1
|
Osti NC, Jalarvo N, Mamontov E. Backscattering silicon spectrometer (BASIS): sixteen years in advanced materials characterization. MATERIALS HORIZONS 2024; 11:4535-4572. [PMID: 39162617 DOI: 10.1039/d4mh00690a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Quasielastic neutron scattering (QENS) is an experimental technique that can measure parameters of mobility, such as diffusion jump rate and jump length, as well as localized relaxations of chemical species (molecules, ions, and segments) at atomic and nanometer length scales. Due to the high penetrative power of neutrons and their sensitivity to neutron scattering cross-section of chemical species, QENS can effectively probe mobility inside most bulk materials. This review focuses on QENS experiments performed using a neutron backscattering silicon spectrometer (BASIS) to explore the dynamics in various materials and understand their structure-property relationship. BASIS is a time-of-flight near-backscattering inverted geometry spectrometer with very high energy resolution (approximately 0.0035 meV of full width at half maximum), allowing measurements of dynamics on nano to picosecond timescales. The science areas studied with BASIS are diverse, with a focus on soft matter topics, including traditional biological and polymer science experiments, as well as measurements of fluids ranging from simple hydrocarbons and aqueous solutions to relatively complex room-temperature ionic liquids and deep-eutectic solvents, either in the bulk state or confined. Additionally, hydrogen confined in various materials is routinely measured on BASIS. Other topics successfully investigated at BASIS include quantum fluids, spin glasses, and magnetism. BASIS has been in the user program since 2007 at the Spallation Neutron Source of the Oak Ridge National Laboratory, an Office of Science User Facility supported by the U.S. Department of Energy. Over the past sixteen years, BASIS has contributed to various scientific disciplines, exploring the structure and dynamics of many chemical species and their fabrication for practical applications. A comprehensive review of BASIS contributions and capabilities would be an asset to the materials science community, providing insights into employing the neutron backscattering technique for advanced materials characterization.
Collapse
Affiliation(s)
- Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Niina Jalarvo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Vugmeyster L, Ostrovsky D, Rodgers A, Gwin K, Smirnov SL, McKnight CJ, Fu R. Persistence of Methionine Side Chain Mobility at Low Temperatures in a Nine-Residue Low Complexity Peptide, as Probed by 2 H Solid-State NMR. Chemphyschem 2024; 25:e202300565. [PMID: 38175858 PMCID: PMC10922872 DOI: 10.1002/cphc.202300565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Methionine side chains are flexible entities which play important roles in defining hydrophobic interfaces. We utilize deuterium static solid-state NMR to assess rotameric inter-conversions and other dynamic modes of the methionine in the context of a nine-residue random-coil peptide (RC9) with the low-complexity sequence GGKGMGFGL. The measurements in the temperature range of 313 to 161 K demonstrate that the rotameric interconversions in the hydrated solid powder state persist to temperatures below 200 K. Removal of solvation significantly reduces the rate of the rotameric motions. We employed 2 H NMR line shape analysis, longitudinal and rotation frame relaxation, and chemical exchange saturation transfer methods and found that the combination of multiple techniques creates a significantly more refined model in comparison with a single technique. Further, we compare the most essential features of the dynamics in RC9 to two different methionine-containing systems, characterized previously. Namely, the M35 of hydrated amyloid-β1-40 in the three-fold symmetric polymorph as well as Fluorenylmethyloxycarbonyl (FMOC)-methionine amino acid with the bulky hydrophobic group. The comparison suggests that the driving force for the enhanced methionine side chain mobility in RC9 is the thermodynamic factor stemming from distributions of rotameric populations, rather than the increase in the rate constant.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Kirsten Gwin
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, WA 98225
| | - C. James McKnight
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, FL USA 32310
| |
Collapse
|
3
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
4
|
Dubey V, Dueby S, Daschakraborty S. Breakdown of the Stokes-Einstein relation in supercooled water: the jump-diffusion perspective. Phys Chem Chem Phys 2021; 23:19964-19986. [PMID: 34515269 DOI: 10.1039/d1cp02202d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although water is the most ubiquitous liquid it shows many thermodynamic and dynamic anomalies. Some of the anomalies further intensify in the supercooled regime. While many experimental and theoretical studies have focused on the thermodynamic anomalies of supercooled water, fewer studies explored the dynamical anomalies very extensively. This is due to the intricacy of the experimental measurement of the dynamical properties of supercooled water. Violation of the Stokes-Einstein relation (SER), an important relation connecting the diffusion of particles with the viscosity of the medium, is one of the major dynamical anomalies. In absence of experimentally measured viscosity, researchers used to check the validity of SER indirectly using average translational relaxation time or α-relaxation time. Very recently, the viscosity of supercooled water was accurately measured at a wide range of temperatures and pressures. This allowed direct verification of the SER at different temperature-pressure thermodynamic state points. An increasing breakdown of the SER was observed with decreasing temperature. Increasing pressure reduces the extent of breakdown. Although some well-known theories explained the above breakdown, a detailed molecular mechanism was still elusive. Recently, a translational jump-diffusion (TJD) approach has been able to quantitatively explain the breakdown of the SER in pure supercooled water and an aqueous solution of methanol. The objective of this article is to present a detailed and state-of-the-art analysis of the past and present works on the breakdown of SER in supercooled water with a specific focus on the new TJD approach for explaining the breakdown of the SER.
Collapse
Affiliation(s)
- Vikas Dubey
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Shivam Dueby
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
5
|
Latypova L, Puzenko A, Poluektov Y, Anashkina A, Petrushanko I, Bogdanova A, Feldman Y. Hydration of methemoglobin studied by in silico modeling and dielectric spectroscopy. J Chem Phys 2021; 155:015101. [PMID: 34241395 DOI: 10.1063/5.0054697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hemoglobin concentration of 35 g/dl of human red blood cells is close to the solubility threshold. Using microwave dielectric spectroscopy, we have assessed the amount of water associated with hydration shells of methemoglobin as a function of its concentration in the presence or absence of ions. We estimated water-hemoglobin interactions to interpret the obtained data. Within the concentration range of 5-10 g/dl of methemoglobin, ions play an important role in defining the free-to-bound water ratio competing with hemoglobin to recruit water molecules for the hydration shell. At higher concentrations, hemoglobin is a major contributor to the recruitment of water to its hydration shell. Furthermore, the amount of bound water does not change as the hemoglobin concentration is increased from 15 to 30 g/dl, remaining at the level of ∼20% of the total intracellular water pool. The theoretical evaluation of the ratio of free and bound water for the hemoglobin concentration in the absence of ions corresponds with the experimental results and shows that the methemoglobin molecule binds about 1400 water molecules. These observations suggest that within the concentration range close to the physiological one, hemoglobin molecules are so close to each other that their hydration shells interact. In this case, the orientation of the hemoglobin molecules is most likely not stochastic, but rather supports partial neutralization of positive and negative charges at the protein surface. Furthermore, deformation of the red blood cell shape results in the rearrangement of these structures.
Collapse
Affiliation(s)
- Larisa Latypova
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Alexander Puzenko
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Yuri Poluektov
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anastasia Anashkina
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Irina Petrushanko
- Engelhart Institute of Molecular Biology, Russian Academy of Science, Vavilov St. 32, 119991 Moscow, Russia
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | - Yuri Feldman
- Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram 91904, Israel
| |
Collapse
|
6
|
Yamamoto N, Kofu M, Nakajima K, Nakagawa H, Shibayama N. Freezable and Unfreezable Hydration Water: Distinct Contributions to Protein Dynamics Revealed by Neutron Scattering. J Phys Chem Lett 2021; 12:2172-2176. [PMID: 33629864 DOI: 10.1021/acs.jpclett.0c03786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics. Decoupling of the dynamics between unfreezable and freezable hydration water could be the cause of the distinct contributions of hydration water to protein dynamics.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Maiko Kofu
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Kenji Nakajima
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Hiroshi Nakagawa
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Naoya Shibayama
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
7
|
Capaccioli S, Zheng L, Kyritsis A, Paciaroni A, Vogel M, Ngai KL. The Dynamics of Hydrated Proteins Are the Same as Those of Highly Asymmetric Mixtures of Two Glass-Formers. ACS OMEGA 2021; 6:340-347. [PMID: 33458485 PMCID: PMC7807739 DOI: 10.1021/acsomega.0c04655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 05/31/2023]
Abstract
Customarily, the studies of dynamics of hydrated proteins are focused on the fast hydration water ν-relaxation, the slow structural α-relaxation responsible for a single glass transition, and the protein dynamic transition (PDT). Guided by the analogy with the dynamics of highly asymmetric mixtures of molecular glass-formers, we explore the possibility that the dynamics of hydrated proteins are richer than presently known. By providing neutron scattering, dielectric relaxation, calorimetry, and deuteron NMR data in two hydrated globular proteins, myoglobin and BSA, and the fibrous elastin, we show the presence of two structural α-relaxations, α1 and α2, and the hydration water ν-relaxation, all coupled together with interconnecting properties. There are two glass transition temperatures T g α1and T g α2 corresponding to vitrification of the α1 and α2 processes. Relaxation time τα2(T) of the α2-relaxation changes its Arrhenius temperature dependence to super-Arrhenius on crossing T g α1 from below. The ν-relaxation responds to the two vitrifications by changing the T-dependence of its relaxation time τν(T) on crossing consecutively T g α2 and T g α1. It generates the PDT at T d where τν(T d) matches about five times the experimental instrument timescale τexp, provided that T d > T g α1. This condition is satisfied by the hydrated globular proteins considered in this paper, and the ν-relaxation is in the liquid state with τν(T) having the super-Arrhenius temperature dependence. However, if T d < T g α1, the ν-relaxation fails to generate the PDT because it is in the glassy state and τν(T) has Arrhenius T-dependence, as in the case of hydrated elastin. Overall, the dynamics of hydrated proteins are the same as the dynamics of highly asymmetric mixtures of glass-formers. The results from this study have expanded the knowledge of the dynamic processes and their properties in hydrated proteins, and impact on research in this area is expected.
Collapse
Affiliation(s)
- Simone Capaccioli
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Lirong Zheng
- School
of Physics and Astronomy, Shanghai Jiao
Tong University, Shanghai 200240, China
- Institute
of Natural Sciences, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Apostolos Kyritsis
- Department
of Physics, National Technical University
of Athens, 157 80 Athens, Greece
| | | | - Michael Vogel
- Institute
of Condensed Matter Physics, Technische
Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kia L. Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
8
|
Kämpf K, Demuth D, Zamponi M, Wuttke J, Vogel M. Quasielastic neutron scattering studies on couplings of protein and water dynamics in hydrated elastin. J Chem Phys 2020; 152:245101. [PMID: 32610976 DOI: 10.1063/5.0011107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Performing quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein-water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a β relaxation of the protein has a correlation time of τβ ∼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.
Collapse
Affiliation(s)
- Kerstin Kämpf
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Dominik Demuth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Joachim Wuttke
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 6, 64289 Darmstadt, Germany
| |
Collapse
|
9
|
Kruk D, Masiewicz E, Wojciechowski M, Florek-Wojciechowska M, Broche LM, Lurie DJ. Slow dynamics of solid proteins - Nuclear magnetic resonance relaxometry versus dielectric spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 314:106721. [PMID: 32276108 DOI: 10.1016/j.jmr.2020.106721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
1H Nuclear Magnetic Resonance (NMR) relaxometry and Dielectric Spectroscopy (DS) have been exploited to investigate the dynamics of solid proteins. The experiments have been carried out in the frequency range of about 10 kHz-40 MHz for NMR relaxometry and 10-2Hz-20 MHz for DS. The data sets have been analyzed in terms of theoretical models allowing for a comparison of the correlation times revealed by NMR relaxometry and DS. The 1H spin-lattice relaxation profiles have been decomposed into relaxation contributions associated with 1H-1H and 1H-14N dipole - dipole interactions. The 1H-1H relaxation contribution has been interpreted in terms of three dynamical processes of time scales of 10-6s, 10-7s and 10-8s. It has turned out that the correlation times do not differ much among proteins and they are only weakly dependent on temperature. The analysis of DS relaxation spectra has also revealed three motional processes characterized by correlation times that considerably depend on temperature in contrast to those obtained from the 1H relaxation. This finding suggest that for solid proteins there is a contribution to the 1H spin-lattice relaxation associated with a kind of motion that is not probed in DS as it does not lead to a reorientation of the electric dipole moment.
Collapse
Affiliation(s)
- Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia & Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland.
| | - Elzbieta Masiewicz
- Faculty of Mathematics and Computer Science, University of Warmia & Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
| | - Milosz Wojciechowski
- Faculty of Mathematics and Computer Science, University of Warmia & Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland
| | | | - Lionel M Broche
- Bio-Medical Physics, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - David J Lurie
- Bio-Medical Physics, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom
| |
Collapse
|
10
|
Krah A, Huber RG, Bond PJ. How Ligand Binding Affects the Dynamical Transition Temperature in Proteins. Chemphyschem 2020; 21:916-926. [DOI: 10.1002/cphc.201901221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Krah
- School of Computational SciencesKorea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu Seoul 02455 Republic of Korea
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Roland G. Huber
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Peter J. Bond
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
- National University of SingaporeDepartment of Biological Sciences 14 Science Drive 4 Singapore 117543
| |
Collapse
|
11
|
Kruk D, Masiewicz E, Borkowska AM, Rochowski P, Fries PH, Broche LM, Lurie DJ. Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry. Biomolecules 2019; 9:E652. [PMID: 31731514 PMCID: PMC6920843 DOI: 10.3390/biom9110652] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023] Open
Abstract
1H Nuclear magnetic resonance (NMR) relaxometry was exploited to investigate the dynamics of solid proteins. The relaxation experiments were performed at 37 °C over a broad frequency range, from approximately 10 kHz to 40 MHz. Two relaxation contributions to the overall 1H spin-lattice relaxation were revealed; they were associated with 1H-1H and 1H-14N magnetic dipole-dipole interactions, respectively. The 1H-1H relaxation contribution was interpreted in terms of three dynamical processes occurring on timescales of 10-6 s, 10-7 s, and 10-8 s, respectively. The 1H-14N relaxation contribution shows quadrupole relaxation enhancement effects. A thorough analysis of the data was performed revealing similarities in the protein dynamics, despite their different structures. Among several parameters characterizing the protein dynamics and structure (e.g., electric field gradient tensor at the position of 14N nuclei), the orientation of the 1H-14N dipole-dipole axis, with respect to the principal axis system of the electric field gradient, was determined, showing that, for lysozyme, it was considerably different than for the other proteins. Moreover, the validity range of a closed form expression describing the 1H-14N relaxation contribution was determined by a comparison with a general approach based on the stochastic Liouville equation.
Collapse
Affiliation(s)
- Danuta Kruk
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland; (E.M.); (A.M.B.); (P.R.)
| | - Elzbieta Masiewicz
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland; (E.M.); (A.M.B.); (P.R.)
| | - Anna M. Borkowska
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland; (E.M.); (A.M.B.); (P.R.)
| | - Pawel Rochowski
- Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 54, 10-710 Olsztyn, Poland; (E.M.); (A.M.B.); (P.R.)
| | - Pascal H. Fries
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination, Service de Chimie Inorganique et Biologique (UMR E-3 CEA/UJF), CEA-Grenoble, INAC, 17 rue des Martyrs, CEDEX 09, 38054 Grenoble, France;
| | - Lionel M. Broche
- Bio-Medical Physics, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK; (L.M.B.); (D.J.L.)
| | - David J. Lurie
- Bio-Medical Physics, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, UK; (L.M.B.); (D.J.L.)
| |
Collapse
|
12
|
Capaccioli S, Ngai KL, Ancherbak S, Bertoldo M, Ciampalini G, Thayyil MS, Wang LM. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. J Chem Phys 2019; 151:034504. [DOI: 10.1063/1.5100835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Capaccioli
- CNR-IPCF, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - K. L. Ngai
- CNR-IPCF, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - S. Ancherbak
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - M. Bertoldo
- ISOF - CNR Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
| | - G. Ciampalini
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | | | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| |
Collapse
|
13
|
Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100022. [PMID: 31517287 PMCID: PMC6733290 DOI: 10.1016/j.ijpx.2019.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Structural dynamics in lyophilised protein formulations can be probed with terahertz spectroscopy and two glass transition processes, Tg,α and Tg,β, are observed. Vibrational confinement upon thermal activation is observed resulting in no detectable changes in secondary structure but strongly reduced the molecular mobility at temperatures above Tg,α. The confinement was found to be strongly dependent on the formulation. We hypothesise that confinement is linked to conformational states with potential effects on physical and chemical stability of the biomolecule during storage.
Characterising the structural dynamics of proteins and the effects of excipients are critical for optimising the design of formulations. In this work we investigated four lyophilised formulations containing bovine serum albumin (BSA) and three formulations containing a monoclonal antibody (mAb, here mAb1), and explored the role of the excipients polysorbate 80, sucrose, trehalose, and arginine on stabilising proteins. By performing temperature variable terahertz time-domain spectroscopy (THz-TDS) experiments it is possible to study the vibrational dynamics of these formulations. The THz-TDS measurements reveal two distinct glass transition processes in all tested formulations. The lower temperature transition, Tg,β, is associated with the onset of local motion due to the secondary relaxation whilst the higher temperature transition, Tg,α, marks the onset of the α-relaxation. For some of the formulations, containing globular BSA as well as mAb1, the absorption at terahertz frequencies does not increase further at temperatures above Tg,α. Such behaviour is in contrast to our previous observations for small organic molecules as well as linear polymers where absorption is always observed to steadily increase with temperature due to the stronger absorption of terahertz radiation by more mobile dipoles. The absence of such further increase in absorption with higher temperatures therefore suggests a localised confinement of the protein/excipient matrix at high temperatures that hinders any further increase in mobility. We found that subtle changes in excipient composition had an effect on the transition temperatures Tg,α and Tg,β as well as the vibrational confinement in the solid state. Further work is required to establish the potential significance of the vibrational confinement in the solid state on formulation stability and chemical degradation as well as what role the excipients play in achieving such confinement.
Collapse
|
14
|
Pathak AK, Bandyopadhyay T. Temperature Induced Dynamical Transition of Biomolecules in Polarizable and Nonpolarizable TIP3P Water. J Chem Theory Comput 2019; 15:2706-2718. [PMID: 30849227 DOI: 10.1021/acs.jctc.9b00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Temperature induced dynamical transition (DT), associated with a sharp rise in molecular flexibility, is well-known to be exhibited between 270 and 280 K in glycerol to 200-230 K in hydrated biomolecules and is controlled by diffusivity (viscosity) of the solvation layer. In the molecular dynamics (MD) community, especially for water as a solvent, this has been an intense area of research despite decades of investigations. However, in general, water in these studies is described by empirical nonpolarizable force fields in which electronic polarizability is treated implicitly with effective charges and related parameters. This might have led to the present trait of discovery that DTs of biomolecules, irrespective of the potential functions for water models used, occur within a narrow band of temperature variation (30-40 K). Whereas a water molecule in a biomolecular surface and one in bulk are polarized differently, therefore explicit treatment of water polarizability would be a powerful approach toward the treatment of hydration water, believed to cause the DT manifestation. Using MD simulations, we investigated the effects of polarizable water on the DT of biomolecules and the dynamic properties of hydration water. We chose two types of solutes: globular protein (lysozyme) and more open and flexible RNAs (a hairpin and a riboswitch) with different natures of hydrophilic sites than proteins in general. We found that the characteristic temperature of DT ( TDT) for the solutes in polarizable water is always higher than that in its nonpolarizable counterpart. In particular, for RNAs, the variations are found to be ∼45 K between the two water models, whereas for the more compact lysozyme, it is only ∼4 K. The results are discussed in light of the enormous increase in relaxation times of a liquid upon cooling in the paradigm of dynamic switchover in hydration water with liquid-liquid phase transition, derived from the existence of the second critical point. Our result supports the idea that structures of biomolecules and their interactions with the hydration water determines TDT and provides evidence for the decisive role of polarizable water on the onset of DT, which has been hitherto ignored.
Collapse
Affiliation(s)
- Arup Kumar Pathak
- Theoretical Chemistry Section , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Homi Bhabha National Institute , Mumbai 400094 , India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section , Bhabha Atomic Research Centre , Mumbai 400 085 , India.,Homi Bhabha National Institute , Mumbai 400094 , India
| |
Collapse
|
15
|
Tavagnacco L, Chiessi E, Zanatta M, Orecchini A, Zaccarelli E. Water-Polymer Coupling Induces a Dynamical Transition in Microgels. J Phys Chem Lett 2019; 10:870-876. [PMID: 30735054 PMCID: PMC6416711 DOI: 10.1021/acs.jpclett.9b00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The long debated protein dynamical transition was recently found also in nonbiological macromolecules, such as poly- N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature T d are dominated by methyl group rotations and hydrogen bonding, respectively. By comparing with bulk water, we unambiguously identify PNIPAM-water hydrogen bonding as mainly responsible for the occurrence of the transition. The observed phenomenology thus crucially depends on the water-macromolecule coupling, being relevant to a wide class of hydrated systems, independently from the biological function.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC
and Department of Physics, Sapienza University
of Rome, Piazzale A.
Moro 2, 00185 Rome, Italy
| | - Ester Chiessi
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientica I, 00133 Rome, Italy
| | - Marco Zanatta
- Department
of Computer Science, University of Verona, Strada Le Grazie 15, 37138 Verona, Italy
| | - Andrea Orecchini
- Department
of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy
- CNR-IOM
c/o Department of Physics and Geology, University
of Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Emanuela Zaccarelli
- CNR-ISC
and Department of Physics, Sapienza University
of Rome, Piazzale A.
Moro 2, 00185 Rome, Italy
| |
Collapse
|
16
|
Matyushov DV. Fluctuation relations, effective temperature, and ageing of enzymes: The case of protein electron transfer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Golysheva EA, Shevelev GY, Dzuba SA. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. J Chem Phys 2018; 147:064501. [PMID: 28810753 DOI: 10.1063/1.4997035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In glassy substances and biological media, dynamical transitions are observed in neutron scattering that manifests itself as deviations of the translational mean-squared displacement, 〈x2〉, of hydrogen atoms from harmonic dynamics. In biological media, the deviation occurs at two temperature intervals, at ∼100-150 K and at ∼170-230 K, and it is attributed to the motion of methyl groups in the former case and to the transition from harmonic to anharmonic or diffusive motions in the latter case. In this work, electron spin echo (ESE) spectroscopy-a pulsed version of electron paramagnetic resonance-is applied to study the spin relaxation of nitroxide spin probes and labels introduced in molecular glass former o-terphenyl and in protein lysozyme. The anisotropic contribution to the rate of the two-pulse ESE decay, ΔW, is induced by spin relaxation appearing because of restricted orientational stochastic molecular motion; it is proportional to 〈α2〉τc, where 〈α2〉 is the mean-squared angle of reorientation of the nitroxide molecule around the equilibrium position and τc is the correlation time of reorientation. The ESE time window allows us to study motions with τc < 10-7 s. For glassy o-terphenyl, the 〈α2〉τc temperature dependence shows a transition near 240 K, which is in agreement with the literature data on 〈x2〉. For spin probes of essentially different size, the obtained data were found to be close, which evidences that motion is cooperative, involving a nanocluster of several neighboring molecules. For the dry lysozyme, the 〈α2〉τc values below 260 K were found to linearly depend on the temperature in the same way as it was observed in neutron scattering for 〈x2〉. As spin relaxation is influenced only by stochastic motion, the harmonic motions seen in ESE must be overdamped. In the hydrated lysozyme, ESE data show transitions near 130 K for all nitroxides, near 160 K for the probe located in the hydration layer, and near 180 K for the label in the protein interior. For this system, the two latter transitions are not observed in neutron scattering. The ESE-detected transitions are suggested to be related with water dynamics in the nearest hydration shell: with water glass transition near 130 K and with the onset of overall water molecular reorientations near 180 K; the disagreement with neutron scattering is ascribed to the larger time window for ESE-detected motions.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Georgiy Yu Shevelev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| |
Collapse
|
18
|
Chen P, Terenzi C, Furó I, Berglund LA, Wohlert J. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions. Biomacromolecules 2018; 19:2567-2579. [DOI: 10.1021/acs.biomac.8b00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Pan Chen
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Camilla Terenzi
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - István Furó
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Lars A. Berglund
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
19
|
Abstract
Dynamic neutron scattering directly probes motions in biological systems on femtosecond to microsecond timescales. When combined with molecular dynamics simulation and normal mode analysis, detailed descriptions of the forms and frequencies of motions can be derived. We examine vibrations in proteins, the temperature dependence of protein motions, and concepts describing the rich variety of motions detectable using neutrons in biological systems at physiological temperatures. New techniques for deriving information on collective motions using coherent scattering are also reviewed.
Collapse
Affiliation(s)
- Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, USA; .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Pan Tan
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Loukas Petridis
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, USA; .,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Liang Hong
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Nandi PK, English NJ, Futera Z, Benedetto A. Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: a molecular-dynamics study. Phys Chem Chem Phys 2018; 19:318-329. [PMID: 27905589 DOI: 10.1039/c6cp05601f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is fundamental to the biochemistry of enzymes. It is well known that without a minimum amount of water, enzymes are not biologically active. Bare minimal solvation for biological function corresponds to about a single layer of water covering enzymes' surfaces. Many contradictory studies on protein-hydration-water-coupled dynamics have been published in recent decades. Following prevailing wisdom, a dynamical crossover in hydration water (at around 220 K for hydrated lysozymes) can trigger larger-amplitude motions of the protein, activating, in turn, biological functions. Here, we present a molecular-dynamics-simulation study on a solvated model protein (hen egg-white lysozyme), in which we determine, inter alia, the relaxation dynamics of the hydrogen-bond network between the protein and its hydration water molecules on a residue-per-residue basis. Hydrogen-bond breakage/formation kinetics is rather heterogeneous in temperature dependence (due to the heterogeneity of the free-energy surface), and is driven by the magnitude of thermal motions of various different protein residues which provide enough thermal energy to overcome energy barriers to rupture their respective hydrogen bonds with water. In particular, arginine residues exhibit the highest number of such hydrogen bonds at low temperatures, losing almost completely such bonding above 230 K. This suggests that hydration water's dynamical crossover, observed experimentally for hydrated lysozymes at ∼220 K, lies not at the origin of the protein residues' larger-amplitude motions, but rather arises as a consequence thereof. This highlights the need for new experimental investigations, and new interpretations to link protein dynamics to functions, in the context of key interrelationships with the solvation layer.
Collapse
Affiliation(s)
- Prithwish K Nandi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Zdenek Futera
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Antonio Benedetto
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland. and Neutron-Scattering and Imaging Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
21
|
Abstract
Protein dynamics is characterized by fluctuations among different conformational substates, i.e. the different minima of their energy landscape. At temperatures above ~200 K, these fluctuations lead to a steep increase in the thermal dependence of all dynamical properties, phenomenon known as Protein Dynamical Transition. In spite of the intense studies, little is known about the effects of pressure on these processes, investigated mostly near room temperature. We studied by neutron scattering the dynamics of myoglobin in a wide temperature and pressure range. Our results show that high pressure reduces protein motions, but does not affect the onset temperature for the Protein Dynamical Transition, indicating that the energy differences and barriers among conformational substates do not change with pressure. Instead, high pressure values strongly reduce the average structural differences between the accessible conformational substates, thus increasing the roughness of the free energy landscape of the system.
Collapse
|
22
|
Yamamoto N, Ito S, Nakanishi M, Chatani E, Inoue K, Kandori H, Tominaga K. Effect of Temperature and Hydration Level on Purple Membrane Dynamics Studied Using Broadband Dielectric Spectroscopy from Sub-GHz to THz Regions. J Phys Chem B 2018; 122:1367-1377. [PMID: 29304273 DOI: 10.1021/acs.jpcb.7b10077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the effects of temperature and hydration on the dynamics of purple membrane (PM), we measured the broadband complex dielectric spectra from 0.5 GHz to 2.3 THz using a vector network analyzer and terahertz time-domain spectroscopy from 233 to 293 K. In the lower temperature region down to 83 K, the complex dielectric spectra in the THz region were also obtained. The complex dielectric spectra were analyzed through curve fitting using several model functions. We found that the hydrated states of one relaxational mode, which was assigned as the coupled motion of water molecules with the PM surface, began to overlap with the THz region at approximately 230 K. On the other hand, the relaxational mode was not observed for the dehydrated state. On the basis of this result, we conclude that the protein-dynamical-transition-like behavior in the THz region is due to the onset of the overlap of the relaxational mode with the THz region. Temperature hysteresis was observed in the dielectric spectrum at 263 K when the hydration level was high. It is suggested that the hydration water behaves similarly to supercooled liquid at that temperature. The third hydration layer may be partly formed to observe such a phenomenon. We also found that the relaxation time is slower than that of a globular protein, lysozyme, and the microscopic environment in the vicinity of the PM surface is suggested to be more heterogeneous than lysozyme. It is proposed that the spectral overlap of the relaxational mode and the low-frequency vibrational mode is necessary for the large conformational change of protein.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Shota Ito
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Masahiro Nakanishi
- Department of Electrical Engineering, Fukuoka Institute of Technology , 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| | - Keiichi Inoue
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Hideki Kandori
- Graduate School of Engineering, Nagoya Institute of Technology , Gokisho-cho, Shouwa-ku, Nagoya, 466-8555, Japan
| | - Keisuke Tominaga
- Graduate School of Science, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.,Molecular Photoscience Research Center, Kobe University , 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
23
|
Martin DR, Forsmo JE, Matyushov DV. Complex Dynamics of Water in Protein Confinement. J Phys Chem B 2017; 122:3418-3425. [PMID: 29206460 DOI: 10.1021/acs.jpcb.7b10448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper studies single-molecule and collective dynamics of water confined in protein powders by means of molecular dynamics simulations. The single-particle dynamics show a modest retardation compared to the bulk but become highly stretched in the powder, with the stretching exponent of ≃0.2. The collective dynamics of the total water dipole are affected by intermolecular correlations inside water and by cross-correlations between the water and the protein. The dielectric spectrum of water in the powder has two nearly equal-amplitude peaks: a Debye peak with ≃16 ps relaxation time and a highly stretched peak with the relaxation time of ≃13 ns and a stretching exponent of ≃0.12. The slower relaxation component is not seen in the single-molecule correlation functions and can be assigned to elastic protein motions displacing water in the powder. The loss spectrum of the intermediate scattering function reported by neutron-scattering experiments is also highly stretched, with the high-frequency wing scaling according to a power law. Translational dynamics can become much slower in the powder than in the bulk but are overshadowed by the rotational loss in the overall loss spectrum of neutron scattering.
Collapse
Affiliation(s)
| | - James E Forsmo
- College of Engineering , Georgia Institute of Technology , 225 North Avenue , Atlanta , Georgia 30332 , United States
| | | |
Collapse
|
24
|
Seyedi S, Matyushov DV. Ergodicity breaking of iron displacement in heme proteins. SOFT MATTER 2017; 13:8188-8201. [PMID: 29082406 DOI: 10.1039/c7sm01561e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a model of the dynamical transition of atomic displacements in proteins. Increased mean-square displacement at higher temperatures is caused by the softening of the force constant for atomic/molecular displacements by electrostatic and van der Waals forces from the protein-water thermal bath. Displacement softening passes through a nonergodic dynamical transition when the relaxation time of the force-force correlation function enters, with increasing temperature, the instrumental observation window. Two crossover temperatures are identified. The lower crossover, presently connected to the glass transition, is related to the dynamical unfreezing of rotations of water molecules within nanodomains polarized by charged surface residues of the protein. The higher crossover temperature, usually assigned to the dynamical transition, marks the onset of water translations. All crossovers are ergodicity breaking transitions depending on the corresponding observation windows. Allowing stretched exponential relaxation of the protein-water thermal bath significantly improves the theory-experiment agreement when applied to solid protein samples studied by Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Salman Seyedi
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
| | | |
Collapse
|
25
|
Kurzweil-Segev Y, Popov I, Eisenberg I, Yochelis S, Keren N, Paltiel Y, Feldman Y. Confined water dynamics in a hydrated photosynthetic pigment-protein complex. Phys Chem Chem Phys 2017; 19:28063-28070. [PMID: 28994836 DOI: 10.1039/c7cp05417c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water is of fundamental importance for life. It plays a critical role in all biological systems. In phycocyanin, a pigment-protein complex, the hydration level influences its absorption spectrum. However, there is currently a gap in the understanding of how protein interfaces affect water's structure and properties. This work presents combined dielectric and calorimetric measurements of hydrated phycocyanin with different levels of hydration in a broad temperature interval. Based on the dielectric and calorimetric tests, it was shown that two types of water exist in the phycocyanin hydration shell. One is confined water localized inside the phycocyanin ring and the second is the water that is embedded in the protein structure and participates in the protein solvation. The water confined in the phycocyanin ring melts at the temperature 195 ± 3 K and plays a role in the solvation at higher temperatures. Moreover, the dynamics of all types of water was found to be effected by the presence of the ionic buffer.
Collapse
Affiliation(s)
- Yael Kurzweil-Segev
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | | | | | |
Collapse
|
26
|
Benedetto A. Low-Temperature Decoupling of Water and Protein Dynamics Measured by Neutron Scattering. J Phys Chem Lett 2017; 8:4883-4886. [PMID: 28937227 DOI: 10.1021/acs.jpclett.7b02273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Water plays a major role in biosystems, greatly contributing to determine their structure, stability, and function. It is well known, for instance, that proteins require a minimum amount of water to be fully functional. Despite many years of intensive research, however, the detailed nature of protein-hydration water interactions is still partly unknown. The widely accepted "protein dynamical transition" scenario is based on perfect coupling between the dynamics of proteins and that of their hydration water, which has never been probed in depth experimentally. I present here high-resolution elastic neutron scattering measurements of the atomistic dynamics of lysozyme in water. The results show for the first time that the dynamics of proteins and of their hydration water are actually decoupled at low temperatures. This important result challenges the "protein dynamical transition" scenario and requires a new model to link protein dynamics to the dynamics of its hydration water.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin , Dublin 4, Ireland
- Laboratory for Neutron Scattering, Paul Scherrer Institut , Villigen, Switzerland
| |
Collapse
|
27
|
Vugmeyster L, Ostrovsky D. Comparative Dynamics of Methionine Side-Chain in FMOC-Methionine and in Amyloid Fibrils. Chem Phys Lett 2017; 673:108-112. [PMID: 28959059 DOI: 10.1016/j.cplett.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compared the dynamics of key methionine methyl groups in the water-accessible hydrophobic cavity of amyloid fibrils and Fluorenylmethyloxycarbonyl-Methionine (FMOC-Met), which renders general hydrophobicity to the environment without the complexity of the protein. Met35 in the hydrated cavity was recently found to undergo a dynamical cross-over from the dominance of methyl rotations at low temperatures to the dominance of diffusive motion of methyl axis at high temperatures. Current results indicate that in FMOC-Met this cross-over is suppressed, similar to what was observed for the dry fibrils, indicating that hydration of the cavity is driving the onset of the dynamical transition.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, 1201 Larimer Street, University of Colorado at Denver, Denver, CO 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, 1201 Larimer Street, University of Colorado at Denver, Denver, CO 80204, USA
| |
Collapse
|
28
|
A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li. Pharm Res 2017; 34:2675-2688. [PMID: 28875274 DOI: 10.1007/s11095-017-2252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. METHODS Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. RESULTS A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. CONCLUSION The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.
Collapse
|
29
|
Vugmeyster L, Ostrovsky D, Hoatson GL, Qiang W, Falconer IB. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by 2H NMR Relaxation. J Phys Chem B 2017; 121:7267-7275. [PMID: 28699757 PMCID: PMC5567839 DOI: 10.1021/acs.jpcb.7b04726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aromatic residues are important markers of dynamical changes in proteins' hydrophobic cores. In this work we investigated the dynamics of the F19 side-chain in the core of amyloid fibrils across a wide temperature range of 300 to 140 K. We utilized solid-state 2H NMR relaxation to demonstrate the presence of a solvent-driven dynamical crossover between different motional regimes, often also referred to as the dynamical transition. In particular, the dynamics are dominated by small-angle fluctuations at low temperatures and by π-flips of the aromatic ring at high temperatures. The crossover temperature is more than 43 degrees lower for the hydrated state of the fibrils compared to the dry state, indicating that interactions with water facilitate π-flips. Further, crossover temperatures are shown to be very sensitive to polymorphic states of the fibrils, such as the 2-fold and 3-fold symmetric morphologies of the wild-type protein as well as D23N mutant protofibrils. We speculate that these differences can be attributed, at least partially, to enhanced interactions with water in the 3-fold polymorph, which has been shown to have a water-accessible cavity. Combined with previous studies of methyl group dynamics, the results highlight the presence of multiple dynamics modes in the core of the fibrils, which was originally believed to be quite rigid.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO 80204
| | - Gina L. Hoatson
- Department of Physics, College of William and Mary, Williamsburg, Virginia, 23187
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, NY 13902
| | - Isaac B. Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| |
Collapse
|
30
|
Vugmeyster L, Ostrovsky D. Static solid-state 2H NMR methods in studies of protein side-chain dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:1-17. [PMID: 28844219 PMCID: PMC5576518 DOI: 10.1016/j.pnmrs.2017.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 05/27/2023]
Abstract
In this review, we discuss the experimental static deuteron NMR techniques and computational approaches most useful for the investigation of side-chain dynamics in protein systems. Focus is placed on the interpretation of line shape and relaxation data within the framework of motional modeling. We consider both jump and diffusion models and apply them to uncover glassy behaviors, conformational exchange and dynamical transitions in proteins. Applications are chosen from globular and membrane proteins, amyloid fibrils, peptide adsorbed on surfaces and proteins specific to connective tissues.
Collapse
|
31
|
Kurzweil-Segev Y, Popov I, Solomonov I, Sagit I, Feldman Y. Dielectric Relaxation of Hydration Water in Native Collagen Fibrils. J Phys Chem B 2017; 121:5340-5346. [DOI: 10.1021/acs.jpcb.7b02404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Kurzweil-Segev
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ivan Popov
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Institute
of Physics, Kazan Federal University, Kremlevskaya str.18, Kazan 420008, Tatarstan, Russia
| | - Inna Solomonov
- Department
of Biological Regulation, Weitzman Institute of Science, Rehovot 761001, Israel
| | - Irit Sagit
- Department
of Biological Regulation, Weitzman Institute of Science, Rehovot 761001, Israel
| | - Yuri Feldman
- Department
of Applied Physics, The Hebrew University of Jerusalem, Edmond
J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Frontzek (neé Svanidze) AV, Embs JP, Paccou L, Guinet Y, Hédoux A. Low-Frequency Dynamics of BSA Complementarily Studied by Raman and Inelastic Neutron Spectroscopy. J Phys Chem B 2017; 121:5125-5132. [DOI: 10.1021/acs.jpcb.7b01395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna V. Frontzek (neé Svanidze)
- Jülich
Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation
at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
- A.F. Ioffe Physical Technical Institute, ul. Politekhnicheskaya 26, 194021 St. Petersburg, Russian Federation
| | - Jan Peter Embs
- Laboratory
for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | | | - Yannick Guinet
- Université Lille Nord de France, F-59000 Lille, France
- USTL UMET UMR CNRS 8207, F-59655 Villeneuve d’Ascq, France
| | - Alain Hédoux
- Université Lille Nord de France, F-59000 Lille, France
- USTL UMET UMR CNRS 8207, F-59655 Villeneuve d’Ascq, France
| |
Collapse
|
33
|
Nandi PK, Futera Z, English NJ. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics. J Chem Phys 2017; 145:205101. [PMID: 27908109 DOI: 10.1063/1.4967774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ∼220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical transition at a lower temperature (∼200 K) vis-à-vis the zero-field case (∼220 K).
Collapse
Affiliation(s)
- Prithwish K Nandi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zdenek Futera
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
34
|
Vugmeyster L, Ostrovsky D, Clark MA, Falconer IB, Hoatson GL, Qiang W. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils. Biophys J 2016; 111:2135-2148. [PMID: 27851938 PMCID: PMC5113154 DOI: 10.1016/j.bpj.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/18/2016] [Accepted: 10/05/2016] [Indexed: 11/28/2022] Open
Abstract
Amyloid-β (Aβ) peptide is the major component of plaques found in Alzheimer's disease patients. Using solid-state 2H NMR relaxation performed on selectively deuterated methyl groups, we probed the dynamics in the threefold symmetric and twofold symmetric polymorphs of native Aβ as well as the protofibrils of the D23N mutant. Specifically, we investigated the methyl groups of two leucine residues that belong to the hydrophobic core (L17 and L34) as well as M35 residues belonging to the hydrophobic interface between the cross-β subunits, which has been previously found to be water-accessible. Relaxation measurements performed over 310-140 K and two magnetic field strengths provide insights into conformational variability within and between polymorphs. Core packing variations within a single polymorph are similar to what is observed for globular proteins for the core residues, whereas M35 exhibits a larger degree of variability. M35 site is also shown to undergo a solvent-dependent dynamical transition in which slower amplitude motions of methyl axes are activated at high temperature. The motions, modeled as a diffusion of methyl axis, have activation energy by a factor of 2.7 larger in the twofold compared with the threefold polymorph, whereas D23N protofibrils display a value similar to the threefold polymorph. This suggests enhanced flexibility of the hydrophobic interface in the threefold polymorph. This difference is only observed in the hydrated state and is absent in the dry fibrils, highlighting the role of solvent at the cavity. In contrast, the dynamic behavior of the core is hydration-independent.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, Colorado
| | - Matthew A Clark
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska
| | - Isaac B Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado
| | - Gina L Hoatson
- Department of Physics, College of William and Mary, Williamsburg, Virginia
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York
| |
Collapse
|
35
|
Benedetto A, Kearley GJ. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering. Sci Rep 2016; 6:34266. [PMID: 27703184 PMCID: PMC5050422 DOI: 10.1038/srep34266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2016] [Indexed: 11/09/2022] Open
Abstract
A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin, Ireland
- Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen, Switzerland
| | - Gordon J. Kearley
- School of Materials Science and Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
36
|
Mamontov E. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:345201. [PMID: 27355223 DOI: 10.1088/0953-8984/28/34/345201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a concept and ray-tracing simulation of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few μeV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage over several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. This capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.
Collapse
Affiliation(s)
- Eugene Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
37
|
Seyedi S, Martin DR, Matyushov DV. Dynamical and orientational structural crossovers in low-temperature glycerol. Phys Rev E 2016; 94:012616. [PMID: 27575188 DOI: 10.1103/physreve.94.012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Indexed: 06/06/2023]
Abstract
Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.
Collapse
Affiliation(s)
- Salman Seyedi
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| | - Daniel R Martin
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P. O. Box 871504, Tempe, Arizona 85287, USA
| |
Collapse
|
38
|
Vural D, Hu X, Lindner B, Jain N, Miao Y, Cheng X, Liu Z, Hong L, Smith JC. Quasielastic neutron scattering in biology: Theory and applications. Biochim Biophys Acta Gen Subj 2016; 1861:3638-3650. [PMID: 27316321 DOI: 10.1016/j.bbagen.2016.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 02/03/2023]
Abstract
Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of this in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Finally, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Derya Vural
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xiaohu Hu
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Lindner
- Institute of Natural Sciences & Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240, China
| | - Nitin Jain
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yinglong Miao
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xiaolin Cheng
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhuo Liu
- Institute of Natural Sciences & Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240, China
| | - Liang Hong
- Institute of Natural Sciences & Department of Physics and Astronomy, Shanghai Jiao Tong University, 200240, China
| | - Jeremy C Smith
- Center for Molecular Biophysics, Oak Ridge National Laboratory, TN 37831, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
39
|
Yamamoto N, Ohta K, Tamura A, Tominaga K. Broadband Dielectric Spectroscopy on Lysozyme in the Sub-Gigahertz to Terahertz Frequency Regions: Effects of Hydration and Thermal Excitation. J Phys Chem B 2016; 120:4743-55. [PMID: 27158918 DOI: 10.1021/acs.jpcb.6b01491] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have performed dielectric spectral measurements of lysozyme in a solid state to understand the effects of hydration and thermal excitation on the low-frequency dynamics of protein. Dielectric measurements were performed under changing hydration conditions at room temperature in the frequency region of 0.5 GHz to 1.8 THz. We also studied the temperature dependence (83 to 293 K) of the complex dielectric spectra in the THz frequency region (0.3 THz to 1.8 THz). Spectral analyses were performed using model functions for the complex dielectric constant. To reproduce the spectra, we found that two relaxational modes and two underdamped modes are necessary together with an ionic conductivity term in the model function. At room temperature, the two relaxational modes have relaxation times of ∼20 ps and ∼100 ps. The faster component has a major spectral intensity and is suggested to be due to coupled water-protein motion. The two underdamped modes are necessary to reproduce the temperature dependence of the spectra in the THz region satisfactorily. The protein dynamical transition is a well-known behavior in the neutron-scattering experiment for proteins, where the atomic mean-square displacement shows a sudden change in the temperature dependence at approximately 200 K, when the samples are hydrated. A similar behavior has also been observed in the temperature dependence of the absorption spectra of protein in the THz frequency region. From our broadband dielectric spectroscopic measurements, we conclude that the increase in the spectral intensities in the THz region at approximately 200 K is due to a spectral blue-shift of the fast relaxational mode.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Graduate School of Science and ‡Molecular Photoscience Research Center, Kobe University , Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
40
|
Ngai KL, Capaccioli S, Paciaroni A. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation. Biochim Biophys Acta Gen Subj 2016; 1861:3553-3563. [PMID: 27155356 DOI: 10.1016/j.bbagen.2016.04.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The properties of the three dynamic processes, α-relaxation, ν-relaxation, and caged dynamics in aqueous mixtures and hydrated proteins are analogous to corresponding processes found in van der Waals and polymeric glass-formers apart from minor differences. METHODS Collection of various experimental data enables us to characterize the structural α-relaxation of the protein coupled to hydration water (HW), the secondary or ν-relaxation of HW, and the caged HW process. RESULTS From the T-dependence of the ν-relaxation time of hydrated myoglobin, lysozyme, and bovine serum albumin, we obtain Ton at which it enters the experimental time windows of Mössbauer and neutron scattering spectroscopies, coinciding with protein dynamical transition (PDT) temperature Td. However, for all systems considered, the α-relaxation time at Ton or Td is many orders of magnitude longer. The other step change of the mean-square-displacement (MSD) at Tg_alpha originates from the coupling of the nearly constant loss (NCL) of caged HW to density. The coupling of the NCL to density is further demonstrated by another step change at the secondary glass temperature Tg_beta in two bio-protectants, trehalose and sucrose. CONCLUSIONS The structural α-relaxation plays no role in PDT. Since PDT is simply due to the ν-relaxation of HW, the term PDT is a misnomer. NCL of caged dynamics is coupled to density and show transitions at lower temperature, Tg_beta and Tg_alpha. GENERAL SIGNIFICANCE The so-called protein dynamical transition (PDT) of hydrated proteins is not caused by the structural α-relaxation of the protein but by the secondary ν-relaxation of hydration water. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy.
| | - S Capaccioli
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy; Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - A Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia, Via A Pascoli 1, 06123 Perugia, Italy
| |
Collapse
|
41
|
Khodadadi S, Sokolov AP. Atomistic details of protein dynamics and the role of hydration water. Biochim Biophys Acta Gen Subj 2016; 1861:3546-3552. [PMID: 27155577 DOI: 10.1016/j.bbagen.2016.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The importance of protein dynamics for their biological activity is now well recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. Yet, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. SCOOP OF REVIEW Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. MAJOR CONCLUSIONS Internal protein dynamics spread over a wide time range from faster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10-100ps time scale. This process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape. GENERAL SIGNIFICANCE The proposed atomistic picture of protein dynamics provides deeper understanding of various relaxation processes and their hierarchy, similarity and differences between various biological macromolecules, including proteins, DNA and RNA. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo".
Collapse
Affiliation(s)
- Sheila Khodadadi
- Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Delft Project management B.V., Delft University of Technology, Delft, The Netherlands
| | - Alexei P Sokolov
- Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
42
|
Agranovich D, Renhart I, Ben Ishai P, Katz G, Bezman D, Feldman Y. A microwave sensor for the characterization of bovine milk. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Magazù S, Mamontov E. A neutron spectrometer concept implementing RENS for studies in life sciences. Biochim Biophys Acta Gen Subj 2016; 1861:3632-3637. [PMID: 27118237 DOI: 10.1016/j.bbagen.2016.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Resolution Elastic Neutron Scattering (RENS) method involves performing elastic scattering intensity scans as a function of the instrumental energy resolution and as a function of temperature. METHODS In the framework of RENS, numerical simulation and experimental data show that in the measured elastic scattering law against the logarithm of the instrumental energy resolution an inflection point occurs when the resolution time intersects the system relaxation time; conversely, in the measured elastic scattering law against temperature an inflection point turns up when the system relaxation time intersects the resolution time. RESULTS For practical implementation of the RENS technique, a dedicated neutron spectrometer would be needed. Here we propose a concept of such a spectrometer that utilizes mechanical velocity selection of both incident and scattered neutrons over a wide angular range. The instrument is able to collect intensity scans vs energy resolution where the instrumental resolution time changes crisscrossing the system relaxation time, and intensity scans vs temperature where the system relaxation time changes intersecting the instrumental resolution time. CONCLUSIONS We propose a RENS spectrometer concept based on velocity selection of incident neutrons and wide-angle velocity selection of scattered neutrons achieved by the same rotating collimator-type mechanical device with the optimized shape of blades. GENERAL SIGNIFICANCE RENS spectrometer is strongly appealing and innovative because of the simultaneous data collection as a function of energy resolution, wide wavevector range and temperature. Such a spectrometer would be the first practical implementation of RENS concept with a broad range of applications in Life Sciences. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- S Magazù
- Department of Mathematics and Informatics Sciences, Physics Sciences and Earth Sciences, University of Messina, Viale F. S. D'Alcontres 31, 98166 Messina, Italy.
| | - E Mamontov
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
44
|
Bellissent-Funel MC, Kaneko K, Ohba T, Appavou MS, Soininen AJ, Wuttke J. Crossover from localized to diffusive water dynamics in carbon nanohorns: A comprehensive quasielastic neutron-scattering analysis. Phys Rev E 2016; 93:022104. [PMID: 26986285 DOI: 10.1103/physreve.93.022104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/07/2022]
Abstract
Incoherent neutron scattering by water confined in carbon nanohorns was measured with the backscattering spectrometer SPHERES and analyzed in exemplary breadth and depth. Quasielastic spectra admit δ-plus-Kohlrausch fits over a wide q and T range. From the q and T dependence of fitted amplitudes and relaxation times, however, it becomes clear that the fits do not represent a uniform physical process, but that there is a crossover from localized motion at low T to diffusive α relaxation at high T. The crossover temperature of about 210 to 230 K increases with decreasing wave number, which is incompatible with a thermodynamic strong-fragile transition. Extrapolated diffusion coefficients D(T) indicate that water motion is at room temperature about 2.5 times slower than in the bulk; in the supercooled state this factor becomes smaller. At even higher temperatures, where the α spectrum is essentially flat, a few percentages of the total scattering go into a Lorentzian with a width of about 1.6μeV, probably due to functional groups on the surface of the nanohorns.
Collapse
Affiliation(s)
| | - Katsumi Kaneko
- Center for Energy and Environmental Science, Shinshu University, 1-17-1 Wakasato, Nagano, Japan
| | - Tomonori Ohba
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Marie-Sousai Appavou
- Forschungszentrum Jülich GmbH, JCNS at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Antti J Soininen
- Forschungszentrum Jülich GmbH, JCNS at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Joachim Wuttke
- Forschungszentrum Jülich GmbH, JCNS at MLZ, Lichtenbergstraße 1, 85747 Garching, Germany
| |
Collapse
|
45
|
Kurzweil-Segev Y, Greenbaum (Gutina) A, Popov I, Golodnitsky D, Feldman Y. The role of the confined water in the dynamic crossover of hydrated lysozyme powders. Phys Chem Chem Phys 2016; 18:10992-9. [DOI: 10.1039/c6cp01084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents combined dielectric and calorimetric measurements of hydrated lysozyme powders with different levels of hydration in a broad temperature interval.
Collapse
Affiliation(s)
- Y. Kurzweil-Segev
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| | - A. Greenbaum (Gutina)
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| | - I. Popov
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
- Institute of Physics
| | - D. Golodnitsky
- School of Chemistry
- Applied Materials Research Center
- Tel Aviv University
- Tel Aviv
- Israel
| | - Yu. Feldman
- The Hebrew University of Jerusalem
- Department of Applied Physics
- Jerusalem 91904
- Israel
| |
Collapse
|
46
|
Roh JH, Tyagi M, Aich P, Kim K, Briber RM, Woodson SA. Charge screening in RNA: an integral route for dynamical enhancements. SOFT MATTER 2015; 11:8741-8745. [PMID: 26430908 DOI: 10.1039/c5sm02084k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electrostatic interactions of RNA are at the center of determining the dynamical flexibility and structural stability. By analysing neutron scattering spectroscopy, we show that fast dynamics of hydrated tRNA on ps to ns timescales increases with stronger charge screening, while its structural stability either increases or remains largely unchanged. An unprecedented electrostatic threshold for the onset of additional flexibility is induced from the correlation between the charge-screening density of counterions and the promoted dynamical properties. The results demonstrate that the enhanced dynamical flexibility of tRNA originates from local conformational relaxation coupled with stabilized charge screening rather than governed by fluctuation of hydrated counterions. The present study casts light on the specificity of electrostatic interactions in the thermodynamic balance between the dynamical flexibility and structural stability of RNA.
Collapse
Affiliation(s)
- Joon Ho Roh
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, South Korea. and Biomolecular Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Madhu Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Techonology, Gaithersburg, Maryland 20899, USA and Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Pulakesh Aich
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, South Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, South Korea. and Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - R M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
47
|
Vugmeyster L, Ostrovsky D, Villafranca T, Sharp J, Xu W, Lipton AS, Hoatson GL, Vold RL. Dynamics of Hydrophobic Core Phenylalanine Residues Probed by Solid-State Deuteron NMR. J Phys Chem B 2015; 119:14892-904. [PMID: 26529128 PMCID: PMC4970646 DOI: 10.1021/acs.jpcb.5b09299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We conducted a detailed investigation of the dynamics of two phenylalanine side chains in the hydrophobic core of the villin headpiece subdomain protein (HP36) in the hydrated powder state over the 298-80 K temperature range. Our main tools were static deuteron NMR measurements of longitudinal relaxation and line shapes supplemented with computational modeling. The temperature dependence of the relaxation times reveals the presence of two main mechanisms that can be attributed to the ring-flips, dominating at high temperatures, and small-angle fluctuations, dominating at low temperatures. The relaxation is nonexponential at all temperatures with the extent of nonexponentiality increasing from higher to lower temperatures. This behavior suggests a distribution of conformers with unique values of activation energies. The central values of the activation energies for the ring-flipping motions are among the smallest reported for aromatic residues in peptides and proteins and point to a very mobile hydrophobic core. The analysis of the widths of the distributions, in combination with the earlier results on the dynamics of flanking methyl groups (Vugmeyster et al. J. Phys. Chem. B 2013, 117, 6129-6137), suggests that the hydrophobic core undergoes slow concerted fluctuations. There is a pronounced effect of dehydration on the ring-flipping motions, which shifts the distribution toward more rigid conformers. The crossover temperature between the regions of dominance of the small-angle fluctuations and ring-flips shifts from 195 K in the hydrated protein to 278 K in the dry one. This result points to the role of solvent in softening the core and highlights aromatic residues as markers of the protein dynamical transitions.
Collapse
Affiliation(s)
| | | | | | - Janelle Sharp
- University of Alaska Anchorage, Anchorage, Alaska, 99508
| | - Wei Xu
- College of William and Mary, Williamsburg, Virginia, 23187
| | - Andrew S. Lipton
- Pacific Northwest National Laboratory, Richland, Washington, 99354
| | | | - Robert L. Vold
- College of William and Mary, Williamsburg, Virginia, 23187
| |
Collapse
|
48
|
Roh JH. Dynamics of Biopolymers: Role of Hydration and Electrostatic Interactions. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joon Ho Roh
- Institute for Basic Science; Center for Self-Assembly and Complexity; 77 Cheongam-Ro Nam-gu Pohang 790-784 South Korea
- Biomolecular Science; University of Science and Technology; 217 Gajeong-ro Yuseong-gu Daejeon 305-350 South Korea
| |
Collapse
|
49
|
Wang M, Zhu C, Kohne M, Warncke K. Resolution and Characterization of Chemical Steps in Enzyme Catalytic Sequences by Using Low-Temperature and Time-Resolved, Full-Spectrum EPR Spectroscopy in Fluid Cryosolvent and Frozen Solution Systems. Methods Enzymol 2015; 563:59-94. [PMID: 26478482 PMCID: PMC6186429 DOI: 10.1016/bs.mie.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Approaches to the resolution and characterization of individual chemical steps in enzyme catalytic sequences, by using temperatures in the cryogenic range of 190-250 K, and kinetics measured by time-resolved, full-spectrum electron paramagnetic resonance spectroscopy in fluid cryosolvent and frozen solution systems, are described. The preparation and performance of the adenosylcobalamin-dependent ethanolamine ammonia-lyase enzyme from Salmonella typhimurium in the two systems exemplifies the biochemical and spectroscopic methods. General advantages of low-temperature studies are (1) slowing of reaction steps, so that measurements can be made by using straightforward T-step kinetic methods and commercial instrumentation, (2) resolution of individual reaction steps, so that first-order kinetic analysis can be applied, and (3) accumulation of intermediates that are not detectable at room temperatures. The broad temperature range from room temperature to 190 K encompasses three regimes: (1) temperature-independent mean free energy surface (corresponding to native behavior); (2) the narrow temperature region of a glass-like transition in the protein, over which the free energy surface changes, revealing dependence of the native reaction on collective protein/solvent motions; and (3) the temperature range below the glass transition region, for which persistent reaction corresponds to nonnative, alternative reaction pathways, in the vicinity of the native configurational envelope. Representative outcomes of low-temperature kinetics studies are portrayed on Eyring and free energy surface (landscape) plots, and guidelines for interpretations are presented.
Collapse
Affiliation(s)
- Miao Wang
- Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA
| | - Chen Zhu
- Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA
| | - Meghan Kohne
- Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA
| | - Kurt Warncke
- Department of Physics, Emory University, N201 Mathematics and Science Center, Atlanta, Georgia, USA.
| |
Collapse
|
50
|
Wolf M, Emmert S, Gulich R, Lunkenheimer P, Loidl A. Dynamics of protein hydration water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032727. [PMID: 26465518 DOI: 10.1103/physreve.92.032727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Indexed: 06/05/2023]
Abstract
We present the frequency- and temperature-dependent dielectric properties of lysozyme solutions in a broad concentration regime, measured at subzero temperatures, and compare the results with measurements above the freezing point of water and on hydrated lysozyme powder. Our experiments allow examining the dynamics of unfreezable hydration water in a broad temperature range. The obtained results prove the bimodality of the hydration shell dynamics. In addition, we find indications of a fragile-to-strong transition of hydration water.
Collapse
Affiliation(s)
- M Wolf
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany
| | - S Emmert
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany
| | - R Gulich
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, Universitätsstr. 2, 86135 Augsburg, Germany
| |
Collapse
|