1
|
Fabiano E, Laricchia S, Della Sala F. Frozen density embedding with non-integer subsystems' particle numbers. J Chem Phys 2014; 140:114101. [PMID: 24655166 DOI: 10.1063/1.4868033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.
Collapse
Affiliation(s)
- Eduardo Fabiano
- National Nanotechnology Laboratory (NNL), Istituto Nanoscienze-CNR, Via per Arnesano 16, I-73100 Lecce, Italy
| | - Savio Laricchia
- National Nanotechnology Laboratory (NNL), Istituto Nanoscienze-CNR, Via per Arnesano 16, I-73100 Lecce, Italy
| | - Fabio Della Sala
- National Nanotechnology Laboratory (NNL), Istituto Nanoscienze-CNR, Via per Arnesano 16, I-73100 Lecce, Italy
| |
Collapse
|
4
|
Laricchia S, Fabiano E, Della Sala F. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies. J Chem Phys 2012; 137:014102. [PMID: 22779632 DOI: 10.1063/1.4730748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We analyze the accuracy of the frozen density embedding (FDE) method, with hybrid and orbital-dependent exchange-correlation functionals, for the calculation of the total interaction energies of weakly interacting systems. Our investigation is motivated by the fact that these approaches require, in addition to the non-additive kinetic energy approximation, also approximate non-additive exact-exchange energies. Despite this further approximation, we find that the hybrid/orbital-dependent FDE approaches can reproduce the total energies with the same accuracy (about 1 mHa) as the one of conventional semi-local functionals. In many cases, thanks to error cancellation effects, hybrid/orbital-dependent approaches yield even the smallest error. A detailed energy-decomposition investigation is presented. Finally, the Becke-exchange functional is found to reproduce accurately the non-additive exact-exchange energies also for non-equilibrium geometries. These performances are rationalized in terms of a reduced-gradient decomposition of the non-additive exchange energy.
Collapse
Affiliation(s)
- S Laricchia
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano (LE), Italy
| | | | | |
Collapse
|
6
|
Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem Rev 2011; 112:632-72. [DOI: 10.1021/cr200093j] [Citation(s) in RCA: 836] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark S. Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States
| | - Dmitri G. Fedorov
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Spencer R. Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames Iowa 50011, United States
| | - Lyudmila V. Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Keal TW, Sherwood P, Dutta G, Sokol AA, Catlow CRA. Characterization of hydrogen dissociation over aluminium-doped zinc oxide using an efficient massively parallel framework for QM/MM calculations. Proc Math Phys Eng Sci 2011. [DOI: 10.1098/rspa.2010.0613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A task-farm parallelization framework has been implemented in the ChemShell computational chemistry environment to provide a facility for parallelizing common chemical calculations, including finite-difference Hessian evaluation, the nudged elastic band method for reaction path optimization, and population-based methods for global optimization. The optimization methods are provided by a parallel interface to the DL-FIND optimization library. As ChemShell can already exploit parallel external programs for energy and gradient evaluations, the new methods result in a two-level approach to parallelization that gives significantly improved performance for massively parallel calculations. For typical systems, speed-up factors of five to eight times have been observed compared with non-task-farmed calculations. The task-farming version of ChemShell has been used to study the heterolytic dissociation of a hydrogen molecule over a polar oxygen-terminated surface of aluminium-doped zinc oxide using an embedded cluster hybrid QM/MM approach. We calculate a 42 kcal mol
−1
heat of reaction and a 30 kcal mol
−1
activation energy, which is equivalent to a high backward reaction barrier of 72 kcal mol
−1
per H
2
molecule, in close agreement with temperature programmed desorption experiments. The dissociation path includes a stable intermediate comprising a hydride ion in an oxygen vacancy and physisorbed atomic hydrogen.
Collapse
Affiliation(s)
- Thomas W. Keal
- Computational Science and Engineering Department, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Paul Sherwood
- Computational Science and Engineering Department, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Gargi Dutta
- Department of Chemistry, University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
| | - Alexey A. Sokol
- Department of Chemistry, University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
| | - C. Richard A. Catlow
- Department of Chemistry, University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
11
|
Trevethan T, Shluger A, Kantorovich L. Modelling components of future molecular devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:084024. [PMID: 21389400 DOI: 10.1088/0953-8984/22/8/084024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We discuss challenges involved in modelling different components of molecular devices and give several examples that demonstrate how computer modelling evolved over the last few years to become a comprehensive tool for designing molecules, predicting their adsorption and diffusion at surfaces, simulating atomic force microscopy imaging and manipulation of atoms and molecules at insulating surfaces and studying electron conduction in prototype molecular devices. We describe some of the computational techniques used for modelling adsorption, diffusion, imaging and manipulation of organic molecules at surfaces and challenges pertaining to these studies, give several examples of applications and discuss further prospects for theoretical modelling of complex organic molecules at surfaces.
Collapse
Affiliation(s)
- Thomas Trevethan
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK. The Thomas Young Centre for Theory and Simulation of Materials, University College London, Gower Street, London WC1E 6BT, UK. WPI-AIMR, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | |
Collapse
|
12
|
Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S. Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems. J Chem Theory Comput 2010. [DOI: 10.1021/ct100006n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Gao
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Satoshi Yokojima
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Dmitri G. Fedorov
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Kazuo Kitaura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Minoru Sakurai
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| | - Shinichiro Nakamura
- Mitsubishi Chemical Group Science and Technology Research Center, Inc., 1000 Kamochida-cho, Aoba-ku, Yokohama 227-8502, Japan, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan, The KAITEKI Institute, Inc. 14-1, Shiba 4-chome, Minato-ku, Tokyo 108-0014, Japan, RICS, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and Graduate School of
| |
Collapse
|