1
|
Versatility of Reverse Micelles: From Biomimetic Models to Nano (Bio)Sensor Design. Processes (Basel) 2021. [DOI: 10.3390/pr9020345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents an overview of the principal structural and dynamics characteristics of reverse micelles (RMs) in order to highlight their structural flexibility and versatility, along with the possibility to modulate their parameters in a controlled manner. The multifunctionality in a large range of different scientific fields is exemplified in two distinct directions: a theoretical model for mimicry of the biological microenvironment and practical application in the field of nanotechnology and nano-based sensors. RMs represent a convenient experimental approach that limits the drawbacks of the conventionally biological studies in vitro, while the particular structure confers them the status of simplified mimics of cells by reproducing a complex supramolecular organization in an artificial system. The biological relevance of RMs is discussed in some particular cases referring to confinement and a crowded environment, as well as the molecular dynamics of water and a cell membrane structure. The use of RMs in a range of applications seems to be more promising due to their structural and compositional flexibility, high efficiency, and selectivity. Advances in nanotechnology are based on developing new methods of nanomaterial synthesis and deposition. This review highlights the advantages of using RMs in the synthesis of nanoparticles with specific properties and in nano (bio)sensor design.
Collapse
|
2
|
Li Z, Voth GA. Interfacial solvation and slow transport of hydrated excess protons in non-ionic reverse micelles. Phys Chem Chem Phys 2020; 22:10753-10763. [PMID: 32154815 DOI: 10.1039/d0cp00378f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work employs molecular dynamics simulations to investigate the solvation and transport properties of hydrated excess protons (with a hydronium-like core structure) in non-ionic Igepal CO-520 reverse micelles of various sizes in a non-polar solvent. Multiscale Reactive Molecular Dynamics (MS-RMD) simulations were used to describe vehicular and hopping diffusion during the proton transport process. As detailed herein, an excess proton shows a marked tendency to localize in the interfacial region of micellar water pools. Slow proton transport was observed which becomes faster with increasing micellar size. Further analysis reveals that the slow diffusion of an excess proton is a combined result of slow water diffusion and the low proton hopping rate. This study also confirms that a low proton hopping rate in reverse micelles stems from the interfacial solvation of hydrated excess protons and the immobilization of interfacial water. The low water density in the interfacial region makes it difficult to form a complete hydrogen bond network near the hydrated excess proton, and therefore locks in the orientation of hydrated proton cations. The immobilization of the interfacial water also slows the relaxation of the overall hydrogen bond network.
Collapse
Affiliation(s)
- Zhefu Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
3
|
Honegger P, Heid E, Schröder C, Steinhauser O. Dielectric spectroscopy and time dependent Stokes shift: two faces of the same coin? Phys Chem Chem Phys 2020; 22:18388-18399. [DOI: 10.1039/d0cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different types of spectroscopy capture different aspects of dynamics and different ranges of intermolecular contributions.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|
4
|
Honegger P, Steinhauser O. The protein-water nuclear Overhauser effect (NOE) as an indirect microscope for molecular surface mapping of interaction patterns. Phys Chem Chem Phys 2019; 22:212-222. [PMID: 31799520 DOI: 10.1039/c9cp04752b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this computational study, the intermolecular solute-solvent Nuclear Overhauser Effect (NOE) of the model protein ubiquitin in different chemical environments (free, bound to a partner protein and encapsulated) is investigated. Short-ranged NOE observables such as the NOE/ROE ratio reveal hydration phenomena on absolute timescales such as fast hydration sites and slow water clefts. We demonstrate the ability of solute-solvent NOE differences measured of the same protein in different chemical environments to reveal hydration changes on the relative timescale. The resulting NOE/ROE-surface maps are shown to be a central key for analyzing biologically relevant chemical influences such as complexation and confinement: the presence of a complexing macromolecule or a confining surface wall modulates the water mobility in the vicinity of the probe protein, hence revealing which residues of said protein are proximate to the foreign interface and which are chemically unaffected. This way, hydration phenomena can serve to indirectly map the precise influence (position) of other molecules or interfaces onto the protein surface. This proposed one-protein many-solvents approach may offer experimental benefits over classical one-protein other-protein pseudo-intermolecular transient NOEs. Furthermore, combined influences such as complexation and confinement may exert non-additive influences on the protein compared to a reference state. We offer a mathematical method to disentangle the influence of these two different chemical environments.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstr. 17, A-1090 Vienna, Austria.
| | | |
Collapse
|
5
|
Singh P, Mukherjee D, Singha S, Das R, Pal SK. Modulation of Kinetic Pathways of Enzyme–Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch. Chemistry 2019; 25:9728-9736. [DOI: 10.1002/chem.201901751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Subhankar Singha
- Department of ChemistryPohang University of Science and Technology (POSTECH) 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 790784 Republic of Korea
| | - Ranjan Das
- Department of ChemistryWest Bengal State University, Barasat Kolkata 700126
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| |
Collapse
|
6
|
Honegger P, Steinhauser O. Towards capturing cellular complexity: combining encapsulation and macromolecular crowding in a reverse micelle. Phys Chem Chem Phys 2019; 21:8108-8120. [DOI: 10.1039/c9cp00053d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the orientational structure and dynamics of multi-protein systems under confinement and discusses the implications on biological cells.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
7
|
Honegger P, Steinhauser O. Revival of collective water structure and dynamics in reverse micelles brought about by protein encapsulation. Phys Chem Chem Phys 2018; 20:22932-22945. [DOI: 10.1039/c8cp03422b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mechanism of depolarization in reverse micelles with zwitterionic surfactants and containing polar species but lacking ions is reported.
Collapse
Affiliation(s)
- Philipp Honegger
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| |
Collapse
|
8
|
Vierros S, Österberg M, Sammalkorpi M. Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein. Phys Chem Chem Phys 2018; 20:27192-27204. [DOI: 10.1039/c8cp05104f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation mechanism and the existence of cmc depend on apolar solvent quality and surfactant head group polarity.
Collapse
Affiliation(s)
- Sampsa Vierros
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| | - Monika Österberg
- Department of Bioproducts and Biotechnology
- Aalto University
- 00076 Aalto
- Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| |
Collapse
|
9
|
Schmollngruber M, Braun D, Steinhauser O. A computational component analysis of dielectric relaxation and THz spectra of water/AOT reverse micelles with different water loading. J Chem Phys 2016; 145:214702. [DOI: 10.1063/1.4971165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Daniel Braun
- Department of Computational Biological Chemistry, University of Vienna, Vienna, Austria
| | - Othmar Steinhauser
- Department of Computational Biological Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Abstract
Reverse micelles (RMs) made from water and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) are commonly studied experimentally as models of aqueous microenvironments. They are small enough for individual RMs to also be studied by molecular dynamics (MD) simulation, which yields detailed insight into their structure and properties. Although RM size is determined by the water loading ratio (i.e., the molar ratio of water to AOT), experimental measurements of RM size are imprecise and inconsistent, which is problematic when seeking to understand the relationship between water loading ratio and RM size, and when designing models for study by MD simulation. Therefore, a systematic study of RM size was performed by MD simulation with the aims of determining the size of an RM for a given water loading ratio, and of reconciling the results with experimental measurements. Results for a water loading ratio of 7.5 indicate that the interaction energy between AOT anions and other system components is at a minimum when there are 62 AOT anions in each RM. The minimum is due to a combination of attractive and repulsive electrostatic interactions that vary with RM size and the dielectric effect of available water. Overall, the results agree with a detailed analysis of previously published experimental data over a wide range of water loading ratios, and help reconcile seemingly discrepant experimental results. In addition, water loss and gain from an RM is observed and the mechanism of water exchange is outlined. This kind of RM model, which faithfully reproduces experimental results, is essential for reliable insights into the properties of RM-encapsulated materials.
Collapse
Affiliation(s)
- Gözde Eskici
- Department of Biochemistry & Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia 19104, United States
| | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Schmollngruber M, Braun D, Oser D, Steinhauser O. Dielectric depolarisation and concerted collective dynamics in AOT reverse micelles with and without ubiquitin. Phys Chem Chem Phys 2016; 18:3606-17. [PMID: 26751837 DOI: 10.1039/c5cp07112g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this computational study we present molecular dynamics (MD) simulations of reverse micelles, i.e. nano-scale water pools encapsulated by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and dissolved in isooctane. Although consisting of highly polar components, such micro-emulsions exhibit surprisingly low dielectric permittivity, both static and frequency-dependent. This finding is well supported by experimental dielectric measurements. Furthermore, the computational dielectric spectra of reverse micelles with and without the polar protein ubiquitin are almost identical. A detailed component analysis of our simulated systems reveals the underlying mechanism of the observed dielectric depolarisation. While each component by itself would make a remarkable contribution to the static dielectric permittivity, mutual compensation leads to the observed marginal net result. This compensatory behavior is maintained for all but the highest frequencies. Dielectric model theory adapted to the peculiarities of reverse micelles provides an explanation: embedding a system in a cavity engulfed by a low dielectric medium automatically leads to depolarization. In this sense experiment, simulation and theory are in accordance.
Collapse
Affiliation(s)
| | - Daniel Braun
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| | - Daniel Oser
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| | - Othmar Steinhauser
- Department of Computational Biological Chemistry, University of Vienna, Austria.
| |
Collapse
|
12
|
Abel S, Galamba N, Karakas E, Marchi M, Thompson WH, Laage D. On the Structural and Dynamical Properties of DOPC Reverse Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10610-10620. [PMID: 27649391 DOI: 10.1021/acs.langmuir.6b02566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The structure and dynamics of phospholipid reverse micelles are studied by molecular dynamics. We report all-atom unconstrained simulations of 1,2-dioleoyl-sn-phosphatidylcholine (DOPC) reverse micelles in benzene of increasing sizes, with water-to-surfactant number ratios ranging from W0 = 1 to 16. The aggregation number, i.e., the number of DOPC molecules per reverse micelle, is determined to fit experimental light-scattering measurements of the reverse micelle diameter. The simulated reverse micelles are found to be approximately spherical. Larger reverse micelles (W0 > 4) exhibit a layered structure with a water core and the hydration structure of DOPC phosphate head groups is similar to that found in phospholipid membranes. In contrast, the structure of smaller reverse micelles (W0 ≤ 4) cannot be described as a series of concentric layers successively containing water, surfactant head groups, and surfactant tails, and the head groups are only partly hydrated and frequently present in the core. The dynamics of water molecules within the phospholipid reverse micelles slow down as the reverse micelle size decreases, in agreement with prior studies on AOT and Igepal reverse micelles. However, the average water reorientation dynamics in DOPC reverse micelles is found to be much slower than in AOT and Igepal reverse micelles with the same W0 ratio. This is explained by the smaller water pool and by the stronger interactions between water and the charged head groups, as confirmed by the red-shift of the computed infrared line shape with decreasing W0.
Collapse
Affiliation(s)
- Stéphane Abel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/iBiTEC-S/SB2SM & CNRS UMR 9198, 91191 Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 Cedex Gif-sur-Yvette, France
| | - Nuno Galamba
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Esra Karakas
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/iBiTEC-S/SB2SM & CNRS UMR 9198, 91191 Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 Cedex Gif-sur-Yvette, France
- Maison de la Simulation, USR 3441, CEA-CNRS-INRIA-Univ Paris Sud - Univ Versailles, 91191 Cedex Gif-sur-Yvette, France
| | - Massimo Marchi
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DRF/iBiTEC-S/SB2SM & CNRS UMR 9198, 91191 Saclay, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91198 Cedex Gif-sur-Yvette, France
| | - Ward H Thompson
- Department of Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - Damien Laage
- Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| |
Collapse
|
13
|
Hande VR, Chakrabarty S. Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water. Phys Chem Chem Phys 2016; 18:21767-79. [DOI: 10.1039/c6cp04378j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We show that the distance from the interface at which bulk-like properties are recovered strongly depends on the choice of order parameter being probed: translational < tetrahedral ≪ dipolar orientation.
Collapse
Affiliation(s)
- Vrushali R. Hande
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - Suman Chakrabarty
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
14
|
Chun BJ, Choi JI, Jang SS. Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Vierros S, Sammalkorpi M. Phosphatidylcholine reverse micelles on the wrong track in molecular dynamics simulations of phospholipids in an organic solvent. J Chem Phys 2015; 142:094902. [DOI: 10.1063/1.4914022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Vierros
- Department of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - M. Sammalkorpi
- Department of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
16
|
Marchi M, Abel S. Modeling the Self-Aggregation of Small AOT Reverse Micelles from First-Principles. J Phys Chem Lett 2015; 6:170-174. [PMID: 26263107 DOI: 10.1021/jz5023619] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Letter is the first attempt at studying the self-aggregation of AOT reverse micelles from first-principles. It focuses on predicting the aggregation number, the radius of gyration, and the hydrodynamic radius of a low water content reverse micelle by theoretical means. We show that molecular dynamics simulation in the μs time range combined with atomistic potentials is capable of reproducing and explaining, to a convenient degree, experimental results on the size and dimensions of reverse micelles of AOT of low water content, [H2O]/[AOT] ≈ 5.
Collapse
Affiliation(s)
- Massimo Marchi
- Commissariat à l'Energie Atomique, DSV/i-BiTec-S/SB2SM/LBMS, CNRS UMR 8221, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Abel
- Commissariat à l'Energie Atomique, DSV/i-BiTec-S/SB2SM/LBMS, CNRS UMR 8221, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
17
|
Artoshina OV, Vorob’eva MY, Dushanov EB, Kholmurodov KT. Molecular dynamics simulations of formamide interaction with hydrocyanic acid on a catalytic surface TiO2. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414060041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Elola MD, Rodriguez J. Solvation of Coumarin 480 within nano-confining environments: structure and dynamics. J Chem Phys 2014; 140:034702. [PMID: 25669402 DOI: 10.1063/1.4861586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Equilibrium and dynamical characteristics pertaining to the solvation of the fluorescent probe Coumarin 480 within different confining environments are investigated using molecular dynamics simulations. Three kinds of confining systems are examined: (i) the cetyltrimethylammonium bromide (CTAB)/isooctane/1-hexanol/water; cationic inverse micelle (IM) (ii) a CTAB/water direct micelle (DM), and (iii) a silica-surfactant nanocomposite, comprising a cylindrical silica pore (SP) containing small amounts of water and CTAB species adsorbed at the pore walls. The solvation structures in the three environments differ at a qualitative level: an exchange between bulk- and interface-like solvation states was found in the IM, whereas in the DM, the solvation states of the probe are characterized by its embedding at the interface, trapped among the surfactant heads and tails. Within the SP structure, the coumarin exhibits alternations between internal and interfacial solvation states that occur on a ∼20 ns time scale and operate via 90° rotations of its molecular plane. The solvation responses of the environment following a vertical excitation of the probe are also investigated. Solvation times resulted between 2 and 1000 times longer than those found in bulk water, with a fast-to-slow trend IM→DM→SP, which can be interpreted in terms of the solvation structures that prevail in each case.
Collapse
Affiliation(s)
- M Dolores Elola
- Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
| | - Javier Rodriguez
- Departamento de Física, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
| |
Collapse
|
19
|
Uskoković V. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry. REVIEW JOURNAL OF CHEMISTRY 2013; 3:271-303. [PMID: 24490052 PMCID: PMC3906689 DOI: 10.1134/s2079978013040031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald-Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly.
Collapse
Affiliation(s)
- Vuk Uskoković
- Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th Street, QB3 204, Mission Bay Campus, San Francisco, CA 94158-2330707, USA
| |
Collapse
|
20
|
Bakulin AA, Cringus D, Pieniazek PA, Skinner JL, Jansen TLC, Pshenichnikov MS. Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J Phys Chem B 2013; 117:15545-58. [PMID: 23980543 DOI: 10.1021/jp405853j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we perform a comprehensive study of ultrafast molecular and vibrational dynamics of water confined in small reversed micelles (RMs). The molecular picture is elucidated with two-dimensional infrared (2D IR) spectroscopy of water OH stretch vibrations and molecular dynamics simulations, bridged by theoretical calculations of linear and 2D IR vibrational spectra. To investigate the effects of intermolecular coupling, experiments and modeling are performed for isotopically diluted (HDO in D2O) and undiluted (H2O) water. We put a separation of water inside RMs into two subensembles (water-bound and surfactant-bound molecules), observed by many before, on a solid theoretical basis. Water molecules fully attached to the lipid interface ("shell" water) are decoupled from one another and from the central water nanopool ("core" water). The environmental fluctuations are largely "frozen" for the shell water, while the core waters demonstrate much faster dynamics but still not as fast as in the bulk case. A substantial nanoconfinement effect on the dynamics of the core water is observed after disentanglement of the shell water contribution, which is fully confirmed by the simulations of 2D IR spectra. Current results provide new insights into interaction between biological objects like membranes or proteins with the surrounding aqueous bath, and highlight peculiarities in vibrational energy redistribution near the lipid surface.
Collapse
Affiliation(s)
- Artem A Bakulin
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Dushanov E, Kholmurodov K, Yasuoka K. Structural and diffusion properties of formamide/water mixture interacting with TiO2 surface. Bioorg Chem 2013; 50:11-6. [PMID: 23933355 DOI: 10.1016/j.bioorg.2013.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
Abstract
The photoreaction and adsorption properties on surfaces, thermal decomposition, chemical transformation, and other properties of the formamide molecule are widely used to understand the origins of the formation of biological molecules (nucleosides, amino acids, DNA, monolayers, etc.) needed for life. The titanium oxide (TiO2) surface can act both as a template on which the accumulation of adsorbed molecules like formamide occurs through the concentration effect, and as a catalytic material that lowers the activation energy needed for the formation of intermediate products. In this paper, a formamide-water solution interacting with TiO2 (anatase) surface is simulated using the molecular dynamics method. The structural, diffusion and density properties of formamide-water mixture on TiO2 are established for a wide temperature range from T=250 K up to T=400 K.
Collapse
Affiliation(s)
- E Dushanov
- Laboratory of Radiation Biology, JINR, 141980 Dubna, Moscow Region, Russia; Institute of Nuclear Physics, 702132 Ulugbek, Tashkent, Uzbekistan
| | | | | |
Collapse
|
22
|
Singh PK, Kuroda DG, Hochstrasser RM. An ion's perspective on the molecular motions of nanoconfined water: a two-dimensional infrared spectroscopy study. J Phys Chem B 2013; 117:9775-84. [PMID: 23855349 DOI: 10.1021/jp406725a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The vibrational population relaxation and hydration shell dynamics of the symmetric tricyanomethanide (TCM) anion are investigated in a sodium bis(2-ethylhexyl)sulfosuccinate reverse micelle as a function of the water pool radius. Two-dimensional infrared (IR) spectroscopy in combination with linear absorption and ultrafast IR pump-probe spectroscopy is utilized in this study. Spectroscopic measurements show that the anion has two bands in the 2160-2175 cm(-1) region, each with its own spectroscopic signatures. Analysis of the vibrational dynamics shows that the two vibrational bands are consistent with the anion located either at the interface or in the water pool. The sensitivity of the TCM anion to the environment allows us to unequivocally monitor the vibrational and hydration dynamics of the anion in those two different environments. A TCM anion located at the interface does not show any significant variation of the vibrational dynamics with the water pool size. On the contrary, the TCM anion inside the water pool exhibits a large and nonlinear variation of the vibrational lifetime and the frequency-frequency correlation time with the pool radius. Moreover, for the solvated anion in water pools of 49 Å in radius (W0 = 30), the vibrational lifetime reaches the values observed for the anion in bulk water while the frequency-frequency correlation time shows a characteristic time higher than that observed in the bulk. In addition, for the first time a model is developed and used to explain the observed nonlinear variation of the spectroscopic observables with the pool size. This model attributes the changes in the vibrational dynamics of the TCM anion in the water pool to the slow and radius-dependent water dynamics present in the confined environment of a reverse micelle.
Collapse
Affiliation(s)
- Prabhat K Singh
- Ultrafast Optical Processes Laboratory, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
23
|
Dushanov E, Kholmurodov K, Yasuoka K. Activation Energy Calculations for Formamide-TiO2 and Formamide-Pt Interactions in the Presence of Water. Open Biochem J 2013; 7:33-43. [PMID: 23802018 PMCID: PMC3680988 DOI: 10.2174/1874091x01307010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022] Open
Abstract
Formamide contains the four elements (C, H, O, and N) most required for life and it is attractive as a potential prebiotic starting material for nucleobase synthesis. In the presence of catalysts (for example, TiO2) and with moderate heating, formamide can pass surface energy barriers, yielding a complete set of nucleic bases and acyclonucleosides, and favoring both phosphorylations and transphosphorylations necessary for life. In the reaction mechanism, interaction with water seems to be an essential factor for the formamide molecule to function. In this paper, a formamide–water solution on a TiO$_2$ (anatase) surface is simulated using the molecular dynamics method, and activation energy calculations are performed for the temperature range of T = 250 K to T = 400 K. A correlation is established between the diffusion and density profiles for the formamide and water molecules on an anatase surface. Also, the calculated activation energies of the formamide–water–anatase and formamide–water–platinum systems are compared. A comparative analysis is performed of the behavior of formamide–water and ethanol–water interaction on the same (anatase and platinum) surfaces.
Collapse
Affiliation(s)
- E Dushanov
- Laboratory of Radiation Biology, JINR, 141980, Dubna, Moscow Region, Russia ; Institute of Nuclear Physics, 702132, Ulugbek, Tashkent, Uzbekistan
| | | | | |
Collapse
|
24
|
Giampaolo AD, Cerichelli G, Chiarini M, Daidone I, Aschi M. Structure and solvation properties of aqueous sulfobetaine micelles in the presence of organic spin probes: a Molecular Dynamics simulation study. Struct Chem 2013. [DOI: 10.1007/s11224-013-0207-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Correa NM, Silber JJ, Riter RE, Levinger NE. Nonaqueous Polar Solvents in Reverse Micelle Systems. Chem Rev 2012; 112:4569-602. [DOI: 10.1021/cr200254q] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- N. Mariano Correa
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia
Postal #3, C.P. X5804BYA Río Cuarto, Argentina
| | - Juana J. Silber
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia
Postal #3, C.P. X5804BYA Río Cuarto, Argentina
| | - Ruth E. Riter
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030-3770, United
States
| | - Nancy E. Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| |
Collapse
|
26
|
Fluorescence Probing in Structurally Anisotropic Materials. ADVANCED FLUORESCENCE REPORTERS IN CHEMISTRY AND BIOLOGY III 2011. [DOI: 10.1007/978-3-642-18035-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Elola MD, Rodriguez J, Laria D. Structure and dynamics of liquid methanol confined within functionalized silica nanopores. J Chem Phys 2010; 133:154707. [DOI: 10.1063/1.3503886] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Abel S, Waks M, Marchi M. Molecular dynamics simulations of cytochrome c unfolding in AOT reverse micelles: The first steps. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 32:399-409. [PMID: 20803162 DOI: 10.1140/epje/i2010-10635-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 07/06/2010] [Indexed: 05/29/2023]
Abstract
This paper explores the reduced form of horse cytochrome c confined in reverse micelles (RM) of sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) in isooctane by molecular dynamics simulation. RMs of two sizes were constructed at a water content of W (o) = [ H₂O ]/[AOT] = 5.5 and 9.1. Our results show that the protein secondary structure and the heme conformation both depend on micellar hydration. At low hydration, the protein structure and the heme moiety remain stable, whereas at high water content the protein becomes unstable and starts to unfold. At W (o) = 9.1 , according to the X-ray structure, conformational changes are mainly localized on protein loops and around the heme moiety, where we observe a partial opening of the heme crevice. These findings suggest that within our time window (10ns), the structural changes observed at the heme level are the first steps of the protein denaturation process, previously described experimentally in micellar solutions. In addition, a specific binding of AOT molecules to a few lysine residues of the protein was found only in the small-sized RM.
Collapse
Affiliation(s)
- S Abel
- DSV/iBiTecS/SB2SM, CNRS URA, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
29
|
Fries PH, Belorizky E. Enhancement of the water proton relaxivity by trapping Gd3+ complexes in nanovesicles. J Chem Phys 2010; 133:024504. [DOI: 10.1063/1.3456987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
30
|
Longhi G, Fornili SL, Liveri VT, Abbate S, Rebeccani D, Ceraulo L, Gangemi F. Sodium bis(2-ethylhexyl)sulfosuccinate self-aggregation in vacuo: molecular dynamics simulation. Phys Chem Chem Phys 2010; 12:4694-703. [DOI: 10.1039/b924146a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Pieniazek PA, Lin YS, Chowdhary J, Ladanyi BM, Skinner JL. Vibrational Spectroscopy and Dynamics of Water Confined inside Reverse Micelles. J Phys Chem B 2009; 113:15017-28. [DOI: 10.1021/jp906784t] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Piotr A. Pieniazek
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Yu-Shan Lin
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Janamejaya Chowdhary
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Branka M. Ladanyi
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - J. L. Skinner
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|