1
|
Sokolovski D, De Fazio D, Akhmatskaya E. A Transition State Resonance Radically Reshapes Angular Distributions of the F + H 2 → FH( v f = 3) + H Reaction in the 62-102 meV Energy Range. ACS PHYSICAL CHEMISTRY AU 2025; 5:219-226. [PMID: 40160944 PMCID: PMC11950844 DOI: 10.1021/acsphyschemau.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025]
Abstract
Reactive angular distributions of the benchmark F + H 2(v i = 0) → FH(v f = 3) + H reaction show unusual propensity toward small scattering angles, a subject of a long debate in the literature. We use Regge trajectories to quantify the resonance contributions to state-to-state differential cross sections. Conversion to complex energy poles allows us to attribute the effect almost exclusively to a transition state resonance, long known to exist in the F + H 2 system and its isotopic variant F + HD. For our detailed analysis of angular scattering we employ the package DCS_Regge, recently developed for the purpose [Akhmatskaya E.; Sokolovski D.Comput. Phys. Commun.2022, 277, 108370].
Collapse
Affiliation(s)
- Dmitri Sokolovski
- Departmento
de Química-Física Química-Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- EHU
Quantum Center, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Dario De Fazio
- Istituto
di Struttura della Materia-Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Elena Akhmatskaya
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Basque
Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Sáez-Rábanos V, Sáez-Cano G, Verdasco JE, Aoiz FJ, Herrero VJ. The F + HD ( v = 0, 1; j = 1) reaction: angular momentum correlations in the low (<1 meV) collision energy regime. Phys Chem Chem Phys 2024; 27:376-387. [PMID: 39641746 DOI: 10.1039/d4cp02866j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A detailed analysis of the low collision energy (0.03-10 meV) integral reaction cross-section has been carried out for the F + HD (v = 0, 1; j = 1)→ HF(DF) + D(H) reaction using accurate, fully converged time-independent hyperspherical quantum dynamics. Particular attention has been paid to the shape (orbiting) resonances and their assignment to the orbital (L) and total (J) angular momenta as well as to the product's state resolved cross-sections at the energies of the resonances. As in previous works, it has been found that the energy position of the resonances depends on the initial state, but is essentially the same for the two exit channels and the product's rovibrational states. The analysis in terms of the orbital and total angular momenta showed that each resonance is characterised by a given value of L but is contributed by several J. The main resonances are due to L = 3 and L = 5 for both F + HD (v = 0, j = 1) and F + HD (v = 1, j = 1) reactions, although they appear at different collision energies. The product's vibrationally resolved excitation functions are found to follow the same pattern as the integral cross-section summed over all final states. A more detailed analysis has been made for the rotationally resolved integral cross-sections associated with L = 3, which gives rise to the main resonance for the two reactions and both product channels, for different final j' states, showing similar behaviour for all j' states except for j' = 0 due to parity conservation. The joint analysis of the final rotational and orbital angular momenta shows that L' and j' tend to have an antiparallel orientation.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - G Sáez-Cano
- Departamento Física y Matemáticas, Universidad de Alcalá de Henares, 28805 Alcalá de Henares, Spain.
| | - J E Verdasco
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - V J Herrero
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
3
|
Li J, Vindel-Zandbergen P, Li J, Felker PM, Bačić Z. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. J Phys Chem A 2024; 128:9707-9720. [PMID: 39484697 DOI: 10.1021/acs.jpca.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
HF trimer, as the smallest and the lightest cyclic hydrogen-bonded (HB) cluster, has long been a favorite prototype system for spectroscopic and theoretical investigations of the structure, energetics, spectroscopy, and dynamics of hydrogen-bond networks. Recently, rigorous quantum 12D calculations of the coupled intra- and intermolecular vibrations of this fundamental HB trimer (J. Chem. Phys. 2023, 158, 234109) were performed, employing an older ab initio-based many-body potential energy surface (PES). While the theoretical results were found to be in reasonably good agreement with the available spectroscopic data, it was also evident that it is highly desirable to develop a more accurate 12D PES of HF trimer. Motivated by this, here we report a new, and the first fully ab initio 12D PES of this paradigmatic system. Approximately 42,540 geometries were sampled and calculated at the level of CCSD(T)-F12a/AVTZ. The permutationally invariant polynomial-neural network based Δ-machine learning approach (J. Phys. Chem. Lett. 2022, 13, 4729) was employed to perform cost-efficient calculations of the basis-set-superposition error (BSSE) correction. By strategically selecting data points, this approach facilitated the construction of a high-precision PES with BSSE correction, while requiring only a minimal number of BSSE value computations. The fitting error of the final PES is only 0.035 kcal/mol. To assess its performance, the 12D fully coupled quantum calculations of excited intra- and intermolecular vibrational states of HF trimer are carried out using the rigorous methodology developed by us earlier. The results are found to be in a significantly better agreement with the available spectroscopic data than those obtained with the previously existing semiempirical 12D PES.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Patricia Vindel-Zandbergen
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
4
|
Nandi A, Pandey P, Houston PL, Qu C, Yu Q, Conte R, Tkatchenko A, Bowman JM. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD( T) Level Illustrated for Ethanol. J Chem Theory Comput 2024; 20:8807-8819. [PMID: 39361051 PMCID: PMC11500277 DOI: 10.1021/acs.jctc.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Progress in machine learning has facilitated the development of potentials that offer both the accuracy of first-principles techniques and vast increases in the speed of evaluation. Recently, Δ-machine learning has been used to elevate the quality of a potential energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated the success of this approach for molecules, ranging in size from H3O+ to 15-atom acetyl-acetone and tropolone. These were all done using the B3LYP functional. Here, we investigate the generality of this approach for the PBE, M06, M06-2X, and PBE0 + MBD functionals, using ethanol as the example molecule. Linear regression with permutationally invariant polynomials is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE analysis for training and test data sets, and then general fidelity tests such as energetics of stationary points, normal-mode frequencies, and torsional potentials are examined. We achieve similar improvements in all cases. Interestingly, we obtained significant improvement over DFT gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.
Collapse
Affiliation(s)
- Apurba Nandi
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Priyanka Pandey
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L. Houston
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Chen Qu
- Independent
Researcher, Toronto, Ontario M9B0E3, Canada
| | - Qi Yu
- Department
of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Riccardo Conte
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Chen H, Mao Y, Yang Z, Chen M. A Neural Network Potential Energy Surface and Quantum Dynamics Study of Ca( 1S) + H 2( v 0 = 0, j 0 = 0) → CaH + H Reaction. ACS OMEGA 2024; 9:30804-30812. [PMID: 39035896 PMCID: PMC11256353 DOI: 10.1021/acsomega.4c03465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
The reactive collision between Ca and H2 molecules has attracted great interest experimentally due to the key role of the product CaH molecule in the field of astrophysics and cold molecules. However, quantum dynamics calculations for this system have not been reported due to the lack of a global potential energy surface (PES). Herein, a globally accurate PES of the ground-state CaH2 is developed by combining 11365 high-level ab initio points and permutation invariant polynomial neural network method. Based on the newly constructed PES, the state-to-state quantum dynamics calculations for the Ca(1S) + H2 (v 0 = 0, j 0 = 0) → CaH + H reaction are carried out using the time-dependent wave packet method. The dynamic results reveal that the reaction follows the complex-forming mechanism near the reactive threshold, whereas both the indirect insertion mechanism and direct abstraction mechanism have effects at higher collision energies. The newly constructed PES can be used to further study the influence of isotope substitution, rovibrational excitation, and spatial orientation of reactant molecules on reaction dynamics.
Collapse
Affiliation(s)
- Hanghang Chen
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Ye Mao
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Zijiang Yang
- School
of Physics and Electronic Technology, Liaoning
Normal University, Dalian 116029, China
| | - Maodu Chen
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Naskar K, Mukherjee S, Ghosh S, Adhikari S. Coupled 3D ( J ≥ 0) Time-Dependent Wave Packet Calculation for the F + H 2 Reaction on Accurate Ab Initio Multi-State Diabatic Potential Energy Surfaces. J Phys Chem A 2024; 128:1438-1456. [PMID: 38359800 DOI: 10.1021/acs.jpca.3c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata 741246, West Bengal, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
7
|
Xiahou C, Connor JNL, De Fazio D, Sokolovski D. A single resonance Regge pole dominates the forward-angle scattering of the state-to-state F + H 2 → FH + H reaction at Etrans = 62.09 meV. Phys Chem Chem Phys 2024; 26:3647-3666. [PMID: 38224460 DOI: 10.1039/d3cp04734b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The aim of the present paper is to bring clarity, through simplicity, to the important and long-standing problem: does a resonance contribute to the forward-angle scattering of the F + H2 reaction? We reduce the problem to its essentials and present a well-defined, yet rigorous and unambiguous, investigation of structure in the differential cross sections (DCSs) of the following three state-to-state reactions at a translational energy of 62.09 meV: F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 0, 1, 2, mf = 0) + H, where vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational and helicity quantum numbers respectively. Firstly, we carry out quantum-scattering calculations for the Fu-Xu-Zhang potential energy surface, obtaining accurate numerical scattering matrix elements for indistinguishable H2. The calculations use a time-independent method, with hyperspherical coordinates and an enhanced Numerov method. Secondly, the following theoretical techniques are employed to analyse structures in the DCSs: (a) full and Nearside-Farside (NF) partial wave series (PWS) and local angular momentum theory, including resummations of the full PWS up to second order. (b) The recently introduced "CoroGlo" test, which lets us distinguish between glory and corona scattering at forward angles for a Legendre PWS. (c) Six asymptotic (semiclassical) forward-angle glory theories and three asymptotic farside rainbow theories, valid for rainbows at sideward-scattering angles. (d) Complex angular momentum (CAM) theories of forward and backward scattering, with the Regge pole positions and residues computed by Thiele rational interpolation. Thirdly, our conclusions for the three PWS DCSs are: (a) the forward-angle peaks arise from glory scattering. (b) A broad (hidden) farside rainbow is present at sideward angles. (c) A single Regge pole contributes to the DCS across the whole angular range, being most prominent at forward angles. This proves that a resonance contributes to the DCSs for the three transitions. (d) The diffraction oscillations in the DCSs arise from NF interference, in particular, interference between the Regge pole and direct subamplitudes.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy, Qilu Medical University, Zibo Economic Zone, Zibo City 255300, Shandong, People's Republic of China
| | - J N L Connor
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
| | - Dario De Fazio
- Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Dmitri Sokolovski
- Department of Physical Chemistry, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| |
Collapse
|
8
|
Liu Y, Guo H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J Phys Chem A 2023; 127:8765-8772. [PMID: 37815868 DOI: 10.1021/acs.jpca.3c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The Gaussian process (GP) is an efficient nonparametric machine learning (ML) method. A distinct advantage of the GP is its ability to provide an estimate of statistical uncertainties. This is particularly useful in constructing high-dimensional potential energy surfaces (PESs) from ab initio data as it offers an optimal way to add new geometries to reduce the overall error. In this work, GP is employed in the context of Δ-machine learning (Δ-ML), in which a correction PES to an inaccurate low-level PES is constructed using a small number of high-level ab initio calculations. This new method is tested in three prototypical reactive systems, namely, the H + H2 → H + H2, OH + H2 → H2O + H, and H + CH4 → H2 + CH3 reactions. The results show that the GP-based Δ-ML approach is more efficient than its direct application in constructing high-level PESs. We also compare the new method to a previously proposed neural-network-based Δ-ML approach [Liu and Li J. Phys. Chem. Lett. 2022, 13, 4729-4738]. The results indicate that the two Δ-ML methods have comparable efficiencies in constructing accurate PESs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
9
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
10
|
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023; 19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There has been great progress in developing machine-learned potential energy surfaces (PESs) for molecules and clusters with more than 10 atoms. Unfortunately, this number of atoms generally limits the level of electronic structure theory to less than the "gold standard" CCSD(T) level. Indeed, for the well-known MD17 dataset for molecules with 9-20 atoms, all of the energies and forces were obtained with DFT calculations (PBE). This Perspective is focused on a Δ-machine learning method that we recently proposed and applied to bring DFT-based PESs to close to CCSD(T) accuracy. This is demonstrated for hydronium, N-methylacetamide, acetyl acetone, and ethanol. For 15-atom tropolone, it appears that special approaches (e.g., molecular tailoring, local CCSD(T)) are needed to obtain the CCSD(T) energies. A new aspect of this approach is the extension of Δ-machine learning to force fields. The approach is based on many-body corrections to polarizable force field potentials. This is examined in detail using the TTM2.1 water potential. The corrections make use of our recent CCSD(T) datasets for 2-b, 3-b, and 4-b interactions for water. These datasets were used to develop a new fully ab initio potential for water, termed q-AQUA.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Canada 66777
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Liu Y, Li J. Permutation-Invariant-Polynomial Neural-Network-Based Δ-Machine Learning Approach: A Case for the HO 2 Self-Reaction and Its Dynamics Study. J Phys Chem Lett 2022; 13:4729-4738. [PMID: 35609295 DOI: 10.1021/acs.jpclett.2c01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Δ-machine learning, or the hierarchical construction scheme, is a highly cost-effective method, as only a small number of high-level ab initio energies are required to improve a potential energy surface (PES) fit to a large number of low-level points. However, there is no efficient and systematic way to select as few points as possible from the low-level data set. We here propose a permutation-invariant-polynomial neural-network (PIP-NN)-based Δ-machine learning approach to construct full-dimensional accurate PESs of complicated reactions efficiently. Particularly, the high flexibility of the NN is exploited to efficiently sample points from the low-level data set. This approach is applied to the challenging case of a HO2 self-reaction with a large configuration space. Only 14% of the DFT data set is used to successfully bring a newly fitted DFT PES to the UCCSD(T)-F12a/AVTZ quality. Then, the quasiclassical trajectory (QCT) calculations are performed to study its dynamics, particularly the mode specificity.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
12
|
Naskar K, Ghosh S, Adhikari S. Accurate Calculation of Rate Constant and Isotope Effect for the F + H 2 Reaction by the Coupled 3D Time-Dependent Wave Packet Method on the Newly Constructed Ab Initio Ground Potential Energy Surface. J Phys Chem A 2022; 126:3311-3328. [PMID: 35594416 DOI: 10.1021/acs.jpca.2c01209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.
Collapse
Affiliation(s)
- Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata West Bengal-741246, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
13
|
Sáez-Rábanos V, Verdasco JE, Aoiz FJ, Herrero VJ. The F + HD(v = 0, 1; j = 0, 1) reactions: stereodynamical properties of orbiting resonances. Phys Chem Chem Phys 2021; 23:8002-8012. [PMID: 33480905 DOI: 10.1039/d0cp05425a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitation functions (reaction cross-section as a function of collision energy) of the F + HD(v = 0, 1; j = 0, 1) benchmark system have been calculated in the 0.01-6 meV collision energy interval using a time-independent hyperspherical quantum dynamics methodology. Special attention has been paid to orbiting resonances, which bring about detailed information on the three-atom interaction during the reactive encounter. The location of the resonances depends on the rovibrational state of the reactants HD(v,j), but is the same for the two product channels HF + D and DF + H, as expected for these resonances that are linked to the van der Waals well at the entrance. The resonance intensities depend both on the entrance and on the exit channels. The peak intensities for the HF + D channel are systematically larger than those for DF + H. Vibrational excitation leads to an increase of the peak intensity by more than an order of magnitude, but rotational excitation has a less drastic effect. It deceases the resonance intensity of the F + HD(v = 1) reaction, but increases somewhat that of F + HD(v = 0). Polarization of the rotational angular momentum with respect to the initial velocity reveals intrinsic directional preferences in the F + HD(v = 0, 1; j = 1) reactions that are manifested in the resonance patterns. The helicities (Ω = 0, Ω = ±1) possible for j = 1 contribute to the resonances, but that from Ω± 1 is, in general, dominant and in some cases exclusive. It corresponds to a preferential alignment of the HD internuclear axis perpendicular to the initial direction of approach and, thus, to side-on collisions. This work also shows that external preparation of the reactants, following the intrinsic preferences, would allow the enhancement or reduction of specific resonance features, and would be of great help for their eventual experimental detection.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
Bedjanian Y. Rate constants for the reactions of F atoms with H
2
and D
2
over the temperature range 220‐960 K. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuri Bedjanian
- Institut de Combustion Aérothermique Réactivité et Environnement (ICARE) CNRS 45071, Orléans Cedex 2 France
| |
Collapse
|
15
|
De Fazio D, Aquilanti V, Cavalli S. Benchmark Quantum Kinetics at Low Temperatures toward Absolute Zero and Role of Entrance Channel Wells on Tunneling, Virtual States, and Resonances: The F + HD Reaction. J Phys Chem A 2020; 124:12-20. [PMID: 31829589 DOI: 10.1021/acs.jpca.9b08435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports a study of the quantum reaction dynamics and kinetics of the F + HD reaction at low and ultralow temperatures, focusing on the range from the Wigner limit up to 50 K. Close coupling time-independent quantum reactive scattering calculations for the production of HF and DF molecules have been carried out on two potential energy surfaces differing in the description of the reaction entrance channel. This case is computationally more demanding than the cases of F with H2 and D2 ( De Fazio et al. Frontiers in Chemistry 2019 , 7 , 328 ) but offers a wider phenomenology regarding the roles of quantum mechanical effects of tunneling, of virtual states, and of resonances. The results show that at the temperatures in the cold and ultracold regimes small changes in the entrance channel long-range interaction induce surprising near threshold features. The presence of a virtual state close to the reactive threshold gives rise to a marked anti-Arrhenius behavior of the rate constants below 100 mK. This effect enhances reaction rates by about 2 orders of magnitude, making them of the same order as those at room temperature and confining the onset of the Wigner regime in the microkelvin region.
Collapse
Affiliation(s)
- Dario De Fazio
- Istituto di Struttura della materia-Consiglio Nazionale delle Ricerche , 00016 Roma , Italy
| | - Vincenzo Aquilanti
- Istituto di Struttura della materia-Consiglio Nazionale delle Ricerche , 00016 Roma , Italy.,Dipartimento di Chimica, Biologia e Biotecnologie , Università di Perugia , 06123 Perugia , Italy
| | - Simonetta Cavalli
- Dipartimento di Chimica, Biologia e Biotecnologie , Università di Perugia , 06123 Perugia , Italy
| |
Collapse
|
16
|
Xiahou C, Shan X, Connor JNL. Application of the Partial Wave QP Decomposition to the Angular Scattering of the State-to-State F + H 2 Reaction at Etrans = 0.04088 eV. J Phys Chem A 2019; 123:10500-10513. [PMID: 31714765 DOI: 10.1021/acs.jpca.9b07959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analyze the physical content of structures present in the product differential cross sections (DCSs) of the benchmark F + H2(vi, ji, mi) → FH(vf, jf, mf) + H reaction, where v, j, and m are the vibrational, rotational, and helicity quantum numbers, respectively, for the initial and final states. We analyze three state-to-state transitions: 000 → 300, 000 → 310, and 000 → 320. Accurate quantum S matrix elements are employed at a translational energy of 0.04088 eV for the Fu-Xu-Zhang potential energy surface. Our analysis of the DCSs uses a new technique called the QP decomposition; it makes an exact decomposition of the scattering (S) matrix into a Q part and a P part. The P part consists of a partial wave (PW) sum of Regge poles (involving both positions and residues) together with a rapidly oscillating quadratic phase. The Q part of the decomposition is then constructed exactly by subtracting the rapidly oscillating phase and the PW Regge pole sum from the input PW S matrix. In practice, it is convenient to make a small modification, which we call the QmodPmod decomposition. All our calculations use only integer values of the total angular momentum quantum number, namely, J = 0, 1, 2,... We find that the QmodPmod decomposition is successful and physically meaningful, in that the properties of Qmod matrix are simpler than those of the input S matrix. We then carry out a QmodPmod analysis of the DCSs, which provides novel insights into interference structures present in the angular scattering. In particular, we find for all three reactions that Regge resonances contribute across the whole angular range of the DCSs, being particularly pronounced at small angles. The techniques of nearside-farside decomposition and local angular momentum analysis for resummed Legendre PW series are also employed to provide additional insights into the angular scattering.
Collapse
Affiliation(s)
- Chengkui Xiahou
- School of Pharmacy , Qilu Medical University , Zibo Economic Zone , Zibo City 255300 , Shandong , People's Republic of China
| | - Xiao Shan
- Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| | - J N L Connor
- Department of Chemistry , The University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
17
|
Mukherjee B, Naskar K, Mukherjee S, Ghosh S, Sahoo T, Adhikari S. Beyond Born–Oppenheimer theory for spectroscopic and scattering processes. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1672987] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| |
Collapse
|
18
|
Umer U, Zhao H, Usman SK, Sun Z. High Order Split Operators for the Time-Dependent Wavepacket method of Triatomic Reactive Scattering in Hyperspherical Coordinates. ENTROPY 2019. [PMCID: PMC7514310 DOI: 10.3390/e21100979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since the introduction of a series of methods for solving the time-dependent Schrödinger equation (TDSE) in the 80s of the last centry, such as the Fourier transform, the split operator (SO), the Chebyshev polynomial propagator, and complex absorbing potential, investigation of the molecular dynamics within quantum mechanics principle have become popular. In this paper, the application of the time-dependent wave packet (TDWP) method using high-order SO propagators in hyperspherical coordinates for solving triatomic reactive scattering was investigated. The fast sine transform was applied to calculate the derivatives of the wave function of the radial degree of freedom. These high-order SO propagators are examined in different forms, i.e., TVT (Kinetic–Potential–Kinetic) and VTV (Potential–Kinetic–Potential) forms with three typical triatomic reactions, H + H 2, O + O 2 and F + HD. A little difference has been observed among the performances of high-order SO propagators in the TVT and VTV representations in the hyperspherical coordinate. For obtaining total reaction probabilities with 1% error, some of the S class high-order SO propagators, which have symmetric forms, are more efficient than second order SO for reactions involving long lived intermediate states. High order SO propagators are very efficient for obtaining total reaction probabilities.
Collapse
Affiliation(s)
- Umair Umer
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (U.U.); (H.Z.); (S.K.U.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (U.U.); (H.Z.); (S.K.U.)
| | - Syed Kazim Usman
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (U.U.); (H.Z.); (S.K.U.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (U.U.); (H.Z.); (S.K.U.)
- Correspondence:
| |
Collapse
|
19
|
Sáez-Rábanos V, Verdasco JE, Herrero VJ. Orbiting resonances in the F + HD (v = 0, 1) reaction at very low collision energies. A quantum dynamical study. Phys Chem Chem Phys 2019; 21:15177-15186. [PMID: 31246200 PMCID: PMC6751073 DOI: 10.1039/c9cp02718a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-independent, fully converged, quantum dynamical calculations have been performed for the F + HD (v = 0, j = 0) and F + HD (v = 1, j = 0) reactions on an accurate potential energy surface down to collision energies of 0.01 meV. The two isotopic exit channels, HF + D and DF + H, have been investigated. The calculations reproduce satisfactorily the Feshbach resonance structures for collision energies between 10 and 40 meV, previously reported in the literature for the HF + D channel. Contrary to the results of a former literature work, vibrational excitation of HD is found to enhance reactivity in all cases down to the lowest collision energy investigated. Shape-type orbiting resonances are found for collision energies lower than 2 meV. The resonances appear as peaks in the reaction cross sections that are associated to specific values of the total angular momentum, J. In contrast with the Feshbach resonances at higher energies, the orbiting resonance structure, which is caused by the van der Waals well of the entrance channel, is identical for the HF + D and DF + H exit channels. The orbiting resonance peaks for F + HD (v = 0) are very small, but those for F + HD (v = 1) could be observed, in principle, with a combination of Raman pumping and merged beams methods.
Collapse
Affiliation(s)
- V Sáez-Rábanos
- Departamento de Sistemas y Recursos Naturales, E.T.S. de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - J E Verdasco
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid (Unidad Asociada CSIC), 28040 Madrid, Spain.
| | - V J Herrero
- Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
20
|
De Fazio D, Aquilanti V, Cavalli S. Quantum Dynamics and Kinetics of the F + H 2 and F + D 2 Reactions at Low and Ultra-Low Temperatures. Front Chem 2019; 7:328. [PMID: 31157204 PMCID: PMC6527900 DOI: 10.3389/fchem.2019.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Integral cross sections and rate constants for the prototypical chemical reactions of the fluorine atom with molecular hydrogen and deuterium have been calculated over a wide interval of collision energy and temperature ranging from the sub-thermal (50 K) down to the ultra-cold regimes (0.5 mK). Rigorous close coupling time-independent quantum reactive scattering calculations have been carried out on two potential energy surfaces, differing only at long-range in the reactants' channel. The results show that tunnel, resonance and virtual state effects enhance under-barrier reactivity giving rise to pronounced deviations from the Arrhenius law as temperature is lowered. Within the ultra-cold domain (below 1 mK), the reactivity is governed by virtual state effects and by tunneling through the reaction barrier; in the cold regime (1 mK–1 K), the shape resonances in the entrance channel of the potential energy surface make the quantum tunneling contribution larger so enhancing cross sections and rate constants by about one order of magnitude; at higher temperatures (above 10 K), the tunneling pathway enhanced by the constructive interference between two Feshbach resonances trapped in the reaction exit channel competes with the thermally activated mechanism, as the energy gets closer to the reaction barrier height. The results show that at low temperatures cross sections and rate constants are extremely sensitive to small changes in the long-range intermolecular interaction in the entrance channel of the potential energy surface, as well as to isotopic substitution.
Collapse
Affiliation(s)
- Dario De Fazio
- Istituto di Struttura della Materia, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| | - Simonetta Cavalli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
21
|
Li X, Sun Z. Dynamical resonances in
$$\hbox {F}+ {\hbox {H}}_2/\hbox {HD}$$
F
+
H
2
/
HD
reaction scattering. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Chen J, Xu X, Liu S, Zhang DH. A neural network potential energy surface for the F + CH4reaction including multiple channels based on coupled cluster theory. Phys Chem Chem Phys 2018; 20:9090-9100. [DOI: 10.1039/c7cp08365c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report here a new global and full dimensional potential energy surface (PES) for the F + CH4reaction.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University
- Xiamen 361005
| | - Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
23
|
Chen J, Su NQ, Xu X, Zhang DH. Accurate potential energy surfaces for hydrogen abstraction reactions: A benchmark study on the XYG3 doubly hybrid density functional. J Comput Chem 2017; 38:2326-2334. [PMID: 28786211 DOI: 10.1002/jcc.24886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/06/2022]
Abstract
The potential energy surface (PES) for the H + CH4 system has been constructed with the recently developed XYG3 doubly hybrid functional, while those with the standard B3LYP hybrid functional, and the Møller-Plesset perturbation theory up to the second order (MP2) are also presented for comparison. Quantum dynamics studies demonstrated that satisfactory results on the reaction probabilities and the rate coefficients can be obtained on top of the XYG3-PES, as compared to the results based on the highly accurate, yet expensive, CCSD(T)-PES (Li et al., J. Chem. Phys. 2015, 142, 204302). Further investigation suggested that the XYG3 functional is useful in providing accurate rate coefficients for some larger systems involving H atom abstractions. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Neil Qiang Su
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics & Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
24
|
Shan X, Connor JNL. State-to-State F + H2 Reaction at Etrans = 0.04088 eV: QP Decomposition, Parametrized S Matrix Incorporating Regge Poles, and Uniform Asymptotic Complex Angular Momentum Analysis of the Angular Scattering. J Phys Chem A 2016; 120:6317-31. [PMID: 27434264 DOI: 10.1021/acs.jpca.6b06028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform.
Collapse
Affiliation(s)
- Xiao Shan
- School of Chemistry, The University of Manchester , Manchester M13 9PL, United Kingdom
| | - J N L Connor
- School of Chemistry, The University of Manchester , Manchester M13 9PL, United Kingdom
| |
Collapse
|
25
|
De Fazio D, Cavalli S, Aquilanti V. Benchmark Quantum Mechanical Calculations of Vibrationally Resolved Cross Sections and Rate Constants on ab Initio Potential Energy Surfaces for the F + HD Reaction: Comparisons with Experiments. J Phys Chem A 2016; 120:5288-99. [PMID: 27186680 DOI: 10.1021/acs.jpca.6b01471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dario De Fazio
- Istituto di Struttura della
Materia, Consiglio Nazionale delle Ricerche, 00016 Roma, Italy
| | - Simonetta Cavalli
- Dipartimento di Chimica,
Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica,
Biologia e Biotecnologie, Università di Perugia, 06123 Perugia, Italy
| |
Collapse
|
26
|
Abstract
In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.
Collapse
Affiliation(s)
- Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; .,Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131;
| |
Collapse
|
27
|
Yu D, Chen J, Cong S, Sun Z. Theoretical Study of FH2– Electron Photodetachment Spectra on New Ab Initio Potential Energy Surfaces. J Phys Chem A 2015; 119:12193-208. [DOI: 10.1021/acs.jpca.5b06153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dequan Yu
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Jun Chen
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Shulin Cong
- School
of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhigang Sun
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Center
for Advanced Chemical Physics and 2011 Frontier Center for Quantum
Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People’s Republic of China
| |
Collapse
|
28
|
Yang T, Huang L, Wang T, Xiao C, Xie Y, Sun Z, Dai D, Chen M, Zhang D, Yang X. Effect of Reagent Vibrational Excitation on the Dynamics of F + H2(v = 1, j = 0) → HF(v′, j′) + H Reaction. J Phys Chem A 2015; 119:12284-90. [DOI: 10.1021/acs.jpca.5b06395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiangang Yang
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 Liaoning, P. R. China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Long Huang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Tao Wang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunlei Xiao
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Yurun Xie
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Zhigang Sun
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongxu Dai
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
| | - Maodu Chen
- Key
Laboratory of Materials Modification by Laser, Electron, and Ion Beams
(Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 Liaoning, P. R. China
| | - Donghui Zhang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueming Yang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China
- Synergetic
Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Kim JB, Weichman ML, Sjolander TF, Neumark DM, Kłos J, Alexander MH, Manolopoulos DE. Spectroscopic observation of resonances in the F + H
2
reaction. Science 2015; 349:510-3. [DOI: 10.1126/science.aac6939] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jongjin B. Kim
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Millard H. Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David E. Manolopoulos
- Department of Chemistry, Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
30
|
Yuan J, He D, Chen M. A new potential energy surface for the ground electronic state of the LiH2 system, and dynamics studies on the H((2)S) + LiH(X(1)Σ(+)) → Li((2)S) + H2(X(1)Σg(+)) reaction. Phys Chem Chem Phys 2015; 17:11732-9. [PMID: 25870863 DOI: 10.1039/c4cp05352d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new global potential energy surface (PES) is obtained for the ground electronic state of the LiH2 system based on high-level energies. The energy points are calculated at the multireference configuration interaction level with aug-cc-pVXZ (X = Q, 5) basis sets, and these energies are extrapolated to the complete basis set limit. The neural network method and hierarchical construction scheme are applied in the fitting process and the root mean square error of the fitting result is very small (0.004 eV). The dissociation energies and equilibrium distances for LiH(X(1)Σ(+)) and H2(X(1)Σg(+)) obtained from the new PES are in good agreement with the experimental data. On the new PES, time-dependent wave packet studies for the H((2)S) + LiH(X(1)Σ(+)) → Li((2)S) + H2(X(1)Σg(+)) reaction have been carried out. In this reaction, no threshold is found due to the absence of an energy barrier on the minimum energy path. The calculated integral cross sections are high at low collision energy and will decrease with the increase of the collision energy. The product molecule H2 tends to be forward scattering due to direct reactive collisions, which becomes more evident at higher collision energies.
Collapse
Affiliation(s)
- Jiuchuang Yuan
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | |
Collapse
|
31
|
Su NQ, Chen J, Sun Z, Zhang DH, Xu X. H + H2 quantum dynamics using potential energy surfaces based on the XYG3 type of doubly hybrid density functionals: Validation of the density functionals. J Chem Phys 2015; 142:084107. [DOI: 10.1063/1.4913196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Neil Qiang Su
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Chen J, Sun Z, Zhang DH. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method. J Chem Phys 2015; 142:024303. [DOI: 10.1063/1.4904546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
33
|
Sokolovski D, Akhmatskaya E, Echeverría-Arrondo C, De Fazio D. Complex angular momentum theory of state-to-state integral cross sections: resonance effects in the F + HD → HF(v′ = 3) + D reaction. Phys Chem Chem Phys 2015; 17:18577-89. [DOI: 10.1039/c5cp01169h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
State-to-state reactive integral cross sections (ICSs) are often affected by quantum mechanical resonances, especially in the neighborhood of a reactive threshold.
Collapse
Affiliation(s)
- D. Sokolovski
- Departmento de Química-Física
- Universidad del País Vasco
- UPV/EHU
- Leioa
- Spain
| | - E. Akhmatskaya
- IKERBASQUE
- Basque Foundation for Science
- Bilbao
- Spain
- Basque Center for Applied Mathematics (BCAM)
| | | | - D. De Fazio
- Istituto di Struttura della Materia
- CNR
- 00016 Roma
- Italy
| |
Collapse
|
34
|
Li W, Zhang DH, Sun Z. Efficient Fourth-Order Split Operator for Solving the Triatomic Reactive Schrödinger Equation in the Time-Dependent Wavepacket Approach. J Phys Chem A 2014; 118:9801-10. [DOI: 10.1021/jp5074158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wentao Li
- Center
for Theoretical
and Computational Chemistry and State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- Center
for Theoretical
and Computational Chemistry and State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Synergetic Innovation
Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhigang Sun
- Center
for Theoretical
and Computational Chemistry and State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Synergetic Innovation
Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Feng H, Randall KR, Schaefer HF. Reaction of a Fluorine Atom with Methanol: Potential Energy Surface Considerations. J Phys Chem A 2014; 119:1636-41. [PMID: 25222528 DOI: 10.1021/jp508189d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Feng
- School of Physics
and Chemistry and Research Center for Advanced Computation, Xihua University, Chengdu 610039, People’s Republic of China
| | - Katherine R. Randall
- Center for Computational
Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Research
Focus Area
for Chemical Resource Beneficiation, North-West University, Hoffman Street, Potchefstroom, South Africa 2520
| | - Henry F. Schaefer
- Center for Computational
Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
36
|
Wang T, Yang T, Xiao C, Sun Z, Huang L, Dai D, Yang X, Zhang DH. Isotope-Dependent Rotational States Distributions Enhanced by Dynamic Resonance States: A Comparison Study of the F + HD → HF(vHF = 2) + D and F + H2 → HF(vHF = 2) + H Reaction. J Phys Chem Lett 2014; 5:3049-3055. [PMID: 26278258 DOI: 10.1021/jz501460k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An interesting trimodal structure in the HF (v' = 2) rotational distribution produced by the F + HD (v = 0, j = 0) reaction, but monomodal structure in the HF (v' = 2) rotational distribution produced by the F + H2 (v = 0, j = 0) reaction, were observed using a high-resolution crossed molecular beam apparatus. The rotational states of product HF (v' = 2) are much hotter in the F + HD reaction. It is uncovered that the observations are due to the dominant role of the dynamical resonance states in these two isotopic reactions. The angular potential well in the region of the resonance state of the F + HD reaction is much deeper and supports wave function with high angular kinetic energy, which in turn comes from different H tunneling processes in the F + HD and F + H2 reaction.
Collapse
Affiliation(s)
- Tao Wang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Tiangang Yang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Chunlei Xiao
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhigang Sun
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Long Huang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dongxu Dai
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Xueming Yang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Dong H Zhang
- †State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- ‡Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
37
|
Cavalli S, Aquilanti V, Mundim KC, De Fazio D. Theoretical reaction kinetics astride the transition between moderate and deep tunneling regimes: the F + HD case. J Phys Chem A 2014; 118:6632-41. [PMID: 24893210 DOI: 10.1021/jp503463w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the reaction between F and HD, giving HF + D and DF + H, the rate constants, obtained from rigorous quantum scattering calculations at temperatures ranging from 350 K down to 100 K, show deviations from the Arrhenius behavior that have been interpreted in terms of tunneling of either H or D atoms through a potential energy barrier. The interval of temperature investigated extends from above to below a crossover value Tc, a transition temperature separating the moderate and deep quantum tunneling regimes. Below Tc, the rate of the H or D exchange reaction is controlled by the prevalence of tunneling over the thermal activation mechanism. In this temperature range, Bell's early treatment of quantum tunneling, based on a semiclassical approximation for the barrier permeability, provides a reliable tool to quantitatively account for the contribution of the tunneling effect. This treatment is here applied for extracting from rate constants properties of the effective tunneling path, such as the activation barrier height and width. We show that this is a way of parametrizing the dependence of the apparent activation energy on temperature useful for both calculated and experimental rate constants in an ample interval of temperature, from above to below Tc, relevant for modelization of astrophysical and in general very low-temperature environments.
Collapse
Affiliation(s)
- S Cavalli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia , 06123 Perugia, Italy
| | | | | | | |
Collapse
|
38
|
Wang T, Chen J, Yang T, Xiao C, Sun Z, Huang L, Dai D, Yang X, Zhang DH. Dynamical Resonances Accessible Only by Reagent Vibrational Excitation in the F + HD→HF + D Reaction. Science 2013; 342:1499-502. [DOI: 10.1126/science.1246546] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tao Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Tiangang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Long Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
39
|
Hu X, Xie C, Xie D, Guo H. State-to-state quantum dynamics of the N(4S) + CH(X2Π) → CN(X2Σ+,A2Π) + H(2S) reactions. J Chem Phys 2013; 139:124313. [PMID: 24089773 DOI: 10.1063/1.4822003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The reactions between N((4)S) and CH(X(2)Π) lead to H((2)S) plus CN in its two lowest electronic states (X(2)Σ(+) and A(2)Π), which are responsible for the interstellar CN formation. Accurate quantum dynamics of these reactions are investigated on new global potential energy surfaces of the two lowest-lying triplet states of HCN (1(3)A' and 1(3)A") fitted to more than 37,000 points at the internally contracted multi-reference configuration interaction level with the Davidson correction. The pathways for these highly exothermic and barrierless reactions feature both the HCN and HNC wells. Long-lived resonances supported by these wells manifest in reaction probabilities as numerous oscillations, particularly for low J partial waves. The 1(3)A" state is found to be more reactive than the 1(3)A' state, due apparently to its more attractive nature in the entrance channel. The CN products in both electronic states are highly excited in both vibrational and rotational degrees of freedom. The near forward-backward symmetric differential cross sections are consistent with a complex-forming mechanism.
Collapse
Affiliation(s)
- Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
40
|
Krasilnikov MB, Popov RS, Roncero O, De Fazio D, Cavalli S, Aquilanti V, Vasyutinskii OS. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD. J Chem Phys 2013; 138:244302. [DOI: 10.1063/1.4809992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
41
|
Connor JNL. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering. J Chem Phys 2013; 138:124310. [DOI: 10.1063/1.4794859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Daranlot J, Hu X, Xie C, Loison JC, Caubet P, Costes M, Wakelam V, Xie D, Guo H, Hickson KM. Low temperature rate constants for the N(4S) + CH(X2Πr) reaction. Implications for N2 formation cycles in dense interstellar clouds. Phys Chem Chem Phys 2013; 15:13888-96. [DOI: 10.1039/c3cp52535j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Wang CR, Zhang DH. Accuracy of Low-level Surface in Hierarchical Construction of Potential Energy Surface. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/02/186-190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Liu K. Quantum Dynamical Resonances in Chemical Reactions: From A + BC to Polyatomic Systems. ADVANCES IN CHEMICAL PHYSICS 2012. [DOI: 10.1002/9781118180396.ch1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Sun Z, Yang W, Zhang DH. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Phys Chem Chem Phys 2012; 14:1827-45. [DOI: 10.1039/c1cp22790d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Jiang B, Xie C, Xie D. Newab initiopotential energy surface for BrH2and rate constants for the H + HBr → H2+ Br abstraction reaction. J Chem Phys 2011; 134:114301. [DOI: 10.1063/1.3563750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Cao J, Zhang Z, Zhang C, Bian W, Guo Y. Kinetic study on the H+SiH4 abstraction reaction using an ab initio potential energy surface. J Chem Phys 2011; 134:024315. [DOI: 10.1063/1.3521477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
De Fazio D, Lucas JM, Aquilanti V, Cavalli S. Exploring the accuracy level of new potential energy surfaces for the F + HD reactions: from exact quantum rate constants to the state-to-state reaction dynamics. Phys Chem Chem Phys 2011; 13:8571-82. [DOI: 10.1039/c0cp02738c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Xiahou C, Connor JNL, Zhang DH. Rainbows and glories in the angular scattering of the state-to-state F + H2 reaction at Etrans = 0.04088 eV. Phys Chem Chem Phys 2011; 13:12981-97. [DOI: 10.1039/c1cp21044k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Li A, Xie D, Dawes R, Jasper AW, Ma J, Guo H. Global potential energy surface, vibrational spectrum, and reaction dynamics of the first excited (Ã (2)A(')) state of HO(2). J Chem Phys 2010; 133:144306. [PMID: 20949999 DOI: 10.1063/1.3490642] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The authors report extensive high-level ab initio studies of the first excited (Ã (2)A(')) state of HO(2). A global potential energy surface (PES) was developed by spline-fitting 17 000 ab initio points at the internal contracted multireference configuration interaction (icMRCI) level with the AVQZ basis set. To ascertain the spectroscopic accuracy of the PES, the near-equilibrium region of the molecule was also investigated using three interpolating moving least-squares-based PESs employing dynamically weighted icMRCI methods in the complete basis set limit. Vibrational energy levels on all four surfaces agree well with each other and a new assignment of some vibrational features is proposed. In addition, the dynamics of both the forward and reverse directions of the H+O(2)(ã (1)Δ(g))↔OH+O reaction (J=0) were studied using an exact wave packet method. The reactions are found to be dominated by sharp resonances.
Collapse
Affiliation(s)
- Anyang Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|