1
|
Wamsler K, Head LC, Shendruk TN. Lock-key microfluidics: simulating nematic colloid advection along wavy-walled channels. SOFT MATTER 2024; 20:3954-3970. [PMID: 38682298 PMCID: PMC11095502 DOI: 10.1039/d3sm01536j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Liquid crystalline media mediate interactions between suspended particles and confining geometries, which not only has potential to guide patterning and bottom-up colloidal assembly, but can also control colloidal migration in microfluidic devices. However, simulating such dynamics is challenging because nemato-elasticity, diffusivity and hydrodynamic interactions must all be accounted for within complex boundaries. We model the advection of colloids dispersed in flowing and fluctuating nematic fluids confined within 2D wavy channels. A lock-key mechanism between homeotropic colloids and troughs is found to be stronger for planar anchoring on the wavy walls compared to homeotropic anchoring on the wavy walls due to the relative location of the colloid-associated defects. Sufficiently large amplitudes result in stick-slip trajectories and even permanent locking of colloids in place. These results demonstrate that wavy walls not only have potential to direct colloids to specific docking sites but also to control site-specific resting duration and intermittent elution.
Collapse
Affiliation(s)
- Karolina Wamsler
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Louise C Head
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
2
|
Chen Z, Aya S. Macroscopic Nematic Orientation Dictated by an Orientationally Frustrated Random-Field Surface: Equilibrium Structure and Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16118-16127. [PMID: 37921692 DOI: 10.1021/acs.langmuir.3c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Liquid crystals subjected to frustrated surfaces with mixed anchoring conditions demonstrate a rich variety of orientational patterns. Particularly, it would trigger either continuous or discontinuous variation of the bulk orientation, i.e., a phenomenon known as the anchoring or orientational transition. Despite its prime importance in developing novel optoelectronic devices, how the surface anchoring patterns dedicate the energy landscape of a system, thus the equilibrium state, still needs to be understood. Here, we designed a simulation to model boundary substrates with two randomly mixed anchoring domains in space, which exhibit planar and homeotropic preferences. We numerically obtain general bulk orientational state diagrams under various surface and electric field conditions, which reveal the roles of each domain's size and surface fraction and anchoring strength on the bulk orientational state. Furthermore, we examine how the external electric field modifies the orientational state diagram and uncovers a field-assisted anchoring transition. We discuss the observed bistability and compare it to experimental evidence.
Collapse
Affiliation(s)
- Zihua Chen
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Satoshi Aya
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Pani I, K M FN, Sharma M, Pal SK. Probing Nanoscale Lipid-Protein Interactions at the Interface of Liquid Crystal Droplets. NANO LETTERS 2021; 21:4546-4553. [PMID: 34048245 DOI: 10.1021/acs.nanolett.0c05139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aqueous interfaces of liquid crystals (LCs) are widely explored in the design of functional interfaces to recapitulate the key aspects of biomolecular interactions in cellular milieu. Herein, using aqueous LC dispersions, we explore the interactions between mitochondrial cardiolipin and membrane-associated cytochrome c which play a pivotal role in the apoptotic signaling cascade. Conventional techniques used to decipher LC ordering at the droplet interface fail to give information about the interactions at a molecular level. Besides, owing to the complexity of LC systems and multiple determinants driving the LC reorientation, accurate analysis of the underlying mechanism responsible for the LC ordering transition remains challenging. Using a combination of atomistic simulations and microscopic and spectroscopic readouts, for the first time, we unveil the lipid-protein interactions that drive the reorientation at the LC droplet interface. The insights from our work are fundamental to the design of these interfaces for a spectrum of interfacial applications.
Collapse
|
4
|
Electrical control of nanoparticles arrays created via topological defect lines design in anisotropic fluids. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Chen K, Gebhardt OJ, Devendra R, Drazer G, Kamien RD, Reich DH, Leheny RL. Colloidal transport within nematic liquid crystals with arrays of obstacles. SOFT MATTER 2017; 14:83-91. [PMID: 29099121 DOI: 10.1039/c7sm01681f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have investigated the gravity-driven transport of spherical colloids suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) within microfluidic arrays of cylindrical obstacles arranged in a square lattice. Homeotropic anchoring at the surfaces of the obstacles created periodic director-field patterns that strongly influenced the motion of the colloids, whose surfaces had planar anchoring. When the gravitational force was oriented parallel to a principal axis of the lattice, the particles moved along channels between columns of obstacles and displayed pronounced modulations in their velocity. Quantitative analysis indicates that this modulation resulted from a combination of a spatially varying effective drag viscosity and elastic interactions engendered by the periodic director field. The interactions differed qualitatively from a sum of pair-wise interactions between the colloids and isolated obstacles, reflecting the distinct nematic environment created by confinement within the array. As the angle α between the gravitational force and principal axis of the lattice was varied, the velocity did not follow the force but instead locked into a discrete set of directions commensurate with the lattice. The transitions between these directions occurred at values of α that were different from those observed when the spheres were in an isotropic liquid, indicating the ability of the liquid crystal forces to tune the lateral displacement behavior in such devices.
Collapse
Affiliation(s)
- Kui Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Silvestre NM, Tasinkevych M. Key-lock colloids in a nematic liquid crystal. Phys Rev E 2017; 95:012606. [PMID: 28208474 DOI: 10.1103/physreve.95.012606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θ_{eq} with respect to the far field director n_{∞}. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕ_{eq} of the key-lock composite doublet relative to n_{∞} is robust against thermal fluctuations. The preferred orientation θ_{eq}^{(2)} of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.
Collapse
Affiliation(s)
- Nuno M Silvestre
- Departamento de Física da Faculdade de Ciências, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, P-1649-003 Lisboa, Portugal
| | - M Tasinkevych
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Zhang R, Zhou Y, Martínez-González JA, Hernández-Ortiz JP, Abbott NL, de Pablo JJ. Controlled deformation of vesicles by flexible structured media. SCIENCE ADVANCES 2016; 2:e1600978. [PMID: 27532056 PMCID: PMC4980106 DOI: 10.1126/sciadv.1600978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023]
Abstract
Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ye Zhou
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Luo Y, Serra F, Stebe KJ. Experimental realization of the "lock-and-key" mechanism in liquid crystals. SOFT MATTER 2016; 12:6027-6032. [PMID: 27212027 DOI: 10.1039/c6sm00401f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to control the movement and assembly of particles in liquid crystals is not only an important route to design functional materials, but also sheds light on the mechanisms of colloidal interactions. In this study we place micron-sized particles with "Saturn ring" defects near a wall with hills and dales that impose perpendicular (homeotropic) molecular anchoring. The strong splay distortion at the wall interacts with the distortion around the particles in the near field and favors their migration towards the dales via the so-called "lock-and-key" mechanism. We demonstrate experimentally that the lock-and-key mechanism can robustly localize a particle at specific topographical features. We observe the complex trajectories traced by the particles as they dock on the dales, estimate the binding energy, and explore a range of parameters that favor or disfavor the docking event, thus exploiting the capabilities of our experimental system. We extend the study to colloids with homeotropic anchoring but with an associated point defect instead of a Saturn ring and show that they find a different preferred location, i.e. we can place otherwise identical particles at well defined sites according to their topological defect structure. Finally, for deep enough wells, confinement drives topological transitions of Saturn rings to dipoles. This ability to tailor wall geometry to guide colloids to well defined sites within nematic liquid crystals represents an important new tool in directed assembly.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, 311A Towne Building, Philadelphia, PA 19104, USA.
| | - Francesca Serra
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, 311A Towne Building, Philadelphia, PA 19104, USA.
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 South 33rd Street, 311A Towne Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Londoño-Hurtado A, Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Homeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets. SOFT MATTER 2015; 11:5067-5076. [PMID: 26027806 DOI: 10.1039/c5sm00940e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination of particle configurations on a planar film and on a spherical droplet. The free energy functional that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations. The interplay between elastic and surface distortions and the desire to minimize defect volumes (boojums and half-Saturn rings) is shown to be responsible for the formation of intriguing ordered structures. As a general trend, the particles prefer to localize at defects to minimize the overall free energy. However, multiple metastable configurations corresponding to local minima can be easily observed due to the high energy barriers that separate distinct particle arrangements. We also show that by controlling anchoring strength and temperature one can direct liquid-crystal mediated nanoparticle self-assembly along well defined pathways.
Collapse
|
10
|
Eskandari Z, Silvestre NM, Telo da Gama MM, Ejtehadi MR. Particle selection through topographic templates in nematic colloids. SOFT MATTER 2014; 10:9681-9687. [PMID: 25365252 DOI: 10.1039/c4sm02231a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Liquid crystal colloids have been proposed as suitable candidates for responsive photonic crystals. Large scale growth of such colloidal systems is, however, a challenge and recently template-assisted assembly has been proposed to guide the growth of colloidal crystals, with controlled symmetries, in nematic liquid crystals. Known for their long-range anisotropic interactions, these colloidal systems are stabilized typically at the center of the cells due to strong particle-wall repulsion from the confining substrates. This behaviour is dramatically changed in the presence of topographic patterning. Here we propose the use of topographic modulation of surfaces to select and localize particles in nematic colloids. By considering convex and concave deformations of one of the confining surfaces we show that the colloid-flat surface repulsion may be enhanced or switched into an attraction. In particular, we find that when the colloidal particles have the same anchoring conditions as the patterned surfaces, they are strongly attracted to concave dimples, while if they exhibit different anchoring conditions they are pinned at the top of convex protrusions. Although dominated by elastic interactions the first mechanism is reminiscent of the depletion induced attraction or of the key-lock mechanism, while the second is specific to liquid crystal colloids. These long-ranged, highly tunable, surface-colloid interactions contribute to the development of template-assisted assembly of large colloidal crystals, with well defined symmetries, as required for applications.
Collapse
Affiliation(s)
- Z Eskandari
- Centro de Física Teórica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2, PT-1649-003 Lisboa, Portugal.
| | | | | | | |
Collapse
|
11
|
Jose R, Skačej G, Sastry VSS, Žumer S. Colloidal nanoparticles trapped by liquid-crystal defect lines: a lattice Monte Carlo simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032503. [PMID: 25314461 DOI: 10.1103/physreve.90.032503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 06/04/2023]
Abstract
Lattice-based Monte Carlo simulations are performed to study a confined liquid crystal system with a topological disclination line entangling a colloidal nanoparticle. In our microscopic study the disclination line is stretched by moving the colloid, as in laser tweezing experiments, which results in a restoring force attempting to minimize the disclination length. From constant-force simulations we extract the corresponding disclination line tension, estimated as ∼50 pN, and observe its decrease with increasing temperature.
Collapse
Affiliation(s)
- Regina Jose
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia and School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Gregor Skačej
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia and NAMASTE Center of Excellence, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - V S S Sastry
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Slobodan Žumer
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia and NAMASTE Center of Excellence, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Whitmer JK, Joshi AA, Roberts TF, de Pablo JJ. Liquid-crystal mediated nanoparticle interactions and gel formation. J Chem Phys 2013; 138:194903. [PMID: 23697437 DOI: 10.1063/1.4802774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colloidal particles embedded within nematic liquid crystals exhibit strong anisotropic interactions arising from preferential orientation of nematogens near the particle surface. Such interactions are conducive to forming branched, gel-like aggregates. Anchoring effects also induce interactions between colloids dispersed in the isotropic liquid phase, through the interactions of the pre-nematic wetting layers. Here we utilize computer simulation using coarse-grained mesogens to perform a molecular-level calculation of the potential of mean force between two embedded nanoparticles as a function of anchoring for a set of solvent conditions straddling the isotropic-nematic transition. We observe that strong, nontrivial interactions can be induced between particles dispersed in mesogenic solvent, and explore how such interactions might be utilized to induce a gel state in the isotropic and nematic phases.
Collapse
Affiliation(s)
- Jonathan K Whitmer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA
| | | | | | | |
Collapse
|
13
|
Repnik R, Ranjkesh A, Simonka V, Ambrozic M, Bradac Z, Kralj S. Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:404201. [PMID: 24025777 DOI: 10.1088/0953-8984/25/40/404201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.
Collapse
Affiliation(s)
- R Repnik
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska 160, 2000 Maribor, Slovenia
| | | | | | | | | | | |
Collapse
|
14
|
Tomar V, Roberts TF, Abbott NL, Hernández-Ortiz JP, de Pablo JJ. Liquid crystal mediated interactions between nanoparticles in a nematic phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6124-6131. [PMID: 22409589 DOI: 10.1021/la204119p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A continuum theory is used to study the interactions between nanoparticles suspended in nematic liquid crystals. The free energy functional that describes the system is minimized using an Euler-Lagrange approach and an unsymmetric radial basis function method. It is shown that nanoparticle liquid-crystal mediated interactions can be controlled over a large range of magnitudes through changes of the anchoring energy and the particle diameter. The results presented in this work serve to reconcile past discrepancies between theoretical predictions and experimental observations, and suggest intriguing possibilities for directed nanoparticle self-assembly in liquid crystalline media.
Collapse
Affiliation(s)
- V Tomar
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
15
|
Bradač Z, Kralj S, Žumer S. Early stage domain coarsening of the isotropic-nematic phase transition. J Chem Phys 2011; 135:024506. [DOI: 10.1063/1.3609102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Hernández-Ortiz JP, Gettelfinger BT, Moreno-Razo J, de Pablo JJ. Modeling flows of confined nematic liquid crystals. J Chem Phys 2011; 134:134905. [DOI: 10.1063/1.3567098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
17
|
Hung FR, Bale S. Faceted nanoparticles in a nematic liquid crystal: defect structures and potentials of mean force. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020902801563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Hung FR. Quadrupolar particles in a nematic liquid crystal: effects of particle size and shape. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:021705. [PMID: 19391763 DOI: 10.1103/physreve.79.021705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 12/16/2008] [Indexed: 05/27/2023]
Abstract
We investigate the effects of particle size and shape on the quadrupolar (Saturn-ring-like) defect structures formed by a nematic liquid crystal around nm-sized and mum -sized particles with spherical and spherocylindrical shapes. We also report results for the potentials of mean force in our systems, calculated using a mesoscale theory for the tensor order parameter Q of the nematic. Our results indicate that for pairs of nm-sized particles in close proximity, the nematic forms "entangled hyperbolic" defect structures regardless of the shape of the nanoparticles. In our calculations with nanoparticles we did not observe any other entangled or unentangled defect structures, in contrast to what was reported for pairs of mum -sized spherical particles. Such a finding suggests that the "entangled hyperbolic" defect structures are the most stable for pairs of nanoparticles in close proximity. For pairs of mum -sized particles, our results indicate that the nematic forms entangled "figure-of-eight" defect structures around pairs of spheres and spherocylinders. Our results suggest that the transition between "entangled hyperbolic" and figure-of-eight defect structures takes place when the diameter of the particle is between D=100 nm and 1 microm . We have also calculated the torques that develop when pairs of spherocylindrical nanoparticles in a nematic approach each other. Our calculations suggest that the nematic-mediated interactions between the nm-sized particles are fairly strong, up to 5700 k{B}T for the case of pairs of spherocylindrical nanoparticles arranged with their long axis parallel to each other. Furthermore, these interactions can make the particles to bind together at specific locations, and thus could be used to assemble the particles into ordered structures with different morphologies.
Collapse
Affiliation(s)
- Francisco R Hung
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
19
|
Lapointe CP, Reich DH, Leheny RL. Manipulation and organization of ferromagnetic nanowires by patterned nematic liquid crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11175-11181. [PMID: 18763840 DOI: 10.1021/la801818x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We introduce a method to manipulate and organize ferromagnetic nanowires using the elastic forces imposed on nanowires suspended in nematic liquid crystals via patterned variations in the nematic director. As a test case for the technique, we investigate nematic environments consisting of stripes of alternating director orientations formed by lithographically patterned substrates. Nanowires oriented by small external magnetic fields are driven by the liquid crystal to specific locations of the pattern. The observed forces on the nanowires agree with calculations based on nematic elasticity.
Collapse
Affiliation(s)
- Clayton P Lapointe
- Department of Physics and Astronomy, John Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
20
|
Cheung DL, Allen MP. Effect of substrate geometry on liquid-crystal-mediated nanocylinder-substrate interactions. J Chem Phys 2008; 129:114706. [DOI: 10.1063/1.2977968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|