1
|
Tóth Ugyonka H, Hantal G, Szilágyi I, Idrissi A, Jorge M, Jedlovszky P. Spatial organization of the ions at the free surface of imidazolium-based ionic liquids. J Colloid Interface Sci 2024; 676:989-1000. [PMID: 39068842 DOI: 10.1016/j.jcis.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
HYPOTHESIS Experimental information on the molecular scale structure of ionic liquid interfaces is controversial, giving rise to two competing scenarios, namely the double layer-like and "chessboard"-like structures. This issue can be resolved by computer simulation methods, at least for the underlying molecular model. Systematically changing the anion type can elucidate the relative roles of electrostatic interactions, hydrophobic (or, strictly speaking, apolar) effects and steric restrictions on the interfacial properties. SIMULATIONS Molecular dynamics simulation is combined with intrinsic analysis methods both at the molecular and atomic levels, supplemented by Voronoi analysis of self-association. FINDINGS We see no evidence for the existence of a double-layer-type arrangement of the ions, or for their self-association at the surface of the liquid. Instead, our results show that cation chains associate into apolar domains that protrude into the vapour phase, while charged groups form domains that are embedded in this apolar environment at the surface. However, the apolar chains largely obscure the cation groups, to which they are bound, while the smaller and more mobile anions can more easily access the free surface, leading to a somewhat counterintuitive net excess of negative charge at the interface. Importantly, this excess charge could only be identified by applying intrinsic analysis.
Collapse
Affiliation(s)
- Helga Tóth Ugyonka
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary
| | - György Hantal
- PULS Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, D-91058 Erlangen, Germany
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
| | - Abdenacer Idrissi
- University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 12, H-3300 Eger, Hungary.
| |
Collapse
|
2
|
Hamza M, Mei BA, Liao R, Feng H, Zuo Z, Xiong R. Li-ion solvation structure at electrified solid-liquid interface: Understanding solvation structure dynamics and its role in electrochemical energy storage through binary ethylene carbonate and dimethyl carbonate solvent. J Chem Phys 2024; 161:164705. [PMID: 39440761 DOI: 10.1063/5.0233060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Binary solvent electrolytes can provide interpretations for designing advanced electrolytes of next generation batteries. This study investigates the adsorption mechanisms of solvated lithium ions in binary solvents near charged electrodes. Molecular dynamic simulations are performed for lithium hexafluorophosphate (LiPF6) in ethylene carbonate and dimethyl carbonate (EC:DMC) solvent sandwiched between two electrodes. Results show that lithium ions form a tetrahedral solvation structure with two EC and two DMC molecules. The solvated lithium ion shows anti-electrostatic interaction with electrodes. This can be attributed to the electrostatic attraction of the polar end of the DMC molecule, which keeps the cation anchored to the positive electrode. Meanwhile, the solvation structure adopts a fix orientation at the negative electrode, which leads to unchanged electrostatic interaction at high charge density. Finally, EC molecules are swapped by DMC molecules near the negative electrode at high charge density. This leads to a decrease in local relative permittivity and, therefore, a decrease in differential capacitance. The differential capacitance of the positive electrode continuously decreases with increasing charge density. This is caused by the partial anchoring of solvent molecules holding the cations, which cancels the adsorption of anions near the positive electrode. This study provides insights into designing better electrolytes for efficient battery performance.
Collapse
Affiliation(s)
- Muhammad Hamza
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bing-Ang Mei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ridong Liao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huihua Feng
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengxing Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Gaudy N, Salanne M, Merlet C. Dynamics and Energetics of Ion Adsorption at the Interface between a Pure Ionic Liquid and Carbon Electrodes. J Phys Chem B 2024; 128:5064-5071. [PMID: 38738820 DOI: 10.1021/acs.jpcb.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Molecular dynamics simulations have been used extensively to determine equilibrium properties of the electrode-electrolyte interface in supercapacitors held at various potentials. While such studies are essential to understand and optimize the performance of such energy storage systems, investigation of the dynamics of adsorption during the charge of the supercapacitors is also necessary. Dynamical properties are especially important to get an insight into the power density of supercapacitors, one of their main assets. In this work, we propose a new method to coarse-grain simulations of all-atom systems and compute effective Lennard-Jones and Coulomb parameters, allowing subsequently to analyze the trajectories of adsorbing ions. We focus on pure 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide in contact with planar carbon electrodes. We characterize the evolution of the ion orientation and ion-electrode distance during adsorption and show that ions reorientate as they adsorb. We then determine the forces experienced by the adsorbing ions and demonstrate that Coulomb forces are dominant at a long range while van der Waals forces are dominant at a short range. We also show that there is an almost equal contribution from the two forces at an intermediate distance, explaining the peak of ion density close to the electrode surface.
Collapse
Affiliation(s)
- Nicolas Gaudy
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 cedex 9 Toulouse, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 cedex 9 Toulouse, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|
4
|
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, Cordeiro MNS. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches. Chem Rev 2024; 124:3392-3415. [PMID: 38466339 PMCID: PMC10979404 DOI: 10.1021/acs.chemrev.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
Collapse
Affiliation(s)
- Nádia M. Figueiredo
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Iuliia V. Voroshylova
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Elisabete S. C. Ferreira
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jorge M. C. Marques
- CQC−IMS,
Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - M. Natália
D. S. Cordeiro
- LAQV@REQUIMTE,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Mohapatra S, Teherpuria H, Paul Chowdhury SS, Ansari SJ, Jaiswal PK, Netz RR, Mogurampelly S. Ion transport mechanisms in pectin-containing EC-LiTFSI electrolytes. NANOSCALE 2024; 16:3144-3159. [PMID: 38258993 DOI: 10.1039/d3nr04029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Using all-atom molecular dynamics simulations, we report the structure and ion transport characteristics of a new class of solid polymer electrolytes that contain the biodegradable and mechanically stable biopolymer pectin. We used highly conducting ethylene carbonate (EC) as a solvent for simulating lithium-trifluoromethanesulfonimide (LiTFSI) salt containing different weight percentages of pectin. Our simulations reveal that the pectin chains reduce the coordination number of lithium ions around their counterions (and vice versa) because of stronger lithium-pectin interactions compared to lithium-TFSI interactions. Furthermore, the pectin is found to promote smaller ionic aggregates over larger ones, in contrast to the results typically reported for liquid and polymer electrolytes. We observed that the loading of pectin in EC-LiTFSI electrolytes increases their viscosity (η) and relaxation timescales (τc), indicating higher mechanical stability, and, consequently, a decrease of the mean squared displacement, diffusion coefficient (D), and Nernst-Einstein conductivity (σNE). Interestingly, while the lithium diffusivities are related to the ion-pair relaxation timescales as D+ ∼ τc-3.1, the TFSI- diffusivities exhibit excellent correlations with ion-pair relaxation timescales as D- ∼ τc-0.95. On the other hand, the NE conductivities are dictated by distinct transport mechanisms and scales with ion-pair relaxation timescales as σNE ∼ τc-1.85.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Hema Teherpuria
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Sapta Sindhu Paul Chowdhury
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Suleman Jalilahmad Ansari
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Prabhat K Jaiswal
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Santosh Mogurampelly
- Department of Physics, Indian Institute of Technology Jodhpur, N.H. 62, Nagaur Road, Karwar, Jodhpur, Rajasthan 342030, India.
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
6
|
Bittner JP, Smirnova I, Jakobtorweihen S. Investigating Biomolecules in Deep Eutectic Solvents with Molecular Dynamics Simulations: Current State, Challenges and Future Perspectives. Molecules 2024; 29:703. [PMID: 38338447 PMCID: PMC10856712 DOI: 10.3390/molecules29030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Deep eutectic solvents (DESs) have recently gained increased attention for their potential in biotechnological applications. DESs are binary mixtures often consisting of a hydrogen bond acceptor and a hydrogen bond donor, which allows for tailoring their properties for particular applications. If produced from sustainable resources, they can provide a greener alternative to many traditional organic solvents for usage in various applications (e.g., as reaction environment, crystallization agent, or storage medium). To navigate this large design space, it is crucial to comprehend the behavior of biomolecules (e.g., enzymes, proteins, cofactors, and DNA) in DESs and the impact of their individual components. Molecular dynamics (MD) simulations offer a powerful tool for understanding thermodynamic and transport processes at the atomic level and offer insights into their fundamental phenomena, which may not be accessible through experiments. While the experimental investigation of DESs for various biotechnological applications is well progressed, a thorough investigation of biomolecules in DESs via MD simulations has only gained popularity in recent years. Within this work, we aim to provide an overview of the current state of modeling biomolecules with MD simulations in DESs and discuss future directions with a focus for optimizing the molecular simulations and increasing our fundamental knowledge.
Collapse
Affiliation(s)
- Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
- Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
7
|
Ahmed MD, Zhu Z, Khamzin A, Paddison SJ, Sokolov AP, Popov I. Effect of Ion Mass on Dynamic Correlations in Ionic Liquids. J Phys Chem B 2023; 127:10411-10421. [PMID: 38012530 DOI: 10.1021/acs.jpcb.3c05568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Ionic liquids (ILs) are a class of liquid salts with distinct properties such as high ionic conductivity, low volatility, and a broad electrochemical window, making them appealing for use in energy storage applications. The ion-ion correlations are some of the key factors that play a critical role in the ionic conductivity of ILs. In this work, we present the study of the impact of ion mass on ion-ion correlations in ILs, applying a combination of broadband dielectric spectroscopy measurements and molecular dynamics simulations. We examined three ILs with the same cation but different anions to consider three different cases of cation-anion masses: M+ > M-, M+ ≈ M-, and M+ < M-. We applied the momentum conservation approach to estimate the contribution of distinct ion-ion correlations from experimental data and obtained good agreement with direct calculations of distinct ion-ion correlations from molecular dynamics simulations. Our findings reveal that relative ion mass has a strong effect on the distinct ion-ion correlations, leading to swapping of the relative amplitude of distinct cation-cation and anion-anion correlations.
Collapse
Affiliation(s)
- Md Dipu Ahmed
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenghao Zhu
- Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Airat Khamzin
- Institute of Physics, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Stephen J Paddison
- Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ivan Popov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- University of Tennessee─Oak Ridge Innovation Institute, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Roos E, Sebastiani D, Brehm M. BILFF: All-Atom Force Field for Modeling Triazolium- and Benzoate-Based Ionic Liquids. Molecules 2023; 28:7592. [PMID: 38005314 PMCID: PMC10674667 DOI: 10.3390/molecules28227592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
We present an extension of our previously developed all-atom force field BILFF (Bio-polymers in Ionic Liquids Force Field) to three different ionic liquids: 1-ethyl-3-methyl-1,2,3-triazolium acetate ([EMTr][OAc]), 1-ethyl-3-methyl-1,2,3-triazolium benzoate ([EMTr][OBz]), and 1-ethyl-3-methylimidazolium benzoate ([EMIm][OBz]). These ionic liquids are of practical importance as they have the ability to dissolve significant amounts of cellulose even at room temperature. Our force field is optimized to accurately reproduce the strong hydrogen bonding in the system with nearly quantum chemical accuracy. A very good agreement between the microstructure of the quantum chemical simulations over a wide temperature range and experimental density data with the results of BILFF were observed. Non-trivial effects, such as the solvation shell structure and π-π stacking of the cations, are also accurately reproduced. Our force field enables accurate simulations of larger systems, such as solvated cellulose in different (aqueous) ionic liquids, and is the first to present the optimized parameters for mixtures of these solvents and water.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie—Theoretische Chemie, Martin-Luther-Universität Halle–Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.R.); (D.S.)
| | - Daniel Sebastiani
- Institut für Chemie—Theoretische Chemie, Martin-Luther-Universität Halle–Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.R.); (D.S.)
| | - Martin Brehm
- Institut für Chemie—Theoretische Chemie, Martin-Luther-Universität Halle–Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.R.); (D.S.)
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
9
|
Mohapatra S, Halder S, Chaudhari SR, Netz RR, Mogurampelly S. Insights into the structure and Ion transport of pectin-[BMIM][PF6] electrolytes. J Chem Phys 2023; 159:154902. [PMID: 37843063 DOI: 10.1063/5.0158127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
We investigate the effect of pectin on the structure and ion transport properties of the room-temperature ionic liquid electrolyte 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) using molecular dynamics simulations. We find that pectin induces intriguing structural changes in the electrolyte that disrupt large ionic aggregates and promote the formation of smaller ionic clusters, which is a promising finding for ionic conductivity. Due to pectin in [BMIM][PF6] electrolytes, the diffusion coefficient of cations and anions is observed to decrease by a factor of four for a loading of 25 wt. % of pectin in [BMIM][PF6] electrolyte. A strong correlation between the ionic diffusivities (D) and ion-pair relaxation timescales (τc) is observed such that D ∼ τc-0.75 for cations and D ∼ τc-0.82 for anions. The relaxation timescale exponents indicate that the ion transport mechanisms in pectin-[BMIM][PF6] electrolytes are slightly distinct from those found in neat [BMIM][PF6] electrolytes (D∼τc-1). Since pectin marginally affects ionic diffusivities at the gain of smaller ionic aggregates and viscosity, our results suggest that pectin-ionic liquid electrolytes offer improved properties for battery applications, including ionic conductivity, mechanical stability, and biodegradability.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sougata Halder
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sachin R Chaudhari
- Department of Spice and Flavour Science, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Santosh Mogurampelly
- Polymer Electrolytes and Materials Group (PEMG), Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
10
|
Roos E, Sebastiani D, Brehm M. A force field for bio-polymers in ionic liquids (BILFF) - part 2: cellulose in [EMIm][OAc]/water mixtures. Phys Chem Chem Phys 2023; 25:8755-8766. [PMID: 36897117 DOI: 10.1039/d2cp05636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We present the extension of our force field BILFF (Bio-Polymers in Ionic Liquids Force Field) to the bio-polymer cellulose. We already published BILFF parameters for mixtures of ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. Our all-atom force field focuses on a quantitative reproduction of the hydrogen bonds in the complex mixture of cellulose, [EMIm]+, [OAc]- and water when compared to reference ab initio molecular dynamics (AIMD) simulations. To enhance the sampling, 50 individual AIMD simulations starting from different initial configurations were performed for cellulose in solvent instead of one long simulation, and the resulting averages were used for force field optimization. All cellulose force field parameters were iteratively adjusted starting from the literature force field of W. Damm et al. We were able to obtain a very good agreement with respect to both the microstructure of the reference AIMD simulations and experimental results such as the system density (even at higher temperatures) and the crystal structure. Our new force field allows performing very long simulations of large systems containing cellulose solvated in (aqueous) [EMIm][OAc] with almost ab initio accuracy.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Daniel Sebastiani
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
11
|
Klapatiuk DO, Waugh SL, Mukadam AA, East ALL. Limited ionicity in poor protic ionic liquids: Association Gibbs energies. J Chem Phys 2023; 158:034507. [PMID: 36681640 DOI: 10.1063/5.0124900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protic ionic liquids (PILs), made from anhydrous mixtures of Bronsted acids HA and bases B (HA + B → BH+ + A-), occasionally suffer from limited ionicity. In cases of "poor" PILs (<10% ionicity, e.g., using carboxylic acids), past simulations have hinted that ion-pair association, more than incomplete proton transfer, is at fault. To improve upon the Fuoss equation for predicting the degree of ion pairing, new electrostatic equations (including induced dipoles) are presented, for ion-pair and other associations that occur in anhydrous amine/carboxylic acid mixtures. The equations present the association Gibbs energies ΔGA (and thus the association constants KA) as functions of three fundamental properties: the acid/base mixing ratio (n = xA/xB), the HA-to-B proton-transfer strength (ΔpKa,ε=78), and the dielectric constant (relative permittivity) of the mixture (ε). Parameter values were obtained from fits to constant-dielectric quantum chemistry data (obtained and presented here). These ΔGA functions were then used to predict ΔGioniz values for the net ion-generating (autoionization) equilibrium in carboxylic acid/amine mixtures: 2B(HA)n⇄B(HA)n-dHB++A(HA)n+d-1 -, where n = xA/xB and d = degree of disproportionation. The agreement with experiment was excellent, demonstrating that these equations could have useful predictive power.
Collapse
Affiliation(s)
- Devin O Klapatiuk
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Shawn L Waugh
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Abdulrahman A Mukadam
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| | - Allan L L East
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
12
|
Sun Z, Zheng L, Zhang ZY, Cong Y, Wang M, Wang X, Yang J, Liu Z, Huai Z. Molecular Modelling of Ionic Liquids: Situations When Charge Scaling Seems Insufficient. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020800. [PMID: 36677859 PMCID: PMC9865557 DOI: 10.3390/molecules28020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Charge scaling as an effective solution to the experiment-computation disagreement in molecular modelling of ionic liquids (ILs) could bring the computational results close to the experimental reference for various thermodynamic properties. According to the large-scale benchmark calculations of mass density, solvation, and water-ILs transfer-free energies in our series of papers, the charge-scaling factor of 0.8 serves as a near-optimal option generally applicable to most ILs, although a system-dependent parameter adjustment could be attempted for further improved performance. However, there are situations in which such a charge-scaling treatment would fail. Namely, charge scaling cannot really affect the simulation outcome, or minimally perturbs the results that are still far from the experimental value. In such situations, the vdW radius as an additional adjustable parameter is commonly tuned to minimize the experiment-calculation deviation. In the current work, considering two ILs from the quinuclidinium family, we investigate the impacts of this vdW-scaling treatment on the mass density and the solvation/partition thermodynamics in a fashion similar to our previous charge-scaling works, i.e., scanning the vdW-scaling factor and computing physical properties under these parameter sets. It is observed that the mass density exhibits a linear response to the vdW-scaling factor with slopes close to -1.8 g/mL. By further investigating a set of physiochemically relevant temperatures between 288 K and 348 K, we confirm the robustness of the vdW-scaling treatment in the estimation of bulk properties. The best vdW-scaling parameter for mass density would worsen the computation of solvation/partition thermodynamics, and a marginal decrease in the vdW-scaling factor is considered as an intermediate option balancing the reproductions of bulk properties and solvation thermodynamics. These observations could be understood in a way similar to the charge-scaling situation. i.e., overfitting some properties (e.g., mass density) would degrade the accuracy of the other properties (e.g., solvation free energies). Following this principle, the general guideline for applying this vdW-tuning protocol is by using values between the density-derived choice and the solvation/partition-derived solution. The charge and current vdW scaling treatments cover commonly encountered ILs, completing the protocol for accurate modelling of ILs with fixed-charge force fields.
Collapse
Affiliation(s)
- Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mao Wang
- NCS Testing Technology Co., Ltd., No. 13, Gaoliangqiao Xiejie, Beijing 100081, China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Leto Laboratories Co., Ltd., Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Jingjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center, 7F, Tower A, Dongsheng Building, No.8, Zhongguancun East Road, Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| |
Collapse
|
13
|
Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ghanta KP, Mondal S, Bandyopadhyay S. Exploring the Dynamic Heterogeneity at the Interface of a Protein in Aqueous Ionic Liquid Solutions. J Phys Chem B 2022; 126:7271-7285. [DOI: 10.1021/acs.jpcb.2c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
15
|
Li J, He R, Yuan H, Fang F, Zhou G, Yang Z. Molecular Insights into the Effect of Asymmetric Anions on Lithium Coordination and Transport Properties in Salt-Doped Poly(ionic liquid) Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiajia Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Ruiyao He
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Hao Yuan
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Fang Fang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
16
|
|
17
|
Mohapatra S, Sharma S, Sriperumbuduru A, Varanasi SR, Mogurampelly S. Effect of Succinonitrile on Ion Transport in PEO-based Lithium-Ion Battery Electrolytes. J Chem Phys 2022; 156:214903. [DOI: 10.1063/5.0087824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the ion transport mechanisms in succinonitrile (SN) loaded solid polymer electrolytes containing polyethylene oxide (PEO) and dissolved lithium bis(trifluoromethane)sulphonamide (LiTFSI) salt using molecular dynamics simulations. We investigated the effect of temperature and loading of SN on ion transport and relaxation phenomenon in PEO-LiTFSI electrolytes. It is observed that SN increases the ionic diffusivities in PEO-based solid polymer electrolytes and makes them suitable for battery applications. Interestingly, the diffusion coefficient of TFSI ions is an order of magnitude higher than the diffusion coefficient of lithium ions across the range of temperatures and loadings integrated. By analyzing different relaxation timescales and examining the underlying transport mechanisms in SN-loaded systems, we find that the diffusivity of TFSI ions correlates excellently with the Li-TFSI ion-pair relaxation timescales. In contrast, our simulations predict distinct transport mechanisms for Li-ions in SN-loaded PEO-LiTFSI electrolytes. Explicitly, the diffusivity of lithium ions cannot be uniquely determined by the ion-pair relaxation timescales but additionally depends on the polymer segmental dynamics. On the other hand, the SN loading induced diffusion coefficient at a given temperature does not correlate with either the ion-pair relaxation timescales or the polymer segmental relaxation timescales.
Collapse
Affiliation(s)
- Sipra Mohapatra
- Department of Physics, Indian Institute of Technology Jodhpur, India
| | | | | | | | | |
Collapse
|
18
|
Zhang Z, Zofchak E, Krajniak J, Ganesan V. Influence of Polarizability on the Structure, Dynamic Characteristics, and Ion-Transport Mechanisms in Polymeric Ionic Liquids. J Phys Chem B 2022; 126:2583-2592. [DOI: 10.1021/acs.jpcb.1c10662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Everett Zofchak
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jakub Krajniak
- Independent Researcher, os. Kosmonautow 13/56, 61-631 Poznan, Poland
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
MOLECULAR SIMULATIONS OF DEEP EUTECTIC SOLVENTS: A PERSPECTIVE ON STRUCTURE, DYNAMICS, AND PHYSICAL PROPERTIES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2022. [DOI: 10.1002/9781119625933.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Philippi F, Goloviznina K, Gong Z, Gehrke S, Kirchner B, Pádua AAH, Hunt PA. Charge transfer and polarisability in ionic liquids: a case study. Phys Chem Chem Phys 2022; 24:3144-3162. [PMID: 35040843 DOI: 10.1039/d1cp04592j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Kateryna Goloviznina
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Sascha Gehrke
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Agílio A H Pádua
- Laboratoire de Chimie, École Normale Supérieure de Lyon & CNRS, 69364 Lyon, France
| | - Patricia A Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
21
|
Gliege ME, Lin WJ, Xu Y, Chen MT, Whitney C, Gunckel R, Dai L. Molecular Dynamics Insight into the Role of Water Molecules in Ionic Liquid Mixtures of 1-Butyl-3-methylimidazolium Iodide and Ethylammonium Nitrate. J Phys Chem B 2022; 126:1115-1124. [PMID: 35107286 DOI: 10.1021/acs.jpcb.1c05595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imidazolium-based ionic liquids are well known for their versatility as solvents for various applications such as dye-sensitized solar cells, fuel cells, and lithium-ion batteries; however, their complex interactions continue to be investigated to further improve upon their design. Ionic liquids (ILs) are commonly mixed with co-solvents such as water, organic solvents, or other ionic liquids to tailor their physiochemical properties. To better predict these properties and fundamentally understand the molecular interactions within the electrolyte mixtures, molecular dynamics (MD) simulations are often employed. In this study, MD simulations are performed on ternary solutions containing ionic liquids of 1-butyl-3-methylimidazolium iodide ([BMIM][I]) and ethylammonium nitrate ([EA][NO3]) with increasing concentration of water. As previously reported, these ternary solutions displayed a wide temperature window of thermal stability and electrochemical conductivity. Utilizing MD simulations, the complex intermolecular interactions are identified, and the role of water as a co-solvent is disclosed to correlate with changes in their bulk properties. The MD results, including simulation box snapshots, radial distribution functions, and self-diffusion coefficients, reveal the formation of heterogeneous regimes with increasing water concentration, hydrogen bonding between iodide-water, iodide-[EA]+, and a change in IL ordering when in mixtures containing water. The simulations also display the formation of water aggregates and networks at high water concentrations, which can contribute to the thermal behavior of the respective mixtures. As the design of IL-based electrolytes grows in demand with increasing complexity, this work demonstrates the capability of MD simulations containing multiple constituents and their necessity in material development through identification of microscopic structure-property relationships.
Collapse
Affiliation(s)
- Marisa E Gliege
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Wendy J Lin
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Yifei Xu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Mu-Tao Chen
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Christopher Whitney
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan Gunckel
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Lenore Dai
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
22
|
Köster R, Vogel M. Slow liquid dynamics near solid surfaces: Insights from site-resolved studies of ionic liquids in silica confinement. J Chem Phys 2022; 156:074501. [DOI: 10.1063/5.0079722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Michael Vogel
- Institute of Condensed Matter Physics, TU Darmstadt, Germany
| |
Collapse
|
23
|
Du Hill L, De Keersmaecker M, Colbert AE, Hill JW, Placencia D, Boercker JE, Armstrong NR, Ratcliff EL. Rationalizing energy level alignment by characterizing Lewis acid/base and ionic interactions at printable semiconductor/ionic liquid interfaces. MATERIALS HORIZONS 2022; 9:471-481. [PMID: 34859805 DOI: 10.1039/d1mh01306h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge transfer and energy conversion processes at semiconductor/electrolyte interfaces are controlled by local electric field distributions, which can be especially challenging to measure. Herein we leverage the low vapor pressure and vacuum compatibility of ionic liquid electrolytes to undertake a layer-by-layer, ultra-high vacuum deposition of a prototypical ionic liquid EMIM+ (1-ethyl-3-methylimidazolium) and TFSI- (bis(trifluoromethylsulfonyl)-imide) on the surfaces of different electronic materials. We consider a case-by-case study between a standard metal (Au) and four printed electronic materials, where interfaces are characterized by a combination of X-ray and ultraviolet photoemission spectroscopies (XPS/UPS). For template-stripped gold surfaces, we observe through XPS a preferential orientation of the TFSI anion at the gold surface, enabling large electric fields (∼108 eV m-1) within the first two monolayers detected by a large surface vacuum level shift (0.7 eV) in UPS. Conversely, we observe a much more random orientation on four printable semiconductor surfaces: methyl ammonium lead triiodide (MAPbI3), regioregular poly(3-hexylthiophene-2,5-diyl (P3HT)), sol-gel nickel oxide (NiOx), and PbIx-capped PbS quantum dots. For the semiconductors considered, the ionization energy (IE) of the ionic liquid at 3 ML coverage is highly substrate dependent, indicating that underlying chemical reactions are dominating interface level alignment (electronic equilibration) prior to reaching bulk electronic structure. This indicates there is no universal rule for energy level alignment, but that relative strengths of Lewis acid/base sites and ion-molecular interactions should be considered. Specifically, for P3HT, interactions are found to be relatively weak and occurring through the π-bonding structure in the thiophene ring. Alternatively, for NiOx, PbS/PbIx quantum dots, and MAPbI3, our XPS data suggest a combination of ionic bonding and Lewis acid/base reactions between the semiconductor and IL, with MAPbI3 being the most reactive surface. Collectively, our results point towards new directions in interface engineering, where strategically chosen ionic liquid-based anions and cations can be used to preferentially passivate and/or titrate surface defects of heterogeneous surfaces while simultaneously providing highly localized electric fields. These opportunities are expected to be translatable to opto-electronic and electrochemical devices, including energy conversion and storage and biosensing applications.
Collapse
Affiliation(s)
- Linze Du Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Michel De Keersmaecker
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Adam E Colbert
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Joshua W Hill
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| | - Diogenes Placencia
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Janice E Boercker
- US. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC. 20375, USA
| | - Neal R Armstrong
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | - Erin L Ratcliff
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721, USA.
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
- Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Zhang Z, Lin D, Ganesan V. Mechanisms of ion transport in lithium salt‐doped polymeric ionic liquid electrolytes at higher salt concentrations. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering University of Texas at Austin Austin Texas USA
| | - Dachey Lin
- McKetta Department of Chemical Engineering University of Texas at Austin Austin Texas USA
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering University of Texas at Austin Austin Texas USA
| |
Collapse
|
25
|
Lahrar EH, Simon P, Merlet C. Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. J Chem Phys 2021; 155:184703. [PMID: 34773950 DOI: 10.1063/5.0065150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carbon-carbon supercapacitors are high power electrochemical energy storage systems, which store energy through reversible ion adsorption at the electrode-electrolyte interface. Due to the complex structure of the porous carbons used as electrodes, extracting structure-property relationships in these systems remains a challenge. In this work, we conduct molecular simulations of two model supercapacitors based on nanoporous electrodes with the same average pore size, a property often used when comparing porous materials, but different morphologies. We show that the carbon with the more ordered structure, and a well defined pore size, has a much higher capacitance than the carbon with the more disordered structure and a broader pore size distribution. We analyze the structure of the confined electrolyte and show that the ions adsorbed in the ordered carbon are present in larger quantities and are also more confined than for the disordered carbon. Both aspects favor a better charge separation and thus a larger capacitance. In addition, the disordered electrodes contain a significant amount of carbon atoms, which are never in contact with the electrolyte, carry a close to zero charge, and are thus not involved in the charge storage. The total quantities of adsorbed ions and degrees of confinement do not change much with the applied potential, and as such, this work opens the door to computationally tractable screening strategies.
Collapse
Affiliation(s)
- El Hassane Lahrar
- CIRIMAT, Université de Toulouse, CNRS, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France
| | - Patrice Simon
- CIRIMAT, Université de Toulouse, CNRS, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Bât. CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France
| |
Collapse
|
26
|
Rajbangshi J, Biswas R. Heterogeneous dynamics in [BMIM][PF6] + Cosolvent binary Mixtures: Does It depend upon cosolvent Polarity? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Goloviznina K, Gong Z, Padua AAH. The
CL
&Pol polarizable force field for the simulation of ionic liquids and eutectic solvents. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Zheng Gong
- Laboratoire de Chimie École Normale Supérieure de Lyon & CNRS Lyon France
| | - Agilio A. H. Padua
- Laboratoire de Chimie École Normale Supérieure de Lyon & CNRS Lyon France
| |
Collapse
|
28
|
Bittner JP, Huang L, Zhang N, Kara S, Jakobtorweihen S. Comparison and Validation of Force Fields for Deep Eutectic Solvents in Combination with Water and Alcohol Dehydrogenase. J Chem Theory Comput 2021; 17:5322-5341. [PMID: 34232662 DOI: 10.1021/acs.jctc.1c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) have become popular as environmental-friendly solvents for biocatalysis. Molecular dynamics (MD) simulations offer an in-depth analysis of enzymes in DESs, but their performance depends on the force field chosen. Here, we present a comprehensive validation of three biomolecular force fields (CHARMM, Amber, and OPLS) for simulations of alcohol dehydrogenase (ADH) in DESs composed of choline chloride and glycerol/ethylene glycol with varying water contents. Different properties (e.g., protein structure and flexibility, solvation layer, and H-bonds) were used for validation. For two properties (viscosity and water activity) also experiments were performed. The viscosity was calculated with the periodic perturbation method, whereby its parameter dependency is disclosed. A modification of Amber was identified as the best-performing model for low water contents, whereas CHARMM outperforms the other models at larger water concentrations. An analysis of ADH's structure and interactions with the DESs revealed similar predictions for Amber and CHARMM.
Collapse
Affiliation(s)
- Jan Philipp Bittner
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Lei Huang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Ningning Zhang
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Selin Kara
- Department of Biological and Chemical Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.,Department for Chemical Reaction Engineering, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
29
|
Jeong KJ, McDaniel JG, Yethiraj A. Deep Eutectic Solvents: Molecular Simulations with a First-Principles Polarizable Force Field. J Phys Chem B 2021; 125:7177-7186. [PMID: 34181852 DOI: 10.1021/acs.jpcb.1c01692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The unique properties of deep eutectic solvents make them useful in a variety of applications. In this work we develop a first-principles force field for reline, which is composed of choline chloride and urea in the molar ratio 1:2. We start with the symmetry adapted perturbation theory (SAPT) protocol and then make adjustments to better reproduce the structure and dynamics of the liquid when compared to first-principles molecular dynamics (FPMD) simulations. The resulting force field is in good agreement with experiments in addition to being consistent with the FPMD simulations. The simulations show that primitive molecular clusters are preferentially formed with choline-chloride ionic pairs bound with a hydrogen bond in the hydroxyl group and that urea molecules coordinate the chloride mainly via the trans-H chelating hydrogen bonds. Incorporating polarizability qualitatively influences the radial distributions and lifetimes of hydrogen bonds and affects long-range structural order and dynamics. The polarizable force field predicts a diffusion constant about an order of magnitude larger than the nonpolarizable force field and is therefore less computationally intensive. We hope this study paves the way for studying complex hydrogen-bonding liquids from a first-principles approach.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
Avula NVS, Karmakar A, Kumar R, Balasubramanian S. Efficient Parametrization of Force Field for the Quantitative Prediction of the Physical Properties of Ionic Liquid Electrolytes. J Chem Theory Comput 2021; 17:4274-4290. [PMID: 34097391 DOI: 10.1021/acs.jctc.1c00268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of transport properties of room-temperature ionic liquids from nonpolarizable force field-based simulations has long been a challenge. The uniform charge scaling method has been widely used to improve the agreement with the experiment by incorporating the polarizability and charge transfer effects in an effective manner. While this method improves the performance of the force fields, this prescription is ad hoc in character; further, a quantitative prediction is still not guaranteed. In such cases, the nonbonded interaction parameters too need to be refined, which requires significant effort. In this work, we propose a three-step semiautomated refinement procedure based on (1) atomic site charges obtained from quantum calculations of the bulk condensed phase; (2) quenched Monte Carlo optimizer to shortlist suitable force field candidates, which are then tested using pilot simulations; and (3) manual refinement to further improve the accuracy of the force field. The strategy is designed in a sequential manner with each step improving the accuracy over the previous step, allowing the users to invest the effort commensurate with the desired accuracy of the refined force field. The refinement procedure is applied on N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI), a front-runner as an electrolyte for electric double-layer capacitors and single-molecule-based devices. The transferability of the refined force field is tested on N,N-dimethyl-N-ethyl-N-methoxyethoxyethylammonium bis(trifluoromethanesulfonyl)imide (N112,2O2O1-TFSI). The refined force field is found to be better at predicting both structural and transport properties compared to the uniform charge scaling procedure, which showed a discrepancy in the X-ray structure factor. The refined force field showed quantitative agreement with structural (density and X-ray structure factor) and transport properties-diffusion coefficients, ionic conductivity, and shear viscosity over a wide temperature range, building a case for the wide adoption of the procedure.
Collapse
Affiliation(s)
- Nikhil V S Avula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anwesa Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Rahul Kumar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
31
|
Shao C, Ong WL, Shiomi J, McGaughey AJH. Nanoconfinement between Graphene Walls Suppresses the Near-Wall Diffusion of the Ionic Liquid [BMIM][PF 6]. J Phys Chem B 2021; 125:4527-4535. [PMID: 33885322 DOI: 10.1021/acs.jpcb.1c02562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We identify two distinct regimes for the diffusion of the ionic liquid [BMIM][PF6] confined between parallel graphene walls using molecular dynamics simulations. Within 2 nm of the wall, the cations and anions form a well-defined layered structure. In this region, the in-plane diffusion coefficients are suppressed when compared to their bulk values and increase monotonically with the distance away from the wall. Beyond 2 nm from the wall, the density profile and in-plane diffusion coefficients recover their bulk values. The channel-averaged in-plane diffusion coefficients increase monotonically with wall separation and recover the bulk values at a separation of 15 nm. A simple semianalytical model is proposed that mirrors this trend. The results also highlight the importance of applying a finite-size correction to molecular dynamics-predicted diffusion coefficients of confined liquids, which may otherwise be unusually larger than their bulk values.
Collapse
Affiliation(s)
- Cheng Shao
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Wee-Liat Ong
- ZJU-UIUC Institute, College of Energy Engineering, Zhejiang University, Haining, Zhejiang 314400, People's Republic of China.,State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Alan J H McGaughey
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
32
|
Rudzinski JF, Kloth S, Wörner S, Pal T, Kremer K, Bereau T, Vogel M. Dynamical properties across different coarse-grained models for ionic liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:224001. [PMID: 33592598 DOI: 10.1088/1361-648x/abe6e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) stand out among molecular liquids for their rich physicochemical characteristics, including structural and dynamic heterogeneity. The significance of electrostatic interactions in RTILs results in long characteristic length- and timescales, and has motivated the development of a number of coarse-grained (CG) simulation models. In this study, we aim to better understand the connection between certain CG parameterization strategies and the dynamical properties and transferability of the resulting models. We systematically compare five CG models: a model largely parameterized from experimental thermodynamic observables; a refinement of this model to increase its structural accuracy; and three models that reproduce a given set of structural distribution functions by construction, with varying intramolecular parameterizations and reference temperatures. All five CG models display limited structural transferability over temperature, and also result in various effective dynamical speedup factors, relative to a reference atomistic model. On the other hand, the structure-based CG models tend to result in more consistent cation-anion relative diffusion than the thermodynamic-based models, for a single thermodynamic state point. By linking short- and long-timescale dynamical behaviors, we demonstrate that the varying dynamical properties of the different CG models can be largely collapsed onto a single curve, which provides evidence for a route to constructing dynamically-consistent CG models of RTILs.
Collapse
Affiliation(s)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Svenja Wörner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tamisra Pal
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
33
|
Voroshylova IV, Ers H, Koverga V, Docampo-Álvarez B, Pikma P, Ivaništšev VB, Cordeiro M. Ionic liquid–metal interface: The origins of capacitance peaks. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
S Salehi H, Celebi AT, Vlugt TJH, Moultos OA. Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. J Chem Phys 2021; 154:144502. [PMID: 33858163 DOI: 10.1063/5.0047369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With the emergence of hydrophobic deep eutectic solvents (DESs), the scope of applications of DESs has been expanded to include situations in which miscibility with water is undesirable. Whereas most studies have focused on the applications of hydrophobic DESs from a practical standpoint, few theoretical works exist that investigate the structural and thermodynamic properties at the nanoscale. In this study, Molecular Dynamics (MD) simulations have been performed to model DESs composed of tetraalkylammonium chloride hydrogen bond acceptor and decanoic acid hydrogen bond donor (HBD) at a molar ratio of 1:2, with three different cation chain lengths (4, 7, and 8). After fine-tuning force field parameters, densities, viscosities, self-diffusivities, and ionic conductivities of the DESs were computed over a wide temperature range. The liquid structure was examined using radial distribution functions (RDFs) and hydrogen bond analysis. The MD simulations reproduced the experimental density and viscosity data from the literature reasonably well and were used to predict diffusivities and ionic conductivities, for which experimental data are scarce or unavailable. It was found that although an increase in the cation chain length considerably affected the density and transport properties of the DESs (i.e., yielding smaller densities and slower dynamics), no significant influence was observed on the RDFs and the hydrogen bonds. The self-diffusivities showed the following order for the mobility of the various components: HBD > anion > cation. Strong hydrogen bonds between the hydroxyl and carbonyl groups of decanoic acid and between the hydroxyl group of decanoic acid and chloride were observed to dominate the intermolecular interactions.
Collapse
Affiliation(s)
- Hirad S Salehi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Alper T Celebi
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
35
|
Roos E, Brehm M. A force field for bio-polymers in ionic liquids (BILFF) - part 1: [EMIm][OAc]/water mixtures. Phys Chem Chem Phys 2021; 23:1242-1253. [PMID: 33355320 DOI: 10.1039/d0cp04537c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present BILFF, a novel force field for bio-polymers in ionic liquids. In the first part of our study, we introduce optimized force field parameters for mixtures of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. This imidazolium-based IL is of particular practical importance as it can dissolve significant amounts of cellulose even at room temperature. An understanding of this dissolution process via molecular dynamics simulations requires a quantitative description of the microscopic structure and the strong hydrogen bonds with a method able of simulating at least several dozen nanoseconds, which is the main aim of our novel force field. To reach this goal, we optimize the force field parameters to reproduce radial, spatial, and combined distribution functions, hydrogen bond lifetimes, diffusion coefficients, and several other quantities from reference ab initio molecular dynamics (AIMD) simulations. Non-trivial effects such as dispersion interactions between the side chains and π-π stacking of the cations are reproduced very well. We further validate the force field by comparison to experimental data such as thermal expansion coefficients, bulk modulus, and density at different temperatures, which yields good agreement and correct trends. No other force field with optimized parameters for mixtures of [EMIm][OAc] and water has been presented in the literature yet. Optimized force field parameters for cellulose and other ILs will be published in upcoming articles.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
36
|
Cosolvent polarity dependence of solution structure in [BMIM] [PF6] + acetonitrile/1, 4-dioxane/hexane binary mixtures: Insights from composition dependent Voronoi polyhedra analyses, iso-surfaces and radial distribution functions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Gaur A, Avula NVS, Balasubramanian S. Insights into the Stabilization of Fluoride Ions in Ionic Liquids: Pointers to Better Fluorinating Agents. J Phys Chem B 2020; 124:8844-8856. [PMID: 32930587 DOI: 10.1021/acs.jpcb.0c04939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorination efficiency of a fluorinating agent depends on the free availability of the fluoride ions, which in turn depends on its interaction with its solvation shell. A stable fluoride-based poor solvate ionic liquid (SIL) comprising 1-ethyl-3-methylimidazolium (EMIM) cation and ethylene glycol (EG) was recently reported and demonstrated as a fluorinating agent. Herein, we performed ab initio calculations and ab initio molecular dynamics simulations to gain a microscopic understanding of the intermolecular interactions in this SIL in gas, liquid, and crystalline phases. Ethylene glycol (EG), being capable of forming hydrogen bond(s) with the fluoride ion, prevents the latter from reacting with the EMIM cation. Fluoride forms hydrogen bonds with both the cation and the EG molecule, but it was found to have more affinity toward EG, forming a stronger hydrogen bond with its hydroxyl proton than with the acidic proton of the cation. An optimal concentration of EG in the SIL balances its contribution to stabilizing the fluoride ion and yet making fluoride available for fluorination.
Collapse
Affiliation(s)
- Anjali Gaur
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Nikhil V S Avula
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|
38
|
Salehi HS, Hens R, Moultos OA, Vlugt TJ. Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
|
40
|
Li Q, Guo Y, Tong J, He H, Zhang X, Huo F. Development of a coarse-grained force field model of polymeric 1-vinyl-3-ethylimidazolium tetrafluoroborate ionic liquids. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Kolafa J. Pressure in Molecular Simulations with Scaled Charges. 1. Ionic Systems. J Phys Chem B 2020; 124:7379-7390. [PMID: 32790401 DOI: 10.1021/acs.jpcb.0c02641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge scaling, rationalized as MDEC (molecular dynamics in electronic continuum) or ECC (electronic continuum correction), has become a widely used simple approach to how to avoid self-consistent induced dipoles yet approximately take into account the effects of electronic polarizability. It has been assumed that the continuum permittivity does not depend on density; in turn, pressure is calculated by standard formulas. In this work, we elaborate a complementary approximation of density-independent molecular polarizability and derive formulas for pressure corrections within the MDEC framework; real behavior lies between these two extremes. The pressure corrections for test ionic systems are huge and negative, leading to sizable densities in constant-pressure MDEC simulations. A comparison of MDEC results with equivalent polarizable systems gives a good pressure match for a crystal but very low MDEC pressures for ionic liquids. These results witness about the importance of a correct density dependence not only of continuum permittivity in MDEC simulations but also of polarizability in polarizable simulations.
Collapse
Affiliation(s)
- Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6, Czech Republic
| |
Collapse
|
42
|
Zhang Z, Nasrabadi AT, Aryal D, Ganesan V. Mechanisms of Ion Transport in Lithium Salt-Doped Polymeric Ionic Liquid Electrolytes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Amir T. Nasrabadi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dipak Aryal
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Reddy TDN, Mallik BS. Connecting Correlated and Uncorrelated Transport to Dynamics of Ionic Interactions in Cyclic Ammonium-Based Ionic Liquids. J Phys Chem B 2020; 124:6813-6824. [DOI: 10.1021/acs.jpcb.0c00577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Th. Dhileep N. Reddy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| |
Collapse
|
44
|
Pham TA, Coulthard RM, Zobel M, Maiti A, Buchsbaum SF, Loeb C, Campbell PG, Plata DL, Wood BC, Fornasiero F, Meshot ER. Structural Anomalies and Electronic Properties of an Ionic Liquid under Nanoscale Confinement. J Phys Chem Lett 2020; 11:6150-6155. [PMID: 32645262 DOI: 10.1021/acs.jpclett.0c01810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]-) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores. First-principles simulations corroborate this finding and quantitatively describe how perturbations in the local IL structure, particularly the hydrogen-bond network, depend strongly on the degree of confinement. Despite significant deviations in structure under confinement, electrochemical stability remains intact, which is important for energy storage based on nanoporous carbon electrodes (e.g., supercapacitors).
Collapse
Affiliation(s)
- Tuan Anh Pham
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Riley M Coulthard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mirijam Zobel
- Department of Chemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Steven F Buchsbaum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Colin Loeb
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Patrick G Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Desirée L Plata
- Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts 02142, United States
| | - Brandon C Wood
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Fornasiero
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Eric R Meshot
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
45
|
Are There Magic Compositions in Deep Eutectic Solvents? Effects of Composition and Water Content in Choline Chloride/Ethylene Glycol from Ab Initio Molecular Dynamics. J Phys Chem B 2020; 124:7433-7443. [DOI: 10.1021/acs.jpcb.0c04844] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Sampaio AM, Siqueira LJA. Ether-Functionalized Sulfonium Ionic Liquid and Its Binary Mixtures with Acetonitrile as Electrolyte for Electrochemical Double Layer Capacitors: A Molecular Dynamics Study. J Phys Chem B 2020; 124:6679-6689. [DOI: 10.1021/acs.jpcb.0c02643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abner Massari Sampaio
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP-CEP 09913-030, Brazil
| | - Leonardo José Amaral Siqueira
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP-CEP 09913-030, Brazil
| |
Collapse
|
47
|
Huang Q, Huang Y, Luo Y, Li L, Zhou G, Chen X, Yang Z. Molecular-level insights into the structures, dynamics, and hydrogen bonds of ethylammonium nitrate protic ionic liquid at the liquid-vacuum interface. Phys Chem Chem Phys 2020; 22:13780-13789. [PMID: 32538411 DOI: 10.1039/d0cp00736f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of molecular dynamics simulations have been used to systematically explore the structures, dynamics and hydrogen bonds (HBs) of ethylammonium nitrate (EAN) protic ionic liquid (IL) and their mutual relationship at the liquid-vacuum interface. The simulation results clearly demonstrate that there exists a sandwich structure at the interface, with the double-layer of the EA+ cations on both sides and one intercalated layer of the NO3- anions in the middle. Wherein, the outermost cation layer prefers the orientation with the CH3 groups pointing to the vacuum phase due to the hydrophobic interactions, while the CH3 groups in the second layer direct to the bulk liquid phase owing to the HB formation between their NH3+ groups and the intercalated NO3- anions in the middle layer. On the other hand, the continuous HB strength of the cations in the outermost layer (denoted as Cation-1) is found to be almost identical with the counterpart of the cations in the second layer (denoted as Cation-2), whereas the intermittent HB strength of Cation-1 is much larger than that of Cation-2 at all temperatures. Furthermore, the rotational motion of Cation-1 with the normal vector of the C-C-N plane in the cation is faster than that of Cation-2 with the same vector, resulting from more free space in the outermost layer. On the contrary, the rotational motion of Cation-1 with the vector from the mass center of the cation to its N atom is much slower than that of Cation-2 with the same vector, which can be attributed to the combined effects of the stronger intermittent HBs of Cation-1 and the hydrophobic interactions of its CH3 group in the outermost layer.
Collapse
Affiliation(s)
- Qin Huang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Yiping Huang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China. and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yi Luo
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Li Li
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Guobing Zhou
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Xiangshu Chen
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Zhen Yang
- Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| |
Collapse
|
48
|
Shankla M, Aksimentiev A. Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS 2 Nanopore. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26624-26634. [PMID: 32393017 PMCID: PMC7292782 DOI: 10.1021/acsami.0c04523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanopore sequencing of DNA has been enabled by the use of a biological enzyme to thread DNA through an engineered biological nanopore while recording the ionic current flowing through the nanopore. Efforts to realize a similar concept using a solid-state nanopore have been met with several technical challenges, one of which is the high speed of DNA translocation and the other the low ionic current contrast among individual nucleotides. A promising avenue to addressing both problems is using an ionic liquid to slow DNA translocation and a tiny nanopore in the MoS2 membrane to distinguish individual nucleotides. The physical mechanisms enabling these technical advances have remained elusive. Here, we characterize the ion and DNA transport through the ionic liquid/aqueous electrolyte interface, with and without a MoS2 nanopore, using the all-atom molecular dynamics method. We find that the partial miscibility of the ionic liquid and the aqueous electrolyte considerably alters the physics of the nanopore translocation process. Thus, the interface of the two phases generates a contact potential of 600 mV, the ionic current is dominated by the motion of ionic liquid molecules through the aqueous solution phase, and the DNA nucleotides exhibit preferential partitioning into the aqueous electrolyte, which leads to spontaneous transport of DNA polymers from the ionic liquid to the aqueous solution compartment in the absence of external voltage bias. The complex physics of the two-phase nanopore system offers a multitude of opportunities for extending the functionality of nanopore-sensing platforms.
Collapse
Affiliation(s)
- Manish Shankla
- Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Cao P, Yuan Y, Huang C, Sun W, Zhao L. Promoting the sulfuric acid catalyzed isobutane alkylation by quaternary ammonium ionic liquids. AIChE J 2020. [DOI: 10.1002/aic.16979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Piao Cao
- State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Yuan Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Chizhou Huang
- State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and Technology Shanghai China
- School of Chemistry & Chemical EngineeringXinJiang University Urumqi China
| |
Collapse
|
50
|
Li Z, Robertson LA, Shkrob IA, Smith KC, Cheng L, Zhang L, Moore JS, Z Y. Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes. J Phys Chem B 2020; 124:3214-3220. [PMID: 32207623 DOI: 10.1021/acs.jpcb.0c01197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While many practically important electrolytes contain lithium ions, interactions of these ions are particularly difficult to probe experimentally because of their small X-ray and neutron scattering cross sections and large neutron absorption cross sections. Molecular dynamics (MD) is a powerful tool for understanding the properties of nonaqueous electrolyte solutions from the atomic level, but the accuracy of this computational method crucially depends on the physics built into the classical force field. Here, we demonstrate that several force fields for lithium bistriflimide (LiTFSI) in acetonitrile yield a solution structure that is consistent with the neutron scattering experiments, yet these models produce dramatically different ion dynamics in solution. Such glaring discrepancies indicate that inadequate representation of long-range interactions leads to excessive ionic association and ion-pair clustering. We show that reasonable agreement with the experimental observations can be achieved by renormalization of the ion charges using a "titration" method suggested herewith. This simple modification produces realistic concentration dependencies for ionic diffusion and conductivity in <2 M solutions, without loss in quality for simulation of the structure.
Collapse
Affiliation(s)
- Zhixia Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Lily A Robertson
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Ilya A Shkrob
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Kyle C Smith
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Program of Computational Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Lei Cheng
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Materials Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Lu Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Y Z
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Program of Computational Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| |
Collapse
|