1
|
Chakraborty D, Banerjee A, Wales DJ. Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides. J Phys Chem B 2021; 125:5809-5822. [PMID: 34037392 PMCID: PMC8279551 DOI: 10.1021/acs.jpcb.1c02412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
intrinsic conformational preferences of small peptides may
provide additional insight into the thermodynamics and kinetics of
protein folding. In this study, we explore the underlying energy landscapes
of two model peptides, namely, Ac-Ala-NH2 and Ac-Ser-NH2, using geometry-optimization-based tools developed within
the context of energy landscape theory. We analyze not only how side-chain
polarity influences the structural preferences of the dipeptides,
but also other emergent properties of the landscape, including heat
capacity profiles, and kinetics of conformational rearrangements.
The contrasting topographies of the free energy landscape agree with
recent results from Fourier transform microwave spectroscopy experiments,
where Ac-Ala-NH2 was found to exist as a mixture of two
conformers, while Ac-Ser-NH2 remained structurally locked,
despite exhibiting an apparently rich conformational landscape.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Atreyee Banerjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David J Wales
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Bause M, Bereau T. Reweighting non-equilibrium steady-state dynamics along collective variables. J Chem Phys 2021; 154:134105. [PMID: 33832234 DOI: 10.1063/5.0042972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Computer simulations generate microscopic trajectories of complex systems at a single thermodynamic state point. We recently introduced a Maximum Caliber (MaxCal) approach for dynamical reweighting. Our approach mapped these trajectories to a Markovian description on the configurational coordinates and reweighted path probabilities as a function of external forces. Trajectory probabilities can be dynamically reweighted both from and to equilibrium or non-equilibrium steady states. As the system's dimensionality increases, an exhaustive description of the microtrajectories becomes prohibitive-even with a Markovian assumption. Instead, we reduce the dimensionality of the configurational space to collective variables (CVs). Going from configurational to CV space, we define local entropy productions derived from configurationally averaged mean forces. The entropy production is shown to be a suitable constraint on MaxCal for non-equilibrium steady states expressed as a function of CVs. We test the reweighting procedure on two systems: a particle subject to a two-dimensional potential and a coarse-grained peptide. Our CV-based MaxCal approach expands dynamical reweighting to larger systems, for both static and dynamical properties, and across a large range of driving forces.
Collapse
Affiliation(s)
- Marius Bause
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
3
|
Kieninger S, Keller BG. Path probability ratios for Langevin dynamics-Exact and approximate. J Chem Phys 2021; 154:094102. [PMID: 33685138 DOI: 10.1063/5.0038408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Path reweighting is a principally exact method to estimate dynamic properties from biased simulations-provided that the path probability ratio matches the stochastic integrator used in the simulation. Previously reported path probability ratios match the Euler-Maruyama scheme for overdamped Langevin dynamics. Since molecular dynamics simulations use Langevin dynamics rather than overdamped Langevin dynamics, this severely impedes the application of path reweighting methods. Here, we derive the path probability ratio ML for Langevin dynamics propagated by a variant of the Langevin Leapfrog integrator. This new path probability ratio allows for exact reweighting of Langevin dynamics propagated by this integrator. We also show that a previously derived approximate path probability ratio Mapprox differs from the exact ML only by O(ξ4Δt4) and thus yields highly accurate dynamic reweighting results. (Δt is the integration time step, and ξ is the collision rate.) The results are tested, and the efficiency of path reweighting is explored using butane as an example.
Collapse
Affiliation(s)
- S Kieninger
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - B G Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| |
Collapse
|
4
|
Battocchio G, González R, Rao AG, Schapiro I, Mroginski MA. Dynamic Properties of the Photosensory Domain of Deinococcus radiodurans Bacteriophytochrome. J Phys Chem B 2020; 124:1740-1750. [PMID: 31999119 DOI: 10.1021/acs.jpcb.0c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological photoreceptors found in all kingdoms of life. Numerous physicochemical and spectroscopic studies of phytochromes have been carried out for many decades, both experimentally and computationally, with the main focus on the photoconversion mechanism involving a tetrapyrrole chromophore. In this computational work, we concentrate on the long-scale dynamic motion of the photosensory domain of Deinococcus radiodurans by means of classical all-atom molecular dynamics (MD) simulations. Conventional and accelerated MD methods in combination with two different force fields, CHARMM27 and AMBER ff14SB, are tested in long atomistic simulations to confront the dynamics of monomer and dimer forms. These calculations highlight dissimilar equilibrium conformations in aqueous solutions and, in turn, different large-scale dynamic behaviors of the monomer form vs the dimer form. While the phytochrome in a monomer form tends to close the cavity entailed between the GAF and PHY domains, the opposite trend is predicted for the phytochrome dimer, which opens up as a consequence of the formation of strong salt bridges between the PHY domains of two molecules in water.
Collapse
Affiliation(s)
- Giovanni Battocchio
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Aditya G Rao
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
5
|
Kieninger S, Donati L, Keller BG. Dynamical reweighting methods for Markov models. Curr Opin Struct Biol 2020; 61:124-131. [PMID: 31958761 DOI: 10.1016/j.sbi.2019.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
Conformational dynamics is essential to biomolecular processes. Markov State Models (MSMs) are widely used to elucidate dynamic properties of molecular systems from unbiased Molecular Dynamics (MD). However, the implementation of reweighting schemes for MSMs to analyze biased simulations is still at an early stage of development. Several dynamical reweighing approaches have been proposed, which can be classified as approaches based on (i) Kramers rate theory, (ii) rescaling of the probability density flux, (iii) reweighting by formulating a likelihood function, (iv) path reweighting. We present the state-of-the-art and discuss the methodological differences of these methods, their limitations and recent applications.
Collapse
Affiliation(s)
- Stefanie Kieninger
- Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Arnimallee 22, D-14194 Berlin, Germany
| | - Luca Donati
- Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Arnimallee 22, D-14194 Berlin, Germany
| | - Bettina G Keller
- Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Arnimallee 22, D-14194 Berlin, Germany.
| |
Collapse
|
6
|
Knoch F, Speck T. Non-equilibrium Markov state modeling of periodically driven biomolecules. J Chem Phys 2019; 150:054103. [DOI: 10.1063/1.5055818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Fabian Knoch
- Institut für Physik, Johannes Gutenberg-Universität Mainz,
Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz,
Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
7
|
Bhattacharya S, Chatterjee A. Uncertainty quantification for Markov state models of biomolecules constructed using rare event acceleration techniques. J Chem Phys 2019; 150:044106. [PMID: 30709287 DOI: 10.1063/1.5066278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Markov state models (MSMs) of biomolecular systems are often constructed using the molecular dynamics (MD) technique. Despite having very long MD trajectories, some states and pathways can be missing in the MD data, which may make the MSMs incomplete. Consequently, uncertainty quantification for the resulting MSM becomes important. Using deca-alanine as a prototype system, we demonstrate that rare-event acceleration techniques can be employed to greatly lower the MSM uncertainty with a high computational efficiency with the assumption that the rare-event acceleration technique is able to determine most pathways that are relevant to the dynamics. In particular, we explore applications of steered MD to construct MSMs. Upper and lower bounds for uncertainty in the resulting MSM are derived. Safeguards are built into our approach to handle scenarios where the rare-event acceleration technique is unable to discover some important pathways.
Collapse
Affiliation(s)
- Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Abstract
Recent studies demonstrated that Gaussian accelerated molecular dynamics (GaMD) is a robust computational technique, which provides simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. However, the exact acceleration of biomolecular dynamics or speedup of kinetic rates in GaMD simulations and, more broadly, in enhanced sampling methods, remains a challenging task to be determined. Here, the GaMD acceleration is examined using alanine dipeptide in explicit solvent as a biomolecular model system. Relative to long conventional molecular dynamics simulation, GaMD simulations exhibited ∼36-67 times speedup for sampling of the backbone dihedral transitions. The acceleration depended on level of the GaMD boost potential. Furthermore, Kramers' rate theory was applied to estimate GaMD acceleration using simulation-derived diffusion coefficients, curvatures and barriers of free energy profiles. In most cases, the calculations also showed significant speedup of dihedral transitions in GaMD, although the GaMD acceleration factors tended to be underestimated by ∼3-96 fold. Because greater boost potential can be applied in GaMD simulations of systems with increased sizes, which potentially leads to higher acceleration, it is subject to future studies on accelerating the dynamics and recovering kinetic rates of larger biomolecules such as proteins and protein-protein/nucleic acid complexes.
Collapse
Affiliation(s)
- Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
9
|
Bhoutekar A, Ghosh S, Bhattacharya S, Chatterjee A. A new class of enhanced kinetic sampling methods for building Markov state models. J Chem Phys 2018; 147:152702. [PMID: 29055344 DOI: 10.1063/1.4984932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Markov state models (MSMs) and other related kinetic network models are frequently used to study the long-timescale dynamical behavior of biomolecular and materials systems. MSMs are often constructed bottom-up using brute-force molecular dynamics (MD) simulations when the model contains a large number of states and kinetic pathways that are not known a priori. However, the resulting network generally encompasses only parts of the configurational space, and regardless of any additional MD performed, several states and pathways will still remain missing. This implies that the duration for which the MSM can faithfully capture the true dynamics, which we term as the validity time for the MSM, is always finite and unfortunately much shorter than the MD time invested to construct the model. A general framework that relates the kinetic uncertainty in the model to the validity time, missing states and pathways, network topology, and statistical sampling is presented. Performing additional calculations for frequently-sampled states/pathways may not alter the MSM validity time. A new class of enhanced kinetic sampling techniques is introduced that aims at targeting rare states/pathways that contribute most to the uncertainty so that the validity time is boosted in an effective manner. Examples including straightforward 1D energy landscapes, lattice models, and biomolecular systems are provided to illustrate the application of the method. Developments presented here will be of interest to the kinetic Monte Carlo community as well.
Collapse
Affiliation(s)
- Arti Bhoutekar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Susmita Ghosh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Kots ED, Lushchekina SV, Varfolomeev SD, Nemukhin AV. Role of Protein Dimeric Interface in Allosteric Inhibition of N-Acetyl-Aspartate Hydrolysis by Human Aspartoacylase. J Chem Inf Model 2017; 57:1999-2008. [PMID: 28737906 DOI: 10.1021/acs.jcim.7b00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The results of molecular modeling suggest a mechanism of allosteric inhibition upon hydrolysis of N-acetyl-aspartate (NAA), one of the most abundant amino acid derivatives in brain, by human aspartoacylase (hAsp). Details of this reaction are important to suggest the practical ways to control the enzyme activity. Search for allosteric sites using the Allosite web server and SiteMap analysis allowed us to identify substrate binding pockets located at the interface between the subunits of the hAsp dimer molecule. Molecular docking of NAA to the pointed areas at the dimer interface predicted a specific site, in which the substrate molecule interacts with the Gly237, Arg233, Glu290, and Lys292 residues. Analysis of multiple long-scaled molecular dynamics trajectories (the total simulation time exceeded 1.5 μs) showed that binding of NAA to the identified allosteric site induced significant rigidity to the protein loops with the amino acid side chains forming gates to the enzyme active site. Application of the protein dynamical network algorithms showed that substantial reorganization of the signal propagation pathways of intersubunit communication in the dimer occurred upon allosteric NAA binding to the remote site. The modeling approaches provide an explanation to the observed decrease of the reaction rate of NAA hydrolysis by hAsp at high substrate concentrations.
Collapse
Affiliation(s)
- Ekaterina D Kots
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Sofya V Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Sergey D Varfolomeev
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| |
Collapse
|
11
|
Abstract
![]()
Gaussian accelerated molecular dynamics
(GaMD) is a recently developed
enhanced sampling technique that provides efficient free energy calculations
of biomolecules. Like the previous accelerated molecular dynamics
(aMD), GaMD allows for “unconstrained” enhanced sampling
without the need to set predefined collective variables and so is
useful for studying complex biomolecular conformational changes such
as protein folding and ligand binding. Furthermore, because the boost
potential is constructed using a harmonic function that follows Gaussian
distribution in GaMD, cumulant expansion to the second order can be
applied to recover the original free energy profiles of proteins and
other large biomolecules, which solves a long-standing energetic reweighting
problem of the previous aMD method. Taken together, GaMD offers major
advantages for both unconstrained enhanced sampling and free energy
calculations of large biomolecules. Here, we have implemented GaMD
in the NAMD package on top of the existing aMD feature and validated
it on three model systems: alanine dipeptide, the chignolin fast-folding
protein, and the M3 muscarinic G protein-coupled receptor
(GPCR). For alanine dipeptide, while conventional molecular dynamics
(cMD) simulations performed for 30 ns are poorly converged, GaMD simulations
of the same length yield free energy profiles that agree quantitatively
with those of 1000 ns cMD simulation. Further GaMD simulations have
captured folding of the chignolin and binding of the acetylcholine
(ACh) endogenous agonist to the M3 muscarinic receptor.
The reweighted free energy profiles are used to characterize the protein
folding and ligand binding pathways quantitatively. GaMD implemented
in the scalable NAMD is widely applicable to enhanced sampling and
free energy calculations of large biomolecules.
Collapse
Affiliation(s)
- Yui Tik Pang
- Department of Physics, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | | | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | | |
Collapse
|
12
|
Guarnera E, Vanden-Eijnden E. Optimized Markov state models for metastable systems. J Chem Phys 2016; 145:024102. [DOI: 10.1063/1.4954769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Miao Y, McCammon JA. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review. MOLECULAR SIMULATION 2016; 42:1046-1055. [PMID: 27453631 PMCID: PMC4955644 DOI: 10.1080/08927022.2015.1121541] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free energy calculations are central to understanding the structure, dynamics and function of biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of the main sources of error. Many enhanced sampling techniques have been developed to address this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review enhanced sampling methods that do not require predefined system-dependent CVs for biomolecular simulations and as such do not suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. These methods include, but are not limited to, replica exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space random walk and accelerated molecular dynamics. While it is overwhelming to describe all details of each method, we provide a summary of the methods along with the applications and offer our perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling methods for accurate biomolecular free energy calculations.
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - J. Andrew McCammon
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
14
|
Frank AT, Andricioaei I. Reaction Coordinate-Free Approach to Recovering Kinetics from Potential-Scaled Simulations: Application of Kramers’ Rate Theory. J Phys Chem B 2016; 120:8600-5. [DOI: 10.1021/acs.jpcb.6b02654] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T. Frank
- Department
of Chemistry, The University of California, Irvine, 4212 Natural
Sciences 1, Irvine, California 92697, United States
| | - Ioan Andricioaei
- Department
of Chemistry, The University of California, Irvine, 4212 Natural
Sciences 1, Irvine, California 92697, United States
| |
Collapse
|
15
|
Moradi M, Sagui C, Roland C. Investigating rare events with nonequilibrium work measurements. II. Transition and reaction rates. J Chem Phys 2015; 140:034115. [PMID: 25669371 DOI: 10.1063/1.4861056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a formalism for investigating transition pathways and transition probabilities for rare events in biomolecular systems. The formalism is based on combining Transition Path Theory with the results of nonequilibrium work relations, and shows that the equilibrium and nonequilibrium transition rates are in fact related. Aside from its fundamental importance, this allows for the calculation of relative equilibrium reaction rates with driven nonequilibrium simulations such as Steered Molecular Dynamics. The workings of the formalism are illustrated with a few typical numerical examples.
Collapse
Affiliation(s)
- Mahmoud Moradi
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Christopher Roland
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| |
Collapse
|
16
|
Chatterjee A, Bhattacharya S. Uncertainty in a Markov state model with missing states and rates: Application to a room temperature kinetic model obtained using high temperature molecular dynamics. J Chem Phys 2015; 143:114109. [DOI: 10.1063/1.4930976] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swati Bhattacharya
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
17
|
Vitalini F, Mey ASJS, Noé F, Keller BG. Dynamic properties of force fields. J Chem Phys 2015; 142:084101. [DOI: 10.1063/1.4909549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- F. Vitalini
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - A. S. J. S. Mey
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| | - F. Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| | - B. G. Keller
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| |
Collapse
|
18
|
Song J, Li Y, Ji C, Zhang JZH. Functional loop dynamics of the streptavidin-biotin complex. Sci Rep 2015; 5:7906. [PMID: 25601277 PMCID: PMC4298722 DOI: 10.1038/srep07906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 11/09/2022] Open
Abstract
Accelerated molecular dynamics (aMD) simulation is employed to study the functional dynamics of the flexible loop(3-4) in the strong-binding streptavidin-biotin complex system. Conventional molecular (cMD) simulation is also performed for comparison. The present study reveals the following important properties of the loop dynamics: (1) The transition of loop(3-4) from open to closed state is observed in 200 ns aMD simulation. (2) In the absence of biotin binding, the open-state streptavidin is more stable, which is consistent with experimental evidences. The free energy (ΔG) difference is about 5 kcal/mol between two states. But with biotin binding, the closed state is more stable due to electrostatic and hydrophobic interactions between the loop(3-4) and biotin. (3) The closure of loop(3-4) is concerted to the stable binding of biotin to streptavidin. When the loop(3-4) is in its open-state, biotin moves out of the binding pocket, indicating that the interactions between the loop(3-4) and biotin are essential in trapping biotin in the binding pocket. (4) In the tetrameric streptavidin system, the conformational change of the loop(3-4) in each monomer is independent of each other. That is, there is no cooperative binding for biotin bound to the four subunits of the tetramer.
Collapse
Affiliation(s)
- Jianing Song
- State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China
| | - Yongle Li
- Department of Chemistry, New York University
| | - Changge Ji
- 1] State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China [2] Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China [3] NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China 200062
| | - John Z H Zhang
- 1] State Key Laboratory of Precision Spectroscopy, Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China [2] NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China 200062
| |
Collapse
|
19
|
Hirai H. Practical hyperdynamics method for systems with large changes in potential energy. J Chem Phys 2014; 141:234109. [PMID: 25527921 DOI: 10.1063/1.4903787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A practical hyperdynamics method is proposed to accelerate systems with highly endothermic and exothermic reactions such as hydrocarbon pyrolysis and oxidation reactions. In this method, referred to as the "adaptive hyperdynamics (AHD) method," the bias potential parameters are adaptively updated according to the change in potential energy. The approach is intensively examined for JP-10 (exo-tetrahydrodicyclopentadiene) pyrolysis simulations using the ReaxFF reactive force field. Valid boost parameter ranges are clarified as a result. It is shown that AHD can be used to model pyrolysis at temperatures as low as 1000 K while achieving a boost factor of around 10(5).
Collapse
Affiliation(s)
- Hirotoshi Hirai
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
20
|
Jose JC, Chatterjee P, Sengupta N. Cross dimerization of amyloid-β and αsynuclein proteins in aqueous environment: a molecular dynamics simulations study. PLoS One 2014; 9:e106883. [PMID: 25210774 PMCID: PMC4161357 DOI: 10.1371/journal.pone.0106883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Self-assembly of the intrinsically unstructured proteins, amyloid beta (Aβ) and alpha synclein (αSyn), are associated with Alzheimer's Disease, and Parkinson's and Lewy Body Diseases, respectively. Importantly, pathological overlaps between these neurodegenerative diseases, and the possibilities of interactions between Aβ and αSyn in biological milieu emerge from several recent clinical reports and in vitro studies. Nevertheless, there are very few molecular level studies that have probed the nature of spontaneous interactions between these two sequentially dissimilar proteins and key characteristics of the resulting cross complexes. In this study, we have used atomistic molecular dynamics simulations to probe the possibility of cross dimerization between αSyn1-95 and Aβ1-42, and thereby gain insights into their plausible early assembly pathways in aqueous environment. Our analyses indicate a strong probability of association between the two sequences, with inter-protein attractive electrostatic interactions playing dominant roles. Principal component analysis revealed significant heterogeneity in the strength and nature of the associations in the key interaction modes. In most, the interactions of repeating Lys residues, mainly in the imperfect repeats 'KTKEGV' present in αSyn1-95 were found to be essential for cross interactions and formation of inter-protein salt bridges. Additionally, a hydrophobicity driven interaction mode devoid of salt bridges, where the non-amyloid component (NAC) region of αSyn1-95 came in contact with the hydrophobic core of Aβ1-42 was observed. The existence of such hetero complexes, and therefore hetero assembly pathways may lead to polymorphic aggregates with variations in pathological attributes. Our results provide a perspective on development of therapeutic strategies for preventing pathogenic interactions between these proteins.
Collapse
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
21
|
Boechi L, Pierce L, Komives EA, McCammon JA. Trypsinogen activation as observed in accelerated molecular dynamics simulations. Protein Sci 2014; 23:1550-8. [PMID: 25131668 DOI: 10.1002/pro.2532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/17/2014] [Accepted: 08/03/2014] [Indexed: 11/07/2022]
Abstract
Serine proteases are involved in many fundamental physiological processes, and control of their activity mainly results from the fact that they are synthetized in an inactive form that becomes active upon cleavage. Three decades ago Martin Karplus's group performed the first molecular dynamics simulations of trypsin, the most studied member of the serine protease family, to address the transition from the zymogen to its active form. Based on the computational power available at the time, only high frequency fluctuations, but not the transition steps, could be observed. By performing accelerated molecular dynamics (aMD) simulations, an interesting approach that increases the configurational sampling of atomistic simulations, we were able to observe the N-terminal tail insertion, a crucial step of the transition mechanism. Our results also support the hypothesis that the hydrophobic effect is the main force guiding the insertion step, although substantial enthalpic contributions are important in the activation mechanism. As the N-terminal tail insertion is a conserved step in the activation of serine proteases, these results afford new perspective on the underlying thermodynamics of the transition from the zymogen to the active enzyme.
Collapse
Affiliation(s)
- Leonardo Boechi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | | | | | |
Collapse
|
22
|
Larsson P, Pouya I, Lindahl E. From Side Chains Rattling on Picoseconds to Ensemble Simulations of Protein Folding. Isr J Chem 2014. [DOI: 10.1002/ijch.201400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Cheng T, Jaramillo-Botero A, Goddard WA, Sun H. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. J Am Chem Soc 2014; 136:9434-42. [PMID: 24885152 DOI: 10.1021/ja5037258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations in the reactive system to automatically identify the reactions appropriate to receive the bond boost. We refer to this as adaptive Accelerated ReaxFF Reactive Dynamics or aARRDyn. To validate the aARRDyn methodology, we determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate that the kinetics and reaction mechanisms (that is the detailed sequences of reactive intermediates and their subsequent transformation to others) for H2 oxidation obtained from aARRDyn agrees well with the brute force reactive molecular dynamics (BF-RMD) at 2498 K. Using aARRDyn, we then extend our simulations to the whole range of combustion temperatures from ignition (798 K) to flame temperature (2998K), and demonstrate that, over this full temperature range, the reaction rates predicted by aARRDyn agree well with the BF-RMD values, extrapolated to lower temperatures. For the aARRDyn simulation at 798 K we find that the time period for half the H2 to form H2O product is ∼538 s, whereas the computational cost was just 1289 ps, a speed increase of ∼0.42 trillion (10(12)) over BF-RMD. In carrying out these RMD simulations we found that the ReaxFF-COH2008 version of the ReaxFF force field was not accurate for such intermediates as H3O. Consequently we reoptimized the fit to a quantum mechanics (QM) level, leading to the ReaxFF-OH2014 force field that was used in the simulations.
Collapse
Affiliation(s)
- Tao Cheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | |
Collapse
|
24
|
Miao Y, Nichols SE, McCammon JA. Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Phys Chem Chem Phys 2014; 16:6398-406. [PMID: 24445284 PMCID: PMC3960983 DOI: 10.1039/c3cp53962h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/14/2014] [Indexed: 11/21/2022]
Abstract
G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute , University of California at San Diego , La Jolla , CA 92093 , USA .
| | - Sara E. Nichols
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Pharmacology , University of California at San Diego , La Jolla , CA 92093 , USA
| | - J. Andrew McCammon
- Howard Hughes Medical Institute , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Chemistry and Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA .
- Department of Pharmacology , University of California at San Diego , La Jolla , CA 92093 , USA
| |
Collapse
|
25
|
Boechi L, de Oliveira CAF, Da Fonseca I, Kizjakina K, Sobrado P, Tanner JJ, McCammon JA. Substrate-dependent dynamics of UDP-galactopyranose mutase: Implications for drug design. Protein Sci 2013; 22:1490-501. [PMID: 23934860 DOI: 10.1002/pro.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 02/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that represents one of the major health challenges of the Latin American countries. Successful efforts were made during the last few decades to control the transmission of this disease, but there is still no treatment for the 10 million adults in the chronic phase of the disease. In T. cruzi, as well as in other pathogens, the flavoenzyme UDP-galactopyranose mutase (UGM) catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, a precursor of the cell surface β-galactofuranose that is involved in the virulence of the pathogen. The fact that UGM is not present in humans makes inhibition of this enzyme a good approach in the design of new Chagas therapeutics. By performing a series of computer simulations of T. cruzi UGM in the presence or absence of an active site ligand, we address the molecular details of the mechanism that controls the uptake and retention of the substrate. The simulations suggest a modular mechanism in which each moiety of the substrate controls the flexibility of a different protein loop. Furthermore, the calculations indicate that interactions with the substrate diphosphate moiety are especially important for stabilizing the closed active site. This hypothesis is supported with kinetics measurements of site-directed mutants of T. cruzi UGM. Our results extend our knowledge of UGM dynamics and offer new alternatives for the prospective design of drugs.
Collapse
Affiliation(s)
- Leonardo Boechi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
26
|
Arrar M, de Oliveira CAF, Fajer M, Sinko W, McCammon JA. w-REXAMD: A Hamiltonian Replica Exchange Approach to Improve Free Energy Calculations for Systems with Kinetically Trapped Conformations. J Chem Theory Comput 2013; 9:18-23. [PMID: 23316122 PMCID: PMC3541756 DOI: 10.1021/ct300896h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Indexed: 11/29/2022]
Abstract
Free energy governs the equilibrium extent of many biological processes. High barriers separating free energy minima often limit the sampling in molecular dynamics (MD) simulations, leading to inaccurate free energies. Here, we demonstrate enhanced sampling and improved free energy calculations, relative to conventional MD, using windowed accelerated MD within a Hamiltonian replica exchange framework (w-REXAMD). We show that for a case in which multiple conformations are separated by large free energy barriers, w-REXAMD is a useful enhanced sampling technique, without any necessary reweighting.
Collapse
Affiliation(s)
- Mehrnoosh Arrar
- Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla, California
92093-0365, United States
| | - Cesar Augusto F. de Oliveira
- Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla, California
92093-0365, United States
- Howard Hughes Medical Institute,
University of California San Diego, La Jolla, California 92093-0365,
United States
| | - Mikolai Fajer
- Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla, California
92093-0365, United States
| | - William Sinko
- Biomedical
Sciences Program, University
of California San Diego, La Jolla, California 92093-0365, United States
| | - J. Andrew McCammon
- Department of Chemistry and
Biochemistry, University of California San Diego, La Jolla, California
92093-0365, United States
- Howard Hughes Medical Institute,
University of California San Diego, La Jolla, California 92093-0365,
United States
| |
Collapse
|
27
|
Doshi U, Hamelberg D. Improved Statistical Sampling and Accuracy with Accelerated Molecular Dynamics on Rotatable Torsions. J Chem Theory Comput 2012; 8:4004-12. [PMID: 26605567 DOI: 10.1021/ct3004194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.
Collapse
Affiliation(s)
- Urmi Doshi
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department of Chemistry and the Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
28
|
Abstract
The method of accelerated molecular dynamics (aMD) has been shown to increase the rate of phase-space sampling in biomolecular simulations. In this chapter, we discuss the theory behind aMD and describe the implementation of two versions: dual-boost and selective aMD. Each method has its practical advantages: dual-boost aMD is useful for increasing sampling of global conformational motions while selective aMD can improve the rate of convergence of free energy calculations. Special emphasis is placed on the use of these methods in computer-aided drug design, and the example of oseltamivir binding to neuraminidase is highlighted for both cases.
Collapse
Affiliation(s)
- Jeff Wereszczynski
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
29
|
Sinko W, Sierecki E, de Oliveira CAF, McCammon JA. Guide to virtual screening: application to the Akt phosphatase PHLPP. Methods Mol Biol 2012; 819:561-73. [PMID: 22183558 PMCID: PMC6863617 DOI: 10.1007/978-1-61779-465-0_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present an example-based description of virtual screening (VS) techniques used to identify new regulators of the Akt phosphatase PHLPP (PH domain Leucine repeat Protein Phosphatase). This enzyme opposes the effects of two kinases, Akt and PKC, which play a major role in cell growth and survival. Therefore, PHLPP is a potential therapeutic target in pathophysiologies where these pathways are either repressed, such as in diabetes and cardiovascular diseases, or over-activated as in cancer. To the best of our knowledge, no PHLPP inhibitors have been reported so far in the literature. In this study, we used a combination of chemical and virtual screening techniques that led to the identification of a number of inhibiting compounds with diverse scaffolds. These compounds bind PHLPP and inhibit cell death when tested in cellular assays. We employed GLIDE docking software to screen a library of more than 40,000 compounds selected from the NCI open depository (250,000 compounds) by similarity searches. We compare the efficiency at which we determined binding compounds from the chemical screen, and compare enrichment factors of the virtually discovered compounds over chemical screening.
Collapse
Affiliation(s)
- William Sinko
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
30
|
Sinko W, de Oliveira CAF, Pierce LCT, McCammon JA. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations. J Chem Theory Comput 2011; 8:17-23. [PMID: 22241967 PMCID: PMC3254191 DOI: 10.1021/ct200615k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.
Collapse
|
31
|
Du WN, Marino KA, Bolhuis PG. Multiple state transition interface sampling of alanine dipeptide in explicit solvent. J Chem Phys 2011; 135:145102. [DOI: 10.1063/1.3644344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 2011; 7:e1002178. [PMID: 22022240 PMCID: PMC3192803 DOI: 10.1371/journal.pcbi.1002178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR) as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.
Collapse
|
33
|
Wang Y, Markwick PRL, de Oliveira CAF, McCammon JA. Enhanced Lipid Diffusion and Mixing in Accelerated Molecular Dynamics. J Chem Theory Comput 2011; 7:3199-3207. [PMID: 22003320 PMCID: PMC3191728 DOI: 10.1021/ct200430c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 11/28/2022]
Abstract
Accelerated molecular dynamics (aMD) is an enhanced sampling technique that expedites conformational space sampling by reducing the barriers separating various low-energy states of a system. Here, we present the first application of the aMD method on lipid membranes. Altogether, ∼1.5 μs simulations were performed on three systems: a pure POPC bilayer, a pure DMPC bilayer, and a mixed POPC:DMPC bilayer. Overall, the aMD simulations are found to produce significant speedup in trans–gauche isomerization and lipid lateral diffusion versus those in conventional MD (cMD) simulations. Further comparison of a 70-ns aMD run and a 300-ns cMD run of the mixed POPC:DMPC bilayer shows that the two simulations yield similar lipid mixing behaviors, with aMD generating a 2–3-fold speedup compared to cMD. Our results demonstrate that the aMD method is an efficient approach for the study of bilayer structural and dynamic properties. On the basis of simulations of the three bilayer systems, we also discuss the impact of aMD parameters on various lipid properties, which can be used as a guideline for future aMD simulations of membrane systems.
Collapse
Affiliation(s)
- Yi Wang
- Center for Theoretical Biological Physics, Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | |
Collapse
|
34
|
Ferguson AL, Panagiotopoulos AZ, Debenedetti PG, Kevrekidis IG. Integrating diffusion maps with umbrella sampling: application to alanine dipeptide. J Chem Phys 2011; 134:135103. [PMID: 21476776 DOI: 10.1063/1.3574394] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few k(B)T, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.
Collapse
Affiliation(s)
- Andrew L Ferguson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
35
|
Vorob’ev YN. Molecular dynamics method for proteins with ionization-conformation coupling and equilibrium titration. Mol Biol 2011. [DOI: 10.1134/s0026893311020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Wang Y, Harrison CB, Schulten K, McCammon JA. Implementation of Accelerated Molecular Dynamics in NAMD. ACTA ACUST UNITED AC 2011; 4. [PMID: 21686063 DOI: 10.1088/1749-4699/4/1/015002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accelerated molecular dynamics (aMD) is an enhanced-sampling method that improves the conformational space sampling by reducing energy barriers separating different states of a system. Here we present the implementation of aMD in the parallel simulation program NAMD. We show that aMD simulations performed with NAMD have only a small overhead compared with classical MD simulations. Through example applications to the alanine dipeptide, we discuss the choice of acceleration parameters, the interpretation of aMD results, as well as the advantages and limitations of the aMD method.
Collapse
Affiliation(s)
- Yi Wang
- Center for Theoretical Biological Physics, Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, Department of Pharmacology, University of California, San Diego, La Jolla, 92093, USA
| | | | | | | |
Collapse
|
37
|
Markwick PRL, McCammon JA. Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys Chem Chem Phys 2011; 13:20053-65. [DOI: 10.1039/c1cp22100k] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
König G, Boresch S. Non-Boltzmann sampling and Bennett's acceptance ratio method: How to profit from bending the rules. J Comput Chem 2010; 32:1082-90. [DOI: 10.1002/jcc.21687] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/25/2010] [Accepted: 09/05/2010] [Indexed: 11/07/2022]
|
39
|
Williams SL, de Oliveira CAF, McCammon JA. Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics. J Chem Theory Comput 2010; 6:560-568. [PMID: 20148176 PMCID: PMC2817915 DOI: 10.1021/ct9005294] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Indexed: 12/03/2022]
Abstract
An extension of the constant pH method originally implemented by Mongan et al. (J. Comput. Chem.2004, 25, 2038−2048) is proposed in this study. This adapted version of the method couples the constant pH methodology with the enhanced sampling technique of accelerated molecular dynamics, in an attempt to overcome the sampling issues encountered with current standard constant pH molecular dynamics methods. Although good results were reported by Mongan et al. on application of the standard method to the hen egg-white lysozyme (HEWL) system, residues which possess strong interactions with neighboring groups tend to converge slowly, resulting in the reported inconsistencies for predicted pKa values, as highlighted by the authors. The application of the coupled method described in this study to the HEWL system displays improvements over the standard version of the method, with the improved sampling leading to faster convergence and producing pKa values in closer agreement to those obtained experimentally for the more slowly converging residues.
Collapse
Affiliation(s)
- Sarah L Williams
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093-0365, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, California 92093, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0365
| | | | | |
Collapse
|
40
|
Zheng H, Zhang Y. Introducing sampling entropy in repository based adaptive umbrella sampling. J Chem Phys 2009; 131:214105. [PMID: 19968335 PMCID: PMC2802197 DOI: 10.1063/1.3267549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/04/2009] [Indexed: 11/14/2022] Open
Abstract
Determining free energy surfaces along chosen reaction coordinates is a common and important task in simulating complex systems. Due to the complexity of energy landscapes and the existence of high barriers, one widely pursued objective to develop efficient simulation methods is to achieve uniform sampling among thermodynamic states of interest. In this work, we have demonstrated sampling entropy (SE) as an excellent indicator for uniform sampling as well as for the convergence of free energy simulations. By introducing SE and the concentration theorem into the biasing-potential-updating scheme, we have further improved the adaptivity, robustness, and applicability of our recently developed repository based adaptive umbrella sampling (RBAUS) approach [H. Zheng and Y. Zhang, J. Chem. Phys. 128, 204106 (2008)]. Besides simulations of one dimensional free energy profiles for various systems, the generality and efficiency of this new RBAUS-SE approach have been further demonstrated by determining two dimensional free energy surfaces for the alanine dipeptide in gas phase as well as in water.
Collapse
Affiliation(s)
- Han Zheng
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
41
|
Escobedo FA, Borrero EE, Araque JC. Transition path sampling and forward flux sampling. Applications to biological systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:333101. [PMID: 21828593 DOI: 10.1088/0953-8984/21/33/333101] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The last decade has seen a rapid growth in the number of simulation methods and applications dealing with the sampling of transition pathways of rare nanoscale events. Such studies are crucial, for example, for understanding the mechanism and kinetics of conformational transitions and enzymatic events associated with the function of biomolecules. In this review, a broad account of transition path sampling approaches is provided, starting from the general concepts, progressing to the specific principles that underlie some of the most important methods, and eventually singling out the so-called forward flux sampling method for a more detailed description. This is done because forward flux sampling, despite its appealing simplicity and potential efficiency, has thus far received limited attention from practitioners. While path sampling methods have a widespread application to many types of rare transitional events, here only recent applications involving biomolecules are reviewed, including isomerization, protein folding, and enzyme catalysis.
Collapse
|
42
|
Marinelli F, Pietrucci F, Laio A, Piana S. A kinetic model of trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput Biol 2009; 5:e1000452. [PMID: 19662155 PMCID: PMC2711228 DOI: 10.1371/journal.pcbi.1000452] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 06/29/2009] [Indexed: 11/18/2022] Open
Abstract
Trp-cage is a designed 20-residue polypeptide that, in spite of its size, shares several features with larger globular proteins.Although the system has been intensively investigated experimentally and theoretically, its folding mechanism is not yet fully understood. Indeed, some experiments suggest a two-state behavior, while others point to the presence of intermediates. In this work we show that the results of a bias-exchange metadynamics simulation can be used for constructing a detailed thermodynamic and kinetic model of the system. The model, although constructed from a biased simulation, has a quality similar to those extracted from the analysis of long unbiased molecular dynamics trajectories. This is demonstrated by a careful benchmark of the approach on a smaller system, the solvated Ace-Ala3-Nme peptide. For theTrp-cage folding, the model predicts that the relaxation time of 3100 ns observed experimentally is due to the presence of a compact molten globule-like conformation. This state has an occupancy of only 3% at 300 K, but acts as a kinetic trap.Instead, non-compact structures relax to the folded state on the sub-microsecond timescale. The model also predicts the presence of a state at Calpha-RMSD of 4.4 A from the NMR structure in which the Trp strongly interacts with Pro12. This state can explain the abnormal temperature dependence of the Pro12-delta3 and Gly11-alpha3 chemical shifts. The structures of the two most stable misfolded intermediates are in agreement with NMR experiments on the unfolded protein. Our work shows that, using biased molecular dynamics trajectories, it is possible to construct a model describing in detail the Trp-cage folding kinetics and thermodynamics in agreement with experimental data.
Collapse
Affiliation(s)
- Fabrizio Marinelli
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
- Italian Institute of Technology (IIT), Trieste, Italy
| | - Fabio Pietrucci
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
| | - Alessandro Laio
- International School for Advanced Studies (SISSA-ISAS) and DEMOCRITOS, Trieste, Italy
| | - Stefano Piana
- Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia, Australia
| |
Collapse
|
43
|
Velez-Vega C, Borrero EE, Escobedo FA. Kinetics and reaction coordinate for the isomerization of alanine dipeptide by a forward flux sampling protocol. J Chem Phys 2009; 130:225101. [DOI: 10.1063/1.3147465] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
44
|
Baron R, Wong SE, de Oliveira CAF, McCammon JA. E9-Im9 colicin DNase-immunity protein biomolecular association in water: a multiple-copy and accelerated molecular dynamics simulation study. J Phys Chem B 2008; 112:16802-14. [PMID: 19053689 PMCID: PMC2651752 DOI: 10.1021/jp8061543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/27/2008] [Indexed: 11/30/2022]
Abstract
Protein-protein transient and dynamic interactions underlie all biological processes. The molecular dynamics (MD) of the E9 colicin DNase protein, its Im9 inhibitor protein, and their E9-Im9 recognition complex are investigated by combining multiple-copy (MC) MD and accelerated MD (aMD) explicit-solvent simulation approaches, after validation with crystalline-phase and solution experiments. Im9 shows higher flexibility than its E9 counterpart. Im9 displays a significant reduction of backbone flexibility and a remarkable increase in motional correlation upon E9 association. Im9 loops 23-31 and 54-64 open with respect to the E9-Im9 X-ray structure and show high conformational diversity. Upon association a large fraction (approximately 20 nm2) of E9 and Im9 protein surfaces become inaccessible to water. Numerous salt bridges transiently occurring throughout our six 50 ns long MC-MD simulations are not present in the X-ray model. Among these Im9 Glu31-E9 Arg96 and Im9 Glu41-Lys89 involve interface interactions. Through the use of 10 ns of Im9 aMD simulation, we reconcile the largest thermodynamic impact measured for Asp51Ala mutation with Im9 structure and dynamics. Lys57 acts as an essential molecular switch to shift Im9 surface loop towards an ideal configuration for E9 inhibition. This is achieved by switching Asp60-Lys57 and Asp62-Lys57 hydrogen bonds to Asp51-Lys57 salt bridge. E9-Im9 recognition involves shifts of conformational distributions, reorganization of intramolecular hydrogen bond patterns, and formation of new inter- and intramolecular interactions. The description of key transient biological interactions can be significantly enriched by the dynamic and atomic-level information provided by computer simulations.
Collapse
Affiliation(s)
- Riccardo Baron
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, Department of Pharmacology, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0365, USA.
| | | | | | | |
Collapse
|
45
|
Free energy surfaces from an extended harmonic superposition approach and kinetics for alanine dipeptide. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.10.085] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Liu P, Shi Q, Lyman E, Voth GA. Reconstructing atomistic detail for coarse-grained models with resolution exchange. J Chem Phys 2008; 129:114103. [DOI: 10.1063/1.2976663] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
|
48
|
Ceotto M, Ayton GS, Voth GA. Accelerated Superposition State Molecular Dynamics for Condensed Phase Systems. J Chem Theory Comput 2008; 4:560-8. [DOI: 10.1021/ct7003275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michele Ceotto
- Dipartimento di Chimica Fisica ed Elettrochimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Gary S. Ayton
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112
| | - Gregory A. Voth
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|