1
|
Khudozhitkov AE, Ogiwara N, Donoshita M, Kobayashi H, Stepanov AG, Kolokolov DI, Kitagawa H. Dynamics of Linkers in Metal-Organic Framework Glasses. J Am Chem Soc 2024; 146:12950-12957. [PMID: 38693778 DOI: 10.1021/jacs.3c13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal-organic framework (MOF) glasses have emerged as a new class of organic-inorganic hybrid glass materials. Considerable efforts have been devoted to unraveling the macroscopic dynamics of MOF glasses by studying their rheological behavior; however, their microscopic dynamics remain unclear. In this work, we studied the effect of vitrification on linker dynamics in ZIF-62 by solid-state 2H nuclear magnetic resonance (NMR) spectroscopy. 2H NMR relaxation analysis provided a detailed picture of the mobility of the ZIF-62 linkers, including local restricted librations and a large-amplitude twist; these details were verified by molecular dynamics. A comparison of ZIF-62 crystals and glasses revealed that vitrification does not drastically affect the fast individual flipping motions with large-amplitude twists, whereas it facilitates slow cooperative large-amplitude twist motions with a decrease in the activation barrier. These observations support the findings of previous studies, indicating that glassy ZIF-62 retains permanent porosity and that short-range disorder exists in the alignment of ligands because of distortion of the coordination angle.
Collapse
Affiliation(s)
- Alexander E Khudozhitkov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Naoki Ogiwara
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Masaki Donoshita
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Kobayashi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Alexander G Stepanov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Daniil I Kolokolov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Hinz Y, Beerwerth J, Böhmer R. Anion dynamics and motional decoupling in a glycerol-choline chloride deep eutectic solvent studied by one- and two-dimensional 35Cl NMR. Phys Chem Chem Phys 2023; 25:28130-28140. [PMID: 37818622 DOI: 10.1039/d3cp03668e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Chlorine-35 is among the few nuclides that provide an experimental handle on the anion dynamics in choline based deep eutectic solvents. By combining several nuclear magnetic resonance (NMR) techniques, the present work examines the Cl- motions within glyceline, a glycerol : choline chloride 2 : 1 solution, in a large temperature range down to the glass transition temperature Tg. The applied methods include spin relaxometry, second-order line shape analysis, as well as two-dimensional central-transition exchange and stimulated-echo spectroscopy. The finding of unstructured central-transition NMR spectra characterized by a relatively small average quadrupolar coupling attests to a highly disordered, essentially nondirectional anionic coordination in glyceline. For temperatures larger than about 1.3Tg the chlorine motions are well coupled to those of the glycerol and the choline moieties. At lower temperatures the local translational anion dynamics become Arrhenian and increasingly faster than the motion of glyceline's matrix molecules. Upon further cooling, the overall ionic conductivity continues to display a super-Arrhenius behavior, implying that the choline cations rather than the Cl anions dominate the long-range charge transport also near Tg.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
3
|
Hoffmann L, Beerwerth J, Adjei-Körner M, Fuentes-Landete V, Tonauer CM, Loerting T, Böhmer R. Oxygen NMR of high-density and low-density amorphous ice. J Chem Phys 2022; 156:084503. [DOI: 10.1063/5.0080333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using oxygen-17 as a nuclear probe, spin relaxometry was applied to study the high-density and low-density states of amorphous ice, covering temperatures below and somewhat above their glass transitions. These findings are put in perspective with results from deuteron nuclear magnetic resonance and with calculations based on dielectrically detected correlation times. This comparison reveals the presence of a wide distribution of correlation times. Furthermore, oxygen-17 central-transition echo spectra were recorded for wide ranges of temperature and pulse spacing. The spectra cannot be described by a single set of quadrupolar parameters, suggesting a distribution of H–O–H opening angles that is broader for high-density than for low-density amorphous ice. Simulations of the pulse separation dependent spin-echo spectra for various scenarios demonstrate that a small-step frequency diffusion process, assigned to the presence of homonuclear oxygen–oxygen interactions, determines the shape evolution of the pulse-separation-dependent spectra.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Christina M. Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
4
|
Beerwerth J, Bierwirth SP, Adam J, Gainaru C, Böhmer R. Local and global dynamics of the viscous ion conductors 2Ca(NO3)2-3KNO3 and 2Ca(NO3)2-3RbNO3 probed by 87Rb nuclear magnetic resonance and shear rheology. J Chem Phys 2019; 150:194503. [DOI: 10.1063/1.5093973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - S. Peter Bierwirth
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Jens Adam
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
5
|
Storek M, Böhmer R. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A (7)Li NMR study of the superionic conductor lithium indium phosphate. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 260:116-126. [PMID: 26454137 DOI: 10.1016/j.jmr.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Cos-cos stimulated echoes of non-selectively excited spin-3/2 nuclei were not exploited in studies of slow motional processes in solids and solid-like samples, so far. Based on a theoretical analysis of the quadrupolar transients which hitherto obviously precluded the application of such echoes, their utility is demonstrated for the example of (7)Li NMR on the polycrystalline fast ion conductor lithium indium phosphate. Quadrupolar transients can adversely affect the shape of two- and three-pulse echo spectra and strategies are successfully tested that mitigate their impact. Furthermore, by means of suitably adapted cos-cos echo sequences an effective suppression of central-line contributions to the NMR spectra is achieved. By combining cos-cos and sin-sin datasets static two-dimensional exchange spectra were recorded that display quadrupolarly modulated off-diagonal intensity indicative of ionic motion.
Collapse
Affiliation(s)
- M Storek
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
6
|
Storek M, Jeffrey KR, Böhmer R. Local-field approximation of homonuclear dipolar interactions in ⁷Li-NMR: density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 59-60:8-19. [PMID: 24593983 DOI: 10.1016/j.ssnmr.2014.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
NMR echo techniques have proven to be important to study dynamics in ion conductors and other solid materials. Using the spin-3/2 nucleus (7)Li as a probe, both the quadrupolar and the often neglected homonuclear dipolar interactions modulate the NMR frequency as the ion performs jump processes. Retaining only the local-field term of the many-body Hamiltonian, the impact of the dipolar interaction on various echo experiments was studied using spin dynamics calculations yielding products of dipolar and quadrupolar correlation functions. Using a simple stochastic model these functions were simulated with particular emphasis on the impact of ionic motions and on the conditions under which the dipolar and quadrupolar contributions factorize. The results of the computations and of the random-walk simulations are compared with experimental data obtained for various lithium borate and lithium borophosphate glasses. It is concluded that the local-field approximation is a useful means of treating the Li-Li dipole interactions and that the simple model that we introduce is capable of describing many experimentally observed features. Furthermore, because the dipolar and quadrupolar contributions essentially factorize, a selective determination of the corresponding correlation functions becomes possible.
Collapse
Affiliation(s)
- Michael Storek
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | - Kenneth R Jeffrey
- Department of Physics, Guelph-Waterloo Physics Institute, University of Guelph, MacNaughton Building, Gordon Street, Guelph, Ontario, Canada N1G 2W1
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
7
|
Nelson H, Schildmann S, Nowaczyk A, Gainaru C, Geil B, Böhmer R. Small-angle water reorientations in KOH doped hexagonal ice and clathrate hydrates. Phys Chem Chem Phys 2013; 15:6355-67. [DOI: 10.1039/c3cp00139c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Schildmann S, Nowaczyk A, Geil B, Gainaru C, Böhmer R. Water dynamics on the hydrate lattice of a tetrabutyl ammonium bromide semiclathrate. J Chem Phys 2009; 130:104505. [DOI: 10.1063/1.3081897] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Böhmer R, Faske S, Geil B. Mistimed stimulated echoes and distorted spin-alignment spectra of powdered solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2008; 34:32-36. [PMID: 18547790 DOI: 10.1016/j.ssnmr.2008.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
It is commonplace that NMR echo maxima appear at times for which the dephasing and the rephasing periods of a pulse sequence are equally long. However, for stimulated echoes a significant time shift from this naively expected echo position can be observed if the dephasing times are smaller than the inverse line width of the NMR spectrum. This effect, which will be observable for any line shape, is evaluated quantitatively for Gaussian and for Pake-like patterns. Comparison of the calculations is made with experimental results from (6)Li- and from (2)H-NMR and excellent agreement is found. In the simultaneous presence of broad and narrow lines, the apparent time shift can give rise to characteristic distortions in spin-alignment spectra. This explains some features previously observed using (7)Li-NMR.
Collapse
Affiliation(s)
- Roland Böhmer
- Fakultät für Physik and Interdisziplinäres Zentrum für Magnetische Resonanz, Technische Universität Dortmund, 44221 Dortmund, Germany.
| | | | | |
Collapse
|