often especially demanding, although they can play important roles in biomolecular recognition and binding processes. One example is human carbonic anhydrase II, whose active site harbors a conserved network of structural water molecules that are essential for enzymatic catalysis. Inhibitor binding disrupts this water network and changes the hydrogen-bonding patterns in the active site. Here, we use atomistic molecular dynamics simulations to compute the absolute entropy of the individual water molecules confined in the active site of hCAII using a spectrally resolved estimation (SRE) approach. The entropy decrease of water molecules that remain in the active site upon binding of a dorzolamide inhibitor is caused by changes in hydrogen bonding and stiffening of the hydrogen-bonding network. Overall, this entropy decrease is overcompensated by the gain due to the release of three water molecules from the active site upon inhibitor binding. The spectral density calculations enable the assignment of the changes to certain vibrational modes. In addition, the range of applicability of the SRE approximation is systematically explored by exploiting the gradually changing degree of immobilization of water molecules as a function of the distance to a phospholipid bilayer surface, which defines an "entropy ruler". These results demonstrate the applicability of SRE to biomolecular solvation, and we expect it to become a useful method for entropy calculations in biomolecular systems.
Collapse
Affiliation(s)
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
8
|
Falcioni F, Kalayan J, Henchman RH. Energy-entropy prediction of octanol-water logP of SAMPL7 N-acyl sulfonamide bioisosters. J Comput Aided Mol Des 2021; 35:831-840. [PMID: 34244906 PMCID: PMC8295089 DOI: 10.1007/s10822-021-00401-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Partition coefficients quantify a molecule's distribution between two immiscible liquid phases. While there are many methods to compute them, there is not yet a method based on the free energy of each system in terms of energy and entropy, where entropy depends on the probability distribution of all quantum states of the system. Here we test a method in this class called Energy Entropy Multiscale Cell Correlation (EE-MCC) for the calculation of octanol-water logP values for 22 N-acyl sulfonamides in the SAMPL7 Physical Properties Challenge (Statistical Assessment of the Modelling of Proteins and Ligands). EE-MCC logP values have a mean error of 1.8 logP units versus experiment and a standard error of the mean of 1.0 logP units for three separate calculations. These errors are primarily due to getting sufficiently converged energies to give accurate differences of large numbers, particularly for the large-molecule solvent octanol. However, this is also an issue for entropy, and approximations in the force field and MCC theory also contribute to the error. Unique to MCC is that it explains the entropy contributions over all the degrees of freedom of all molecules in the system. A gain in orientational entropy of water is the main favourable entropic contribution, supported by small gains in solute vibrational and orientational entropy but offset by unfavourable changes in the orientational entropy of octanol, the vibrational entropy of both solvents, and the positional and conformational entropy of the solute.
Collapse
Affiliation(s)
- Fabio Falcioni
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Kunche L, Natarajan U. Structure and dynamics of an aqueous solution containing poly-(acrylic acid) and non-ionic surfactant octaethylene glycol n-decyl ether (C 10E 8) aggregates and their complexes investigated by molecular dynamics simulations. SOFT MATTER 2021; 17:670-687. [PMID: 33215624 DOI: 10.1039/d0sm01322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A detailed molecular dynamics simulation study of the self-assembly, intermolecular structure and thermodynamic behavior of an aqueous solution of non-ionic surfactant octa ethylene glycol n-decyl ether (C10E8) in the presence of a non-ionic polar polymer poly(acrylic acid) PAA is presented. The aggregation number Nagg and concentration of surfactant Cs in the simulation systems were varied in the range 0.01-0.32 M and 5 < Nagg < 101 (dilute to concentrated) with a dilute polymer concentration (Cp = 0.01 M). Lamellar aggregates of non-ionic surfactant in bulk aqueous solution are shown by molecular level computations for the first time. Spherical micellar aggregates and lamellar aggregates are formed at low and high Nagg, respectively. The transition from the spherical micelle phase to the lamellar phase in a binary solution is captured for the first time. A conformational transition from coiled to extended PAA chains adsorbed on the surfactant aggregate occurs at a particular value of Nagg, commensurate with the transition from spherical micelle aggregates to anisotropic lamellar aggregates. Formation of the surfactant aggregate in binary and ternary solutions and the polymer-surfactant complex in a ternary solution is enthalpically favored. Adsorption of PAA on the surfactant aggregate surface is driven by hydrogen bonds (HBs) between carboxylic acid groups of PAA and ethylene oxide groups of C10E8. A significant number of HBs occur between polar oxygens of C10E8 and hydroxyl oxygens of PAA. The results are in agreement with the limited available experimental data on this system.
Collapse
Affiliation(s)
- Lakshmikumar Kunche
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Lab, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai 600036, India.
| |
Collapse
|
10
|
Nikiteas I, Heyes DM. Reentrant melting and multiple occupancy crystals of bounded potentials: Simple theory and direct observation by molecular dynamics simulations. Phys Rev E 2020; 102:042102. [PMID: 33212604 DOI: 10.1103/physreve.102.042102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022]
Abstract
Aspects of the phase coexistence behavior of the generalized exponential model (GEM-m) and bounded versions of inverse power potentials based on theory and molecular dynamics (MD) simulation data are reported. The GEM-m potential is ϕ(r)=exp(-r^{m}), where r is the pair separation and m is an adjustable exponent. A simple analytic formula for the fluid-solid envelope of the Gaussian core model which takes account of the known low- and high-density limiting forms is proposed and shown to represent the simulation data well. The bounded inverse power (BIP) potential is ϕ(r)=1/(a^{q}+r^{q})^{n/q}, where a, n, and q are positive constants. The BIP potential multiple occupancy crystal or cluster crystals are predicted to form when q>2 and a>0, for n>3, which compares with the corresponding GEM-m condition of m>2. Reentrant melting should occur for the BIP potential when q≤2 and a>0. MD simulations in which the system was gradually compressed at constant temperature using the BIP potential produced cluster states in the parameter domain expected but it was not possible to establish conclusively whether a multiply occupied crystal or a cluster fluid had formed owing to assembly structural fluctuations. The random phase approximation reproduces very well the BIP MD energy per particle without any discontinuities at the phase boundaries. The Lindemann melting rule is shown analytically to give a more rapidly decaying reentrant melting curve boundary than the so-called melting indicator (MI) empirical melting criterion which has also been investigated in this study. The MI model gives a better match to the high-density phase boundary for small m and q values.
Collapse
Affiliation(s)
- I Nikiteas
- Applied Modelling and Computation Group, Department of Earth Science and Engineering, Imperial College London, Prince Consort Road, South Kensington, London SW7 2BP, United Kingdom
| | - D M Heyes
- Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| |
Collapse
|
11
|
Rokoni A, Sun Y. Probing the temperature profile across a liquid-vapor interface upon phase change. J Chem Phys 2020; 153:144706. [PMID: 33086805 DOI: 10.1063/5.0024722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding the temperature profile across a liquid-vapor interface in the presence of phase change is essential for the accurate prediction of evaporation, boiling, and condensation. It has been shown experimentally, from non-equilibrium thermodynamics and using molecular dynamics simulations, the existence of an inverted temperature profile across an evaporating liquid-vapor interface, where the vapor-side interface temperature observes the lowest value and the vapor temperature increases away from the interface, opposite to the direction of heat flow. It is worth noting, however, that an inverted temperature profile is not always the case from other experiments and simulations. In this study, we apply non-equilibrium molecular dynamics simulations to systematically study the temperature profile across a liquid-vapor interface during phase change under various heat fluxes in a two-interface setting consisting of both an evaporating and a condensing interface. The calculated vapor temperature shows different characteristics inside the Knudsen layer and in the bulk vapor. In addition, both the direction and magnitude of the vapor temperature gradient, as well as the temperature jump at the liquid-vapor interface, are functions of the applied heat flux. The interfacial entropy generation rate calculated from the vibrational density of state of the interfacial liquid and vapor molecules shows a positive production during evaporation, and the results qualitatively agree with the predictions from non-equilibrium thermodynamics.
Collapse
Affiliation(s)
- Arif Rokoni
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ying Sun
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Chakravorty A, Higham J, Henchman RH. Entropy of Proteins Using Multiscale Cell Correlation. J Chem Inf Model 2020; 60:5540-5551. [PMID: 32955869 DOI: 10.1021/acs.jcim.0c00611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new multiscale method is presented to calculate the entropy of proteins from molecular dynamics simulations. Termed Multiscale Cell Correlation (MCC), the method decomposes the protein into sets of rigid-body units based on their covalent-bond connectivity at three levels of hierarchy: molecule, residue, and united atom. It evaluates the vibrational and topographical entropy from forces, torques, and dihedrals at each level, taking into account correlations between sets of constituent units that together make up a larger unit at the coarser length scale. MCC gives entropies in close agreement with normal-mode analysis and smaller than those using quasiharmonic analysis as well as providing much faster convergence. Moreover, MCC provides an insightful decomposition of entropy at each length scale and for each type of amino acid according to their solvent exposure and whether they are terminal residues. While the residue entropy depends weakly on solvent exposure, there is greater variation in entropy components for larger, more polar amino acids, which have increased conformational entropy but reduced vibrational entropy with greater solvent exposure.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Higham
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
13
|
Gobbo D, Ballone P, Decherchi S, Cavalli A. Solubility Advantage of Amorphous Ketoprofen. Thermodynamic and Kinetic Aspects by Molecular Dynamics and Free Energy Approaches. J Chem Theory Comput 2020; 16:4126-4140. [PMID: 32463689 DOI: 10.1021/acs.jctc.0c00166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic and kinetic aspects of crystalline (c-KTP) and amorphous (a-KTP) ketoprofen dissolution in water have been investigated by molecular dynamics simulation focusing on free energy properties. Absolute free energies of all relevant species and phases have been determined by thermodynamic integration on a novel path, first connecting the harmonic to the anharmonic system Hamiltonian at low T and then extending the result to the temperature of interest. The free energy required to transfer one ketoprofen molecule from the crystal to the solution is in fair agreement with the experimental value. The absolute free energy of the amorphous form is 19.58 kJ/mol higher than for the crystal, greatly enhancing the ketoprofen concentration in water, although as a metastable species in supersaturated solution. The kinetics of the dissolution process has been analyzed by computing the free energy profile along a reaction coordinate bringing one ketoprofen molecule from the crystal or amorphous phase to the solvated state. This computation confirms that, compared to the crystal form, the dissolution rate is nearly 7 orders of magnitude faster for the amorphous form, providing one further advantage to the latter in terms of bioavailability. The problem of drug solubility, of great practical importance, is used here as a test bed for a refined method to compute absolute free energies, which could be of great interest in biophysics and drug discovery in particular.
Collapse
Affiliation(s)
- D Gobbo
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - P Ballone
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,School of Physics, University College Dublin, Dublin, Ireland.,Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - S Decherchi
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - A Cavalli
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genova 16163, Italy.,University of Bologna, Bologna 40126, Italy
| |
Collapse
|
14
|
Obeidat A. Free energy of formation of SPC/E-water and TIP4P-water using BAR and TI in MD and MC. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Escalante DE, Aksan A. Role of Water Hydrogen Bonding on Transport of Small Molecules inside Hydrophobic Channels. J Phys Chem B 2019; 123:6673-6685. [PMID: 31310534 DOI: 10.1021/acs.jpcb.9b03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We conducted a systematic analysis of water networking inside smooth hyperboloid hydrophobic structures (cylindrical, barrel, and hourglass shapes) to elucidate the role of water hydrogen bonding on the transport of small hydrophobic molecules (ligands). Through a series of molecular dynamics simulations, we established that a hydrogen-bonded network forming along the centerline resulted in a water exclusion zone adjacent to the walls. The size of the exclusion zone is a function of the geometry and the nonbonded interaction strength, defining the effective hydrophobicity of the structure. Exclusion of water molecules from this zone results in lower apparent viscosity, leading to acceleration of ligand transport up to 7 times faster than that measured in the bulk. Transport of ligands into and out of the hydrophobic structures was shown to be controlled by a single water molecule that capped the narrow regions in the structure. This mechanism provides physical insights into the behavior and role of water in the bottleneck regions of hydrophobic enzyme channels. These findings were then used in a sister publication [ Escalante , D. E. , Comput. Struct. Biotechnol. J. 2019 17 757 760 ] to develop a model that can accurately predict the transport of ligands along nanochannels of broad-substrate specificity enzymes.
Collapse
Affiliation(s)
- Diego E Escalante
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alptekin Aksan
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
16
|
Ali HS, Higham J, Henchman RH. Entropy of Simulated Liquids Using Multiscale Cell Correlation. ENTROPY 2019; 21:e21080750. [PMID: 33267464 PMCID: PMC7515279 DOI: 10.3390/e21080750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
Abstract
Accurately calculating the entropy of liquids is an important goal, given that many processes take place in the liquid phase. Of almost equal importance is understanding the values obtained. However, there are few methods that can calculate the entropy of such systems, and fewer still to make sense of the values obtained. We present our multiscale cell correlation (MCC) method to calculate the entropy of liquids from molecular dynamics simulations. The method uses forces and torques at the molecule and united-atom levels and probability distributions of molecular coordinations and conformations. The main differences with previous work are the consistent treatment of the mean-field cell approximation to the approriate degrees of freedom, the separation of the force and torque covariance matrices, and the inclusion of conformation correlation for molecules with multiple dihedrals. MCC is applied to a broader set of 56 important industrial liquids modeled using the Generalized AMBER Force Field (GAFF) and Optimized Potentials for Liquid Simulations (OPLS) force fields with 1.14*CM1A charges. Unsigned errors versus experimental entropies are 8.7 J K - 1 mol - 1 for GAFF and 9.8 J K - 1 mol - 1 for OPLS. This is significantly better than the 2-Phase Thermodynamics method for the subset of molecules in common, which is the only other method that has been applied to such systems. MCC makes clear why the entropy has the value it does by providing a decomposition in terms of translational and rotational vibrational entropy and topographical entropy at the molecular and united-atom levels.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jonathan Higham
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +44-161-306-5194
| |
Collapse
|
17
|
Izato YI, Matsugi A, Koshi M, Miyake A. A simple heuristic approach to estimate the thermochemistry of condensed-phase molecules based on the polarizable continuum model. Phys Chem Chem Phys 2019; 21:18920-18929. [DOI: 10.1039/c9cp03226f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple model based on a quantum chemical approach with polarizable continuum models (PCMs) to provide reasonable translational and rotational entropies for liquid phase molecules was developed.
Collapse
Affiliation(s)
- Yu-ichiro Izato
- Graduate School of Information and Environment Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Akira Matsugi
- National Institute of Advanced Industrial Sciences and Technology
- Ibaraki
- Japan
| | - Mitsuo Koshi
- Department of Chemical System Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Atsumi Miyake
- Institute of Advanced Sciences
- Yokohama National University
- Yokohama
- Japan
| |
Collapse
|
18
|
Pannir Sivajothi SS, Lin ST, Maiti PK. Efficient Computation of Entropy and Other Thermodynamic Properties for Two-Dimensional Systems Using Two-Phase Thermodynamic Model. J Phys Chem B 2018; 123:180-193. [DOI: 10.1021/acs.jpcb.8b07147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Shiang-Tai Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Huggins DJ, Biggin PC, Dämgen MA, Essex JW, Harris SA, Henchman RH, Khalid S, Kuzmanic A, Laughton CA, Michel J, Mulholland AJ, Rosta E, Sansom MSP, van der Kamp MW. Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1393] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David J. Huggins
- TCM Group, Cavendish Laboratory University of Cambridge Cambridge UK
- Unilever Centre, Department of Chemistry University of Cambridge Cambridge UK
- Department of Physiology and Biophysics Weill Cornell Medical College New York NY
| | | | - Marc A. Dämgen
- Department of Biochemistry University of Oxford Oxford UK
| | - Jonathan W. Essex
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | - Sarah A. Harris
- School of Physics and Astronomy University of Leeds Leeds UK
- Astbury Centre for Structural and Molecular Biology University of Leeds Leeds UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester Manchester UK
- School of Chemistry The University of Manchester Oxford UK
| | - Syma Khalid
- School of Chemistry University of Southampton Southampton UK
- Institute for Life Sciences University of Southampton Southampton UK
| | | | - Charles A. Laughton
- School of Pharmacy University of Nottingham Nottingham UK
- Centre for Biomolecular Sciences University of Nottingham Nottingham UK
| | - Julien Michel
- EaStCHEM school of Chemistry University of Edinburgh Edinburgh UK
| | - Adrian J. Mulholland
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
| | - Edina Rosta
- Department of Chemistry King's College London London UK
| | | | - Marc W. van der Kamp
- Centre of Computational Chemistry, School of Chemistry University of Bristol Bristol UK
- School of Biochemistry, Biomedical Sciences Building University of Bristol Bristol UK
| |
Collapse
|
20
|
Heyden M. Disassembling solvation free energies into local contributions—Toward a microscopic understanding of solvation processes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Matthias Heyden
- School of Molecular Sciences Arizona State University Tempe Arizona
| |
Collapse
|
21
|
Higham J, Chou SY, Gräter F, Henchman RH. Entropy of flexible liquids from hierarchical force–torque covariance and coordination. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1459002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan Higham
- Manchester Institute of Biotechnology, The University of Manchester , Manchester, United Kingdom
- School of Chemistry, The University of Manchester , Manchester, United Kingdom
| | - Szu-Yu Chou
- Manchester Institute of Biotechnology, The University of Manchester , Manchester, United Kingdom
- School of Chemistry, The University of Manchester , Manchester, United Kingdom
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies , Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Mathematikon, Heidelberg University , Heidelberg, Germany
| | - Richard H. Henchman
- Manchester Institute of Biotechnology, The University of Manchester , Manchester, United Kingdom
- School of Chemistry, The University of Manchester , Manchester, United Kingdom
| |
Collapse
|
22
|
Tang Z, Chang CEA. Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. J Chem Theory Comput 2018; 14:303-318. [PMID: 29149564 PMCID: PMC5920803 DOI: 10.1021/acs.jctc.7b00899] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the fine balance between changes of entropy and enthalpy and the competition between a guest and water molecules in molecular binding is crucial in fundamental studies and practical applications. Experiments provide measurements. However, illustrating the binding/unbinding processes gives a complete picture of molecular recognition not directly available from experiments, and computational methods bridge the gaps. Here, we investigated guest association/dissociation with β-cyclodextrin (β-CD) by using microsecond-time-scale molecular dynamics (MD) simulations, postanalysis and numerical calculations. We computed association and dissociation rate constants, enthalpy, and solvent and solute entropy of binding. All the computed values of kon, koff, ΔH, ΔS, and ΔG using GAFF-CD and q4MD-CD force fields for β-CD could be compared with experimental data directly and agreed reasonably with experiment findings. In addition, our study further interprets experiments. Both force fields resulted in similar computed ΔG from independently computed kinetics rates, ΔG = -RT ln(kon·C0/koff), and thermodynamics properties, ΔG = ΔH - TΔS. The water entropy calculations show that the entropy gain of desolvating water molecules are a major driving force, and both force fields have the same strength of nonpolar attractions between solutes and β-CD as well. Water molecules play a crucial role in guest binding to β-CD. However, collective water/β-CD motions could contribute to different computed kon and ΔH values by different force fields, mainly because the parameters of β-CD provide different motions of β-CD, hydrogen-bond networks of water molecules in the cavity of free β-CD, and strength of desolvation penalty. As a result, q4MD-CD suggests that guest binding is mostly driven by enthalpy, while GAFF-CD shows that gaining entropy is the major driving force of binding. The study deepens our understanding of ligand-receptor recognition and suggests strategies for force field parametrization for accurately modeling molecular systems.
Collapse
Affiliation(s)
- Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
23
|
Güssregen S, Matter H, Hessler G, Lionta E, Heil J, Kast SM. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series. J Chem Inf Model 2017; 57:1652-1666. [DOI: 10.1021/acs.jcim.6b00765] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Güssregen
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Hans Matter
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Gerhard Hessler
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Evanthia Lionta
- R&D, IDD, Structural Design and Informatics, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Building G877, 65926 Frankfurt am Main, Germany
| | - Jochen Heil
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Stefan M. Kast
- Physikalische
Chemie III, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
24
|
Gerogiokas G, Southey MWY, Mazanetz MP, Heifetz A, Bodkin M, Law RJ, Henchman RH, Michel J. Assessment of Hydration Thermodynamics at Protein Interfaces with Grid Cell Theory. J Phys Chem B 2016; 120:10442-10452. [PMID: 27645529 DOI: 10.1021/acs.jpcb.6b07993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular dynamics simulations have been analyzed with the Grid Cell Theory (GCT) method to spatially resolve the binding enthalpies and entropies of water molecules at the interface of 17 structurally diverse proteins. Correlations between computed energetics and structural descriptors have been sought to facilitate the development of simple models of protein hydration. Little correlation was found between GCT-computed binding enthalpies and continuum electrostatics calculations. A simple count of contacts with functional groups in charged amino acids correlates well with enhanced water stabilization, but the stability of water near hydrophobic and polar residues depends markedly on its coordination environment. The positions of X-ray-resolved water molecules correlate with computed high-density hydration sites, but many unresolved waters are significantly stabilized at the protein surfaces. A defining characteristic of ligand-binding pockets compared to nonbinding pockets was a greater solvent-accessible volume, but average water thermodynamic properties were not distinctive from other interfacial regions. Interfacial water molecules are frequently stabilized by enthalpy and destabilized entropy with respect to bulk, but counter-examples occasionally occur. Overall detailed inspection of the local coordinating environment appears necessary to gauge the thermodynamic stability of water in protein structures.
Collapse
Affiliation(s)
- Georgios Gerogiokas
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Michelle W Y Southey
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Michael P Mazanetz
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Alexander Heifetz
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Michael Bodkin
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Richard J Law
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom.,School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - J Michel
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| |
Collapse
|
25
|
Sauter J, Grafmüller A. Predicting the Chemical Potential and Osmotic Pressure of Polysaccharide Solutions by Molecular Simulations. J Chem Theory Comput 2016; 12:4375-84. [PMID: 27529356 DOI: 10.1021/acs.jctc.6b00295] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jörg Sauter
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , 14424 Potsdam, Germany
| | - Andrea Grafmüller
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , 14424 Potsdam, Germany
| |
Collapse
|
26
|
Hensen U, Gräter F, Henchman RH. Macromolecular Entropy Can Be Accurately Computed from Force. J Chem Theory Comput 2015; 10:4777-81. [PMID: 26584364 DOI: 10.1021/ct500684w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A method is presented to evaluate a molecule's entropy from the atomic forces calculated in a molecular dynamics simulation. Specifically, diagonalization of the mass-weighted force covariance matrix produces eigenvalues which in the harmonic approximation can be related to vibrational frequencies. The harmonic oscillator entropies of each vibrational mode may be summed to give the total entropy. The results for a series of hydrocarbons, dialanine and a β hairpin are found to agree much better with values derived from thermodynamic integration than results calculated using quasiharmonic analysis. Forces are found to follow a harmonic distribution more closely than coordinate displacements and better capture the underlying potential energy surface. The method's accuracy, simplicity, and computational similarity to quasiharmonic analysis, requiring as input force trajectories instead of coordinate trajectories, makes it readily applicable to a wide range of problems.
Collapse
Affiliation(s)
- Ulf Hensen
- ETH Zürich , Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom.,School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
27
|
Setny P. Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model. J Chem Theory Comput 2015; 11:5961-72. [PMID: 26642995 DOI: 10.1021/acs.jctc.5b00839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Buried water molecules are ubiquitous in protein structures and are found at the interface of most protein-ligand complexes. Determining their distribution and thermodynamic effect is a challenging yet important task, of great of practical value for the modeling of biomolecular structures and their interactions. In this study, we present a novel method aimed at the prediction of buried water molecules in protein structures and estimation of their binding free energies. It is based on a semiexplicit, discrete solvation model, which we previously introduced in the context of small molecule hydration. The method is applicable to all macromolecular structures described by a standard all-atom force field, and predicts complete solvent distribution within a single run with modest computational cost. We demonstrate that it indicates positions of buried hydration sites, including those filled by more than one water molecule, and accurately differentiates them from sterically accessible to water but void regions. The obtained estimates of water binding free energies are in fair agreement with reference results determined with the double decoupling method.
Collapse
Affiliation(s)
- Piotr Setny
- Centre of New Technologies, University of Warsaw , Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
28
|
Gerogiokas G, Southey MWY, Mazanetz MP, Hefeitz A, Bodkin M, Law RJ, Michel J. Evaluation of water displacement energetics in protein binding sites with grid cell theory. Phys Chem Chem Phys 2015; 17:8416-26. [DOI: 10.1039/c4cp05572a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The grid cell theory method was used to elucidate perturbations in water network energetics in a range of protein–ligand complexes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. Michel
- EaStCHEM School of Chemistry
- Edinburgh
- UK
| |
Collapse
|
29
|
Yeh KY, Huang SN, Chen LJ, Lin ST. Diffusive and quantum effects of water properties in different states of matter. J Chem Phys 2014; 141:044502. [DOI: 10.1063/1.4890572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kuan-Yu Yeh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Refining & Manufacturing Research Institute, CPC Corporation, Chia-Yi 60051, Taiwan
| | - Shao-Nung Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shiang-Tai Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Michel J, Henchman RH, Gerogiokas G, Southey MWY, Mazanetz MP, Law RJ. Evaluation of Host–Guest Binding Thermodynamics of Model Cavities with Grid Cell Theory. J Chem Theory Comput 2014; 10:4055-68. [DOI: 10.1021/ct500368p] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Julien Michel
- EaStCHEM
School of Chemistry, Joseph Black Building, King’s Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Richard H. Henchman
- Manchester
Institute of Biotechnology, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Georgios Gerogiokas
- EaStCHEM
School of Chemistry, Joseph Black Building, King’s Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Michelle W. Y. Southey
- Evotec (U.K.) Limited, Innovation
Drive 114 Milton Park, Abingdon, Oxfordshire, OX14 4RZ, United Kingdom
| | - Michael P. Mazanetz
- Evotec (U.K.) Limited, Innovation
Drive 114 Milton Park, Abingdon, Oxfordshire, OX14 4RZ, United Kingdom
| | - Richard J. Law
- Evotec (U.K.) Limited, Innovation
Drive 114 Milton Park, Abingdon, Oxfordshire, OX14 4RZ, United Kingdom
| |
Collapse
|
31
|
Michel J. Current and emerging opportunities for molecular simulations in structure-based drug design. Phys Chem Chem Phys 2014; 16:4465-77. [PMID: 24469595 PMCID: PMC4256725 DOI: 10.1039/c3cp54164a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/10/2014] [Indexed: 01/29/2023]
Abstract
An overview of the current capabilities and limitations of molecular simulation of biomolecular complexes in the context of computer-aided drug design is provided. Steady improvements in computer hardware coupled with more refined representations of energetics are leading to a new appreciation of the driving forces of molecular recognition. Molecular simulations are poised to more frequently guide the interpretation of biophysical measurements of biomolecular complexes. Ligand design strategies emerge from detailed analyses of computed structural ensembles. The feasibility of routine applications to ligand optimization problems hinges upon successful extensive large scale validation studies and the development of protocols to intelligently automate computations.
Collapse
Affiliation(s)
- Julien Michel
- EaStCHEM School of Chemistry, Joseph Black Building, The King's Buildings, Edinburgh, EH9 3JJ, UK.
| |
Collapse
|
32
|
Gerogiokas G, Calabro G, Henchman RH, Southey MWY, Law RJ, Michel J. Prediction of Small Molecule Hydration Thermodynamics with Grid Cell Theory. J Chem Theory Comput 2013; 10:35-48. [PMID: 26579889 DOI: 10.1021/ct400783h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient methodology has been developed to quantify water energetics by analysis of explicit solvent molecular simulations of organic and biomolecular systems. The approach, grid cell theory (GCT), relies on a discretization of the cell theory methodology on a three-dimensional grid to spatially resolve the density, enthalpy, and entropy of water molecules in the vicinity of solute(s) of interest. Entropies of hydration are found to converge more efficiently than enthalpies of hydration. GCT predictions of free energies of hydration on a data set of small molecules are strongly correlated with thermodynamic integration predictions. Agreement with the experiment is comparable for both approaches. A key advantage of GCT is its ability to provide from a single simulation insightful graphical analyses of spatially resolved components of the enthalpies and entropies of hydration.
Collapse
Affiliation(s)
- Georgios Gerogiokas
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Gaetano Calabro
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom and School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michelle W Y Southey
- Evotec (U.K.) Ltd. , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Richard J Law
- Evotec (U.K.) Ltd. , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| |
Collapse
|
33
|
Cui G, Swails JM, Manas ES. SPAM: A Simple Approach for Profiling Bound Water Molecules. J Chem Theory Comput 2013; 9:5539-49. [DOI: 10.1021/ct400711g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Guanglei Cui
- Computational Chemistry US, Platform Technology and Sciences, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jason M. Swails
- Quantum
Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Eric S. Manas
- Computational Chemistry US, Platform Technology and Sciences, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
34
|
Huggins DJ, Payne MC. Assessing the accuracy of inhomogeneous fluid solvation theory in predicting hydration free energies of simple solutes. J Phys Chem B 2013; 117:8232-44. [PMID: 23763625 PMCID: PMC3756531 DOI: 10.1021/jp4042233] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Accurate
prediction of hydration free energies is a key objective
of any free energy method that is applied to modeling and understanding
interactions in the aqueous phase. Inhomogeneous fluid solvation theory
(IFST) is a statistical mechanical method for calculating solvation
free energies by quantifying the effect of a solute acting as a perturbation
to bulk water. IFST has found wide application in understanding hydration
phenomena in biological systems, but quantitative applications have
not been comprehensively assessed. In this study, we report the hydration
free energies of six simple solutes calculated using IFST and independently
using free energy perturbation (FEP). This facilitates a validation
of IFST that is independent of the accuracy of the force field. The
results demonstrate that IFST shows good agreement with FEP, with
an R2 coefficient of determination of
0.99 and a mean unsigned difference of 0.7 kcal/mol. However, sampling
is a major issue that plagues IFST calculations and the results suggest
that a histogram method may require prohibitively long simulations
to achieve convergence of the entropies, for bin sizes which effectively
capture the underlying probability distributions. Results also highlight
the sensitivity of IFST to the reference interaction energy of a water
molecule in bulk, with a difference of 0.01 kcal/mol changing the
predicted hydration free energies by approximately 2.4 kcal/mol for
the systems studied here. One of the major advantages of IFST over
perturbation methods such as FEP is that the systems are spatially
decomposed to consider the contribution of specific regions to the
total solvation free energies. Visualizing these contributions can
yield detailed insights into solvation thermodynamics. An insight
from this work is the identification and explanation of regions with
unfavorable free energy density relative to bulk water. These regions
contribute unfavorably to the hydration free energy. Further work
is necessary before IFST can be extended to yield accurate predictions
of binding free energies, but the work presented here demonstrates
its potential.
Collapse
Affiliation(s)
- David J Huggins
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | | |
Collapse
|
35
|
Huber RG, Fuchs JE, von Grafenstein S, Laner M, Wallnoefer HG, Abdelkader N, Kroemer RT, Liedl KR. Entropy from state probabilities: hydration entropy of cations. J Phys Chem B 2013; 117:6466-72. [PMID: 23651109 PMCID: PMC3668459 DOI: 10.1021/jp311418q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Entropy is an important energetic quantity determining the progression of chemical processes. We propose a new approach to obtain hydration entropy directly from probability density functions in state space. We demonstrate the validity of our approach for a series of cations in aqueous solution. Extensive validation of simulation results was performed. Our approach does not make prior assumptions about the shape of the potential energy landscape and is capable of calculating accurate hydration entropy values. Sampling times in the low nanosecond range are sufficient for the investigated ionic systems. Although the presented strategy is at the moment limited to systems for which a scalar order parameter can be derived, this is not a principal limitation of the method. The strategy presented is applicable to any chemical system where sufficient sampling of conformational space is accessible, for example, by computer simulations.
Collapse
Affiliation(s)
- Roland G Huber
- Department of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center for Molecular Biosciences Innsbruck, Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pascal TA, Schärf D, Jung Y, Kühne TD. On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields. J Chem Phys 2012; 137:244507. [DOI: 10.1063/1.4771974] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Kiss PT, Bertsyk P, Baranyai A. Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties. J Chem Phys 2012. [DOI: 10.1063/1.4767063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
Pascal TA, Goddard WA. Hydrophobic Segregation, Phase Transitions and the Anomalous Thermodynamics of Water/Methanol Mixtures. J Phys Chem B 2012; 116:13905-12. [DOI: 10.1021/jp309693d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tod A. Pascal
- Materials
and Process Simulation
Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials
and Process Simulation
Center, California Institute of Technology, Pasadena, California 91125, United States
- World Class University Professor, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
39
|
Kuffel A, Zielkiewicz J. Why the solvation water around proteins is more dense than bulk water. J Phys Chem B 2012; 116:12113-24. [PMID: 22998120 DOI: 10.1021/jp305172t] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main aim of this work is to propose a rational explanation of the commonly observed phenomenon of increasing water density within solvation shell of proteins. We have observed that the geometry of the water-water hydrogen bond network within solvation layer differs from the one in bulk water, and it is the result of interactions of water molecules with protein surface. Altered geometry of the network reflects changes in the structure of solvation water. Our explanation of the observed changes is based on model proposed by Tanaka (Tanaka, H. J. Chem. Phys. 2000, 112, 799). According to this model, in liquid water exist some special structures formed by water molecules thanks to their unique ability to create the branched network of hydrogen bonds. These structures have two characteristic features: a low potential energy of internal interactions and a large specific volume. We provide some evidence for the supposition that deformation of the geometry of the water-water hydrogen bond network is responsible for destabilization of these structures and therefore for increased local density of water. Our model is constructed on the basis of the analysis of solvation water of some specific protein, the motor head of kinesin. Subsequently, we used it for description of solvation of purely hydrophobic surface. It has been found that in this case an unoccupied space between the hydrophobic surface and neighboring solvation layer exists. It has been found that thickness of this region depends on local geometry of the water-protein interface, and it is a result of maintaining a balance between water-surface interactions and water-water interactions. In our opinion, existence of this space region is one of the main factors that differentiates the hydrophobic hydration from hydration of the native form of kinesin. Its existence also explains why the density is greater for solvation water around the native form of the protein than in the vicinity of the hydrophobic surface.
Collapse
Affiliation(s)
- Anna Kuffel
- Department of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | | |
Collapse
|
40
|
Borah BJ, Maiti PK, Chakravarty C, Yashonath S. Transport in nanoporous zeolites: Relationships between sorbate size, entropy, and diffusivity. J Chem Phys 2012; 136:174510. [DOI: 10.1063/1.4706520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Huggins DJ. Correlations in liquid water for the TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP models. J Chem Phys 2012; 136:064518. [PMID: 22360206 PMCID: PMC4766739 DOI: 10.1063/1.3683447] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water is one of the simplest molecules in existence, but also one of the most important in biological and engineered systems. However, understanding the structure and dynamics of liquid water remains a major scientific challenge. Molecular dynamics simulations of liquid water were performed using the water models TIP3P-Ewald, TIP4P-2005, TIP5P-Ewald, and SWM4-NDP to calculate the radial distribution functions (RDFs), the relative angular distributions, and the excess enthalpies, entropies, and free energies. In addition, lower-order approximations to the entropy were considered, identifying the fourth-order approximation as an excellent estimate of the full entropy. The second-order and third-order approximations are ~20% larger and smaller than the true entropy, respectively. All four models perform very well in predicting the radial distribution functions, with the TIP5P-Ewald model providing the best match to the experimental data. The models also perform well in predicting the excess entropy, enthalpy, and free energy of liquid water. The TIP4P-2005 and SWM4-NDP models are more accurate than the TIP3P-Ewald and TIP5P-Ewald models in this respect. However, the relative angular distribution functions of the four water models reveal notable differences. The TIP5P-Ewald model demonstrates an increased preference for water molecules to act both as tetrahedral hydrogen bond donors and acceptors, whereas the SWM4-NDP model demonstrates an increased preference for water molecules to act as planar hydrogen bond acceptors. These differences are not uncovered by analysis of the RDFs or the commonly employed tetrahedral order parameter. However, they are expected to be very important when considering water molecules around solutes and are thus a key consideration in modelling solvent entropy.
Collapse
Affiliation(s)
- David J Huggins
- Cambridge Molecular Therapeutics Programme, Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
42
|
Irudayam SJ, Henchman RH. Prediction and interpretation of the hydration entropies of monovalent cations and anions. Mol Phys 2011. [DOI: 10.1080/00268976.2010.532162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 2011; 13:19663-88. [DOI: 10.1039/c1cp22168j] [Citation(s) in RCA: 658] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Kuffel A, Zielkiewicz J. The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model. J Chem Phys 2010; 133:035102. [PMID: 20649360 DOI: 10.1063/1.3464768] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite numerous experimental and computer simulation studies, a controversy still exists regarding the effect of osmolytes on the structure of surrounding water. There is a question, to what extent some of the contradictory results may arise from differences in potential models used to simulate the system or parameters employed to describe physical properties of the mixture and interpretation of the results. Bearing this in mind, we determine two main aims of this work as follows: description of the water-water hydrogen bond network structure within the solvation layer around solute molecules (urea, trimethylamine-N-oxide, and tetramethylurea), and also comparison of rigid simple point charges (SPC) and polarizable (POL3) models of water. The following quantities have been examined: radial distribution functions of water molecules around the investigated solutes, both local and overall characteristics of the hydrogen bond network structure (using recently elaborated method), along with estimation of the mean energy of a single hydrogen bond, and also the probability distributions which describe the orientation of a single water particle plane relatively to the center of mass of the solute molecule. As an independent method for the evaluation of the degree of changes in local structural ordering, a harmonic approximation has been adopted to estimate the absolute entropy of water. It was found that within the solvation shell of the investigated solutes, the structure of hydrogen bond network changes only slightly comparing to bulk water. Therefore, we conclude that the investigated osmolyte molecules do not disturb significantly the structure of surrounding water. This conclusion was also confirmed by calculations of the absolute entropy of water using a harmonic approximation. In the immediate vicinity of the solutes, we observe that the water-water hydrogen bonds are slightly more stable; they are slightly less distorted and a little shorter than in bulk water. Nevertheless, although this local water structure is more stable and stiffer, our results do not indicate that it is more ordered compared to bulk. Finally, the comparison of both used models of water, the fixed charge and the polarizable, leads to unambiguous conclusion that rigid (SPC) water model may be successfully used in simulations instead of polarizable (POL3), as no significant differences between these two models have been observed.
Collapse
Affiliation(s)
- Anna Kuffel
- Department of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | |
Collapse
|
45
|
Henchman RH, Irudayam SJ. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water. J Phys Chem B 2010; 114:16792-810. [PMID: 21114302 DOI: 10.1021/jp105381s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the number of hydrogen bonds, the coupling between neighbors on various length and time scales brings about greater continuity in its properties.
Collapse
Affiliation(s)
- Richard H Henchman
- Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | | |
Collapse
|
46
|
Pascal TA, Lin ST, Goddard WA. Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics. Phys Chem Chem Phys 2010; 13:169-81. [PMID: 21103600 DOI: 10.1039/c0cp01549k] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We validate here the Two-Phase Thermodynamics (2PT) method for calculating the standard molar entropies and heat capacities of common liquids. In 2PT, the thermodynamics of the system is related to the total density of states (DoS), obtained from the Fourier Transform of the velocity autocorrelation function. For liquids this DoS is partitioned into a diffusional component modeled as diffusion of a hard sphere gas plus a solid component for which the DoS(υ) → 0 as υ→ 0 as for a Debye solid. Thermodynamic observables are obtained by integrating the DoS with the appropriate weighting functions. In the 2PT method, two parameters are extracted from the DoS self-consistently to describe diffusional contributions: the fraction of diffusional modes, f, and DoS(0). This allows 2PT to be applied consistently and without re-parameterization to simulations of arbitrary liquids. We find that the absolute entropy of the liquid can be determined accurately from a single short MD trajectory (20 ps) after the system is equilibrated, making it orders of magnitude more efficient than commonly used perturbation and umbrella sampling methods. Here, we present the predicted standard molar entropies for fifteen common solvents evaluated from molecular dynamics simulations using the AMBER, GAFF, OPLS AA/L and Dreiding II forcefields. Overall, we find that all forcefields lead to good agreement with experimental and previous theoretical values for the entropy and very good agreement in the heat capacities. These results validate 2PT as a robust and efficient method for evaluating the thermodynamics of liquid phase systems. Indeed 2PT might provide a practical scheme to improve the intermolecular terms in forcefields by comparing directly to thermodynamic properties.
Collapse
Affiliation(s)
- Tod A Pascal
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
47
|
Debnath A, Mukherjee B, Ayappa KG, Maiti PK, Lin ST. Entropy and dynamics of water in hydration layers of a bilayer. J Chem Phys 2010; 133:174704. [DOI: 10.1063/1.3494115] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
48
|
Syme NR, Dennis C, Bronowska A, Paesen GC, Homans SW. Comparison of entropic contributions to binding in a "hydrophilic" versus "hydrophobic" ligand-protein interaction. J Am Chem Soc 2010; 132:8682-9. [PMID: 20524663 PMCID: PMC2890244 DOI: 10.1021/ja101362u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study we characterize the thermodynamics of binding of histamine to recombinant histamine-binding protein (rRaHBP2), a member of the lipocalin family isolated from the brown-ear tick Rhipicephalus appendiculatus. The binding pocket of this protein contains a number of charged residues, consistent with histamine binding, and is thus a typical example of a "hydrophilic" binder. In contrast, a second member of the lipocalin family, the recombinant major urinary protein (rMUP), binds small hydrophobic ligands, with a similar overall entropy of binding in comparison with rRaHBP2. Having extensively studied ligand binding thermodynamics for rMUP previously, the data we obtained in the present study for HBP enables a comparison of the driving forces for binding between these classically distinct binding processes in terms of entropic contributions from ligand, protein, and solvent. In the case of rRaHBP2, we find favorable entropic contributions to binding from desolvation of the ligand; however, the overall entropy of binding is unfavorable due to a dominant unfavorable contribution arising from the loss of ligand degrees of freedom, together with the sequestration of solvent water molecules into the binding pocket in the complex. This contrasts with binding in rMUP where desolvation of the protein binding pocket makes a minor contribution to the overall entropy of binding given that the pocket is substantially desolvated prior to binding.
Collapse
Affiliation(s)
- Neil R Syme
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
49
|
Agarwal M, Singh M, Sharma R, Alam MP, Chakravarty C. Relationship between structure, entropy, and diffusivity in water and water-like liquids. J Phys Chem B 2010; 114:6995-7001. [PMID: 20438068 DOI: 10.1021/jp101956u] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anomalous behavior of the excess entropy (S(e)) and the associated scaling relationship with diffusivity are compared in liquids with very different underlying interactions but similar water-like anomalies: water (SPC/E and TIP3P models), tetrahedral ionic melts (SiO(2) and BeF(2)), and a fluid with core-softened, two-scale ramp (2SRP) interactions. We demonstrate the presence of an excess entropy anomaly in the two water models. Using length and energy scales appropriate for onset of anomalous behavior, we show the density range of the excess entropy anomaly to be much narrower in water than in ionic melts or the 2SRP fluid. While the reduced diffusivities (D*) conform to the excess-entropy-scaling relation, D* = A exp(alphaS(e)) for all the systems (Rosenfeld, Y. Phys. Rev. A 1977, 15, 2545), the exponential scaling parameter, alpha, shows a small isochore dependence in the case of water. Replacing S(e) by pair correlation-based approximants accentuates the isochore dependence of the diffusivity scaling. Isochores with similar diffusivity-scaling parameters are shown to have the temperature dependence of the corresponding entropic contribution. The relationship between diffusivity, excess entropy, and pair correlation approximants to the excess entropy are very similar in all the tetrahedral liquids.
Collapse
Affiliation(s)
- Manish Agarwal
- Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | | | | | | | | |
Collapse
|
50
|
Irudayam SJ, Henchman RH. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:284108. [PMID: 21399280 DOI: 10.1088/0953-8984/22/28/284108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different coordinate definitions and reference frames used to define the entropy terms.
Collapse
Affiliation(s)
- Sheeba Jem Irudayam
- Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|