1
|
Han Q, Cao H, Sun Y, Wang G, Poon S, Wang M, Liu B, Wang Y, Wang Z, Mi B. Tuning phase compositions of MoS 2 nanomaterials for enhanced heavy metal removal: performance and mechanism. Phys Chem Chem Phys 2022; 24:13305-13316. [PMID: 35608012 DOI: 10.1039/d2cp00705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional MoS2 nanosheets have shown great potential in heavy metal remediation due to their unique properties. MoS2 has two primary phases: 1T and 2H. Each has different physiochemical properties, but the impact of these differences on the overall material's heavy metal removal performance and associated mechanisms is rarely reported. In this study, we synthesized morphologically similar but phase-distinct MoS2 samples via hydrothermal synthesis, which comprised dominantly either a metallic 1T phase or a semiconducting 2H phase. 1T-MoS2 samples exhibited higher removal capacities for Ag+ and Pb2+ cations relative to 2H-MoS2. In particular, an eight-fold increase in the Pb2+ adsorption capacity was observed in the 1T-MoS2 samples (i.e. ∼632.9 mg g-1) compared to the 2H-MoS2 samples (∼81.6 mg g-1). The mechanisms driving the enhanced performance of 1T-MoS2 were investigated through detailed characterization of metal-laden MoS2 samples and DFT modelling. We found that 1T-MoS2 intrinsically had a larger interlayer spacing than 2H-MoS2 because water molecules were retained between the hydrophilic 1T nanosheets during hydrothermal synthesis. The widened interlayer spacing in 1T-MoS2 allowed the diffusion of heavy metal ions into the nanochannels, increasing the number of adsorption sites and total removal capacities. On the other hand, DFT modelling revealed the energy-favorable adsorption complex of Ag+ and Pb2+ for 1T-MoS2, in which each metal atom was bonded with three S atoms leading to much higher adsorption energies relative to 2H-MoS2 for Ag+ and Pb2+. This study unravels the underlying mechanisms of phase-dependent heavy metal remediation by MoS2 nanosheets, providing an important guide for the use of 2D nanomaterials in environmental applications which include heavy metal removal, contaminant sensing, and membrane separation.
Collapse
Affiliation(s)
- Qi Han
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hao Cao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchen Sun
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sidney Poon
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| | - Monong Wang
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| | - Bei Liu
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanggang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongying Wang
- Department of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Baoxia Mi
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Theory of Weakly Polydisperse Cytoskeleton Filaments. Polymers (Basel) 2022; 14:polym14102042. [PMID: 35631924 PMCID: PMC9145005 DOI: 10.3390/polym14102042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Cytoskeleton filaments have the extraordinary ability to change conformations dynamically in response to alterations of the number density of actins/tubulin, the number density and type of binding agents, and the electrolyte concentration. This property is crucial for eukaryotic cells to achieve specific biological functions in different cellular compartments. Conventional approaches to biopolymers’ solution break down for cytoskeleton filaments because they entail several approximations to treat their polyelectrolyte and mechanical properties. In this article, we introduce a novel density functional theory for polydisperse, semiflexible cytoskeleton filaments. The approach accounts for the equilibrium polymerization kinetics, length and orientation filament distributions, as well as the electrostatic interaction between filaments and the electrolyte. This is essential for cytoskeleton polymerization in different cell compartments generating filaments of different lengths, sometimes long enough to become semiflexible. We characterized the thermodynamics properties of actin filaments in electrolyte aqueous solutions. We calculated the free energy, pressure, chemical potential, and second virial coefficient for each filament conformation. We also calculated the phase diagram of actin filaments’ solution and compared with the corresponding results in in vitro experiments.
Collapse
|
3
|
Du W, Yang Y, Hu L, Chang B, Cao G, Nasir M, Lv J. Combined determination analysis of surface properties evolution towards bentonite by pH treatments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Yang J, Gallegos A, Lian C, Deng S, Liu H, Wu J. Curvature effects on electric-double-layer capacitance. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Saboorian-Jooybari H, Chen Z. Surface charging parameters of charged particles in symmetrical electrolyte solutions. Phys Chem Chem Phys 2020; 22:20123-20142. [PMID: 32936146 DOI: 10.1039/d0cp02725a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface electric charge of dispersed particles is an essential determinant of physicochemical properties, coagulation and flocculation processes, and stability of colloidal solutions. Size-dependence of surface potential, charge density, and total surface charge of suspended charged particles has recently received attention in the literature. Despite the clear significance of understanding such dependence, very few studies have been devoted to this problem, with contradictory results of the relationship type. Currently, there is no analytical formula to represent explicit relationships between surface charging parameters and particle size. This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution. First, a non-dimensional approach is adopted to simplify the problems, overcoming the difficulty of dealing with multiple influential variables. Then, to reduce the degrees of freedom of the problems under consideration, Gauss's law is combined with the condition of electro-neutrality in an electrical double layer (EDL). Next, the resulting complex integral equations are solved to construct characteristic curves and to express the dimensionless surface charging parameters explicitly as a function of the dimensionless particle radius. The new theoretical expressions are founded on approximate analytical and numerical solutions of the nonlinear Poisson-Boltzmann (PB) equation in cylindrical and spherical geometries. Afterwards, the solutions of the non-dimensionalized problems are dimensionalized to derive accurate explicit closed-form expressions, describing how surface charging parameters are related to the radius of a charged particle, properties of the solution, and thermodynamic conditions. These analytical formulas enable researchers to properly determine surface potential, surface charge density, total surface charge, and radius of dispersed particles by characterizing only one of them. Finally, the validity of the commonly-held hypothesis that surface charge density is independent of particle size is examined at the end of this study.
Collapse
Affiliation(s)
- Hadi Saboorian-Jooybari
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
6
|
Cui ZX, Feng YN, Xue YQ, Zhang J, Zhang R, Hao J, Liu JY. Shape dependence of thermodynamics of adsorption on nanoparticles: a theoretical and experimental study. Phys Chem Chem Phys 2018; 20:29959-29968. [PMID: 30478461 DOI: 10.1039/c8cp04895a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomaterials have excellent adsorption performance, which mainly depends on the adsorption thermodynamics that is related to the shape of the nanoparticles that make up the nanomaterial, but the effects of shape on the thermodynamics of adsorption are not fully clear. In this paper, theoretically, the general formulae of adsorption thermodynamic properties for nanoparticles with different shapes and different sizes were derived, and the influencing regularities and mechanisms on adsorption thermodynamic properties were discussed. Experimentally, the influences of the shape and size of nano-CeO2 on the thermodynamics of adsorption were studied in aqueous solution. The experiment results showed that the shape has significant influences on the thermodynamics of adsorption, and the smaller the particle size, the more significant the effects of shape on the thermodynamics. For the adsorption of nano-CeO2 with different shapes and the same equivalent particle size, compared with the sphere, the equilibrium constant of adsorption for the octahedron is larger, while the molar Gibbs free energy of adsorption , the molar adsorption enthalpy of adsorption and the molar adsorption entropy of adsorption are smaller. For the adsorption of nano-CeO2 with the same shape, with the decreasing particle size, increases, while , and decrease; and , , and are each linearly related to the reciprocal of particle size. The experimental results are consistent with the theoretical relations. The theories can quantitatively describe the adsorption behavior on nanoparticles, explain the regularities and mechanisms of influence of shape, and provide guidance for the research and application of nanoadsorption.
Collapse
Affiliation(s)
- Zi-Xiang Cui
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
González-Tovar E, Lozada-Cassou M, Bhuiyan LB, Outhwaite CW. Comparison of zeta potentials and structure for statistical mechanical theories of a model cylindrical double layer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
8
|
Sun LZ, Kranawetter C, Heng X, Chen SJ. Predicting Ion Effects in an RNA Conformational Equilibrium. J Phys Chem B 2017; 121:8026-8036. [PMID: 28780864 DOI: 10.1021/acs.jpcb.7b03873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We develop a partial charge-based tightly bound ion (PCTBI) model for the ion effects in RNA folding. On the basis of the Monte Carlo tightly bound ion (MCTBI) approach, the model can account for ion fluctuation and correlation effects, and can predict the ion distribution around the RNA. Furthermore, unlike the previous coarse-grained RNA charge models, where negative charges are placed on the phosphates only, the current new model considers the detailed all-atom partial charge distribution on the RNA. Thus, the model not only keeps the advantage of the MCTBI model, but also has the potential to provide important detailed information unattainable by the previous MCTBI models. For example, the model predicts the reduction in ion binding upon protein binding and ion-induced conformational switches. For hepatitis C virus genomic RNA, the model predicts a Mg2+-induced stabilization of a kissing motif for a cis-acting regulatory element in the genomic RNA. Extensive theory-experiment comparisons support the reliability of the theoretical predictions. Therefore, the model may serve as a robust starting point for further development of an accurate method for ion effects in an RNA conformational equilibrium and RNA-cofactor interactions.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Clayton Kranawetter
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute and ‡Department of Biochemistry, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Sun LZ, Zhang JX, Chen SJ. MCTBI: a web server for predicting metal ion effects in RNA structures. RNA (NEW YORK, N.Y.) 2017; 23:1155-1165. [PMID: 28450533 PMCID: PMC5513060 DOI: 10.1261/rna.060947.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/16/2017] [Indexed: 05/27/2023]
Abstract
Metal ions play critical roles in RNA structure and function. However, web servers and software packages for predicting ion effects in RNA structures are notably scarce. Furthermore, the existing web servers and software packages mainly neglect ion correlation and fluctuation effects, which are potentially important for RNAs. We here report a new web server, the MCTBI server (http://rna.physics.missouri.edu/MCTBI), for the prediction of ion effects for RNA structures. This server is based on the recently developed MCTBI, a model that can account for ion correlation and fluctuation effects for nucleic acid structures and can provide improved predictions for the effects of metal ions, especially for multivalent ions such as Mg2+ effects, as shown by extensive theory-experiment test results. The MCTBI web server predicts metal ion binding fractions, the most probable bound ion distribution, the electrostatic free energy of the system, and the free energy components. The results provide mechanistic insights into the role of metal ions in RNA structure formation and folding stability, which is important for understanding RNA functions and the rational design of RNA structures.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing-Xiang Zhang
- School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
10
|
Helmi A, Esrafili MD. A hard sphere fluid with quantum correction in nanospherical pores: A DFT study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Sun LZ, Chen SJ. Monte Carlo Tightly Bound Ion Model: Predicting Ion-Binding Properties of RNA with Ion Correlations and Fluctuations. J Chem Theory Comput 2016; 12:3370-81. [PMID: 27311366 PMCID: PMC5520805 DOI: 10.1021/acs.jctc.6b00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Experiments have suggested that ion correlation and fluctuation effects can be potentially important for multivalent ions in RNA folding. However, most existing computational methods for the ion electrostatics in RNA folding tend to ignore these effects. The previously reported tightly bound ion (TBI) model can treat ion correlation and fluctuation but its applicability to biologically important RNAs is severely limited by the low computational efficiency. Here, on the basis of Monte Carlo sampling for the many-body ion distribution, we develop a new computational model, the Monte Carlo tightly bound ion (MCTBI) model, for ion-binding properties around an RNA. Because of an enhanced sampling algorithm for ion distribution, the model leads to a significant improvement in computational efficiency. For example, for a 160-nt RNA, the model causes a more than 10-fold increase in the computational efficiency, and the improvement in computational efficiency is more pronounced for larger systems. Furthermore, unlike the earlier model that describes ion distribution using the number of bound ions around each nucleotide, the current MCTBI model is based on the three-dimensional coordinates of the ions. The higher efficiency of the model allows us to treat the ion effects for medium to large RNA molecules, RNA-ligand complexes, and RNA-protein complexes. This new model together with proper RNA conformational sampling and the energetics model may serve as a starting point for further development for the ion effects in RNA folding and conformational changes and for large nucleic acid systems.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, MO 65211
| |
Collapse
|
12
|
Xin Y, Zheng YX, Yu YX. Density functional theory study on ion adsorption and electroosmotic flow in a membrane with charged cylindrical pores. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1090637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yan Xin
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan-Xiang Zheng
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing, China
- State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Liu X, Hu F, Ding W, Tian R, Li R, Li H. A how-to approach for estimation of surface/Stern potentials considering ionic size and polarization. Analyst 2015; 140:7217-24. [DOI: 10.1039/c5an01053e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Based on the effects of ionic volume in Stern layer and polarization in diffuse layer, the relationship between surface potential and Stern potential is quantified.
Collapse
Affiliation(s)
- Xinmin Liu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Feinan Hu
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Wuquan Ding
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Rui Tian
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Rui Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process
- College of Resources and Environment
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
14
|
RNA folding: structure prediction, folding kinetics and ion electrostatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:143-83. [PMID: 25387965 DOI: 10.1007/978-94-017-9245-5_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.
Collapse
|
15
|
Hallez Y, Diatta J, Meireles M. Quantitative assessment of the accuracy of the Poisson-Boltzmann cell model for salty suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6721-9. [PMID: 24834492 DOI: 10.1021/la501265k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The cell model is a ubiquitous, fast, and relatively easily implemented model used to estimate the osmotic pressure of a colloidal dispersion. It has been shown to yield accurate approximations of the pressure in dispersions with a low salt content. It is generally accepted that it performs well when long-ranged interactions are involved and the structure of the dispersion is solidlike. The aim of the present work is to determine quantitatively the error committed by assuming the pressure computed with the cell model is the real osmotic pressure of a dispersion. To this end, cell model pressures are compared to a correct estimation of the actual pressures obtained from Poisson-Boltzmann Brownian dynamics simulations including many-body electrostatics and the thermal motion of the colloids. The comparison is performed for various colloidal sizes and charges, salt contents, and volume fractions. It is demonstrated that the accuracy of the cell model predictions is a function of only the average intercolloid distance scaled by Debye's length κd̅ and the normalized colloidal charge. The cell model is accurate for κd̅ < 1 and not reliable for κd̅ > 5 independently of the colloidal charge. In the 1 < κd̅ < 5 range, covering a wide set of experimental conditions, the colloidal surface charge has a large influence on the error associated with the cell approximation. The results presented in this article should provide a useful reference to determine a priori if the cell model can be expected to predict accurately an equation of state for a given set of physicochemical parameters.
Collapse
Affiliation(s)
- Yannick Hallez
- Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 118 Route de Narbonne, F-31062 Toulouse, France
| | | | | |
Collapse
|
16
|
Simulation study on dynamics of A- to B-form transition in aqueous DNA solution: Effect of alkali metal counterions. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Yu Y, Fujimoto S. Molecular dynamics simulation of the A-DNA to B-DNA transition in aqueous RbCl solution. Sci China Chem 2013. [DOI: 10.1007/s11426-012-4825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
He Z, Chen SJ. Predicting ion-nucleic acid interactions by energy landscape-guided sampling. J Chem Theory Comput 2012; 8:2095-2101. [PMID: 23002389 DOI: 10.1021/ct300227a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recently developed Tightly Bound Ion (TBI) model offers improved predictions for ion effect in nucleic acid systems by accounting for ion correlation and fluctuation effects. However, further application of the model to larger systems is limited by the low computational efficiency of the model. Here, we develop a new computational efficient TBI model using free energy landscape-guided sampling method. The method leads to drastic reduction in the computer time by a factor of 50 for RNAs of 50-100 nucleotides long. The improvement in the computational efficiency would be more significant for larger structures. To test the new method, we apply the model to predict the free energies and the number of bound ions for a series of RNA folding systems. The validity of this new model is supported by the nearly exact agreement with the results from the original TBI model and the agreement with the experimental data. The method may pave the way for further applications of the TBI model to treat a broad range of biologically significant systems such as tetraloop-receptor and riboswitches.
Collapse
Affiliation(s)
- Zhaojian He
- Department of Physics, Department of Biochemistry, and Informatics Institute University of Missouri, Columbia, MO 65211
| | | |
Collapse
|
19
|
Predicting ion binding properties for RNA tertiary structures. Biophys J 2010; 99:1565-76. [PMID: 20816069 DOI: 10.1016/j.bpj.2010.06.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/21/2022] Open
Abstract
Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg(2+) ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg(2+) binding in the competition with Na(+). Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg(2+)/Na(+) ion-binding to various RNA and DNA structures over a wide range of Mg(2+) and Na(+) concentrations.
Collapse
|
20
|
Goel T, Patra CN, Ghosh SK, Mukherjee T. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory. J Chem Phys 2010; 132:194706. [DOI: 10.1063/1.3428702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Salt-dependent folding energy landscape of RNA three-way junction. Biophys J 2010; 98:111-20. [PMID: 20085723 DOI: 10.1016/j.bpj.2009.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022] Open
Abstract
RNAs are highly negatively charged chain molecules. Metal ions play a crucial role in RNA folding stability and conformational changes. In this work, we employ the recently developed tightly bound ion (TBI) model, which accounts for the correlation between ions and the fluctuation of ion distributions, to investigate the ion-dependent free energy landscape for the three-way RNA junction in a 16S rRNA domain. The predicted electrostatic free energy landscape suggests that 1), ion-mediated electrostatic interactions cause an ensemble of unfolded conformations narrowly populated around the maximally extended structure; and 2), Mg(2+) ion-induced correlation effects help bring the helices to the folded state. Nonelectrostatic interactions, such as noncanonical interactions within the junctions and between junctions and helix stems, might further limit the conformational diversity of the unfolded state, resulting in a more ordered unfolded state than the one predicted from the electrostatic effect. Moreover, the folded state is predominantly stabilized by the coaxial stacking force. The TBI-predicted folding stability agrees well with the experimental measurements for the different Na(+) and Mg(2+) ion concentrations. For Mg(2+) solutions, the TBI model, which accounts for the Mg(2+) ion correlation effect, gives more improved predictions than the Poisson-Boltzmann theory, which tends to underestimate the role of Mg(2+) in stabilizing the folded structure. Detailed control tests indicate that the dominant ion correlation effect comes from the charge-charge Coulombic correlation rather than the size (excluded volume) correlation between the ions. Furthermore, the model gives quantitative predictions for the ion size effect in the folding energy landscape and folding cooperativity.
Collapse
|
22
|
Peng B, Yu YX. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: A partially perturbative density functional theory study. J Chem Phys 2009; 131:134703. [DOI: 10.1063/1.3243873] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Peng B, Yu YX. A Density Functional Theory with a Mean-field Weight Function: Applications to Surface Tension, Adsorption, and Phase Transition of a Lennard-Jones Fluid in a Slit-like Pore. J Phys Chem B 2008; 112:15407-16. [DOI: 10.1021/jp805697p] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bo Peng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China, and State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China, and State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Peng B, Yu YX. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12431-12439. [PMID: 18839971 DOI: 10.1021/la8024099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A density functional theory (DFT) constructed from the modified fundamental-measure theory and the modified Benedict-Webb-Rubin equation of state is presented. The Helmholtz free energy functional due to attractive interaction is expressed as a functional of attractive weighted-density in which the weight function is a mean-field-like type. An obvious advantage of the present theory is that it reproduces accurate bulk properties such as chemical potential, bulk pressure, vapor-liquid interfacial tension, and so forth when compared with molecular simulations and experiments with the same set of molecular parameters. Capabilities of the present DFT are demonstrated by its applicability to adsorption of argon and nitrogen on, respectively, a model cylindrical pore and mesoporous MCM-41 materials. Comparison of the theoretical results of argon in the model cylindrical pore with those from the newly published molecular simulations indicates that the present DFT predicts accurate average densities in the pore, slightly overestimates the pore pressure, and correctly describes the effect of the fluid-pore wall interaction on average densities and pressures in the pore. Application to adsorption of nitrogen on MCM-41 at 77.4 K shows that the present DFT predicts density profiles and adsorption isotherms in good agreement with those from molecular simulations and experiments. In contrast, the hysteresis loop of adsorption calculated from the mean-field theory shifts toward the low pressure region because a low bulk saturated pressure is produced from the mean-field equation of state. The present DFT offers a good way to describe the adsorption isotherms of porous materials as a function of temperature and pressure.
Collapse
Affiliation(s)
- Bo Peng
- Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
| | | |
Collapse
|